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Abstract : We consider mean field social optimization in nonlinear diffusion models. By dynamic
programming with a representative agent employing cooperative optimizer selection, we derive a new
Hamilton-Jacobi-Bellman (HJB) equation to be called the master equation of the value function.
Under some regularity conditions, we establish e-person-by-person optimality of the master equation-
based control laws, which may be viewed as a necessary condition for nearly attaining the social
optimum. A major challenge in the analysis is to obtain tight estimates, within an error of O(1/N), of
the social cost having order O(N). This will be accomplished by multi-scale analysis via constructing
two auxiliary master equations. We illustrate explicit solutions of the master equations for the linear-
quadratic (LQ) case, and give an application to systemic risk.

Keywords : Controlled diffusion, mean field social optimization, person-by-person optimality, dy-
namic programming, master equation
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1 Introduction

Mean field social optimization studies decision problems involving a large number of agents which have
a common optimization objective and interact through coupling in their individual dynamics or costs, or
both [25]. These problems are also referred to as large population optimal control [20]. The cooperative
behavior of the agents differs from the noncooperative behavior of the agents in mean field games [7].
The reader is referred to [3, 24, 25, 28, 40] for the analysis of social optima in a linear-quadratic
(LQ) framework. McKean—Vlasov optimal control has been studied in [5, 8, 13, 19, 30, 32, 37, 41],
and may be heuristically interpreted as a limit form of large population optimal control. Cooperative
mean field control has applications in economic theory [31], collective choice problems [34], multi-
agent flocking [33], and power systems [17]. The notion of social optima is also useful for measuring
(in)efficiency of mean field games [4, 10].

In this paper we analyze social optimization for a class of nonlinear models. Consider a population
of agents A;, 1 <i < N, satisfying the stochastic differential equations (SDEs):

dX} =f(X},ul, pyYdt + odW] 4+ 0odW?, 1<i<N, t>0, (1.1)

where X} and u! are agent A;’s state and control, respectively, and

. 1
-1 . .
Hy T N1 ’Z”(sxg
1<j<N,j#i

is the empirical distribution of all other N — 1 agents, with §, being the dirac measure at x € R".
The initial states {X§,1 <i < N} are independent with finite second moment. The N + 1 standard
Brownian motions {W7,0 < j < N}, as the individual noises and the common noise, respectively, are
independent and also independent of the initial states. The dimensions of X}, u, W} and W} are
n, ni, N2, ng, respectively, and f, ¢ and og have compatible dimensions. We restrict to the case of
constant noise coefficients. Our approach can deal with state and control dependent noise.

Agent A; has its own cost
Ji(u'(),u""(-)) = E/O L(X}, uy, py )dt +E g(Xp, ppt), (1.2)

where u™!(+) denotes the controls of all agents other than A;. To avoid heavy notation, we do not
include ¢t as an argument in f, o, 09 and L, but can treat the t-dependent case without further difficulty.
The social cost is given by

N

Ji(é\(/;)(u) = ZJ’M (13)

=1

where u = (u',--- ,u®).

1.1 Method, analytical challenges, and contributions

One may attempt to minimize the social cost by directly solving an optimal control problem. This
approach, however, becomes infeasible when N is large. Instead, we develop our solution by studying
the optimizing behavior of a representative agent. We exploit a simple but useful idea in team decision
theory called person-by-person (PbP) optimality. The reader is referred to [29, 35, 39] for its charac-
terization and to [12] for its feedback form in decentralized stochastic control. To explain the idea, let
J(ul, - ,u™) be the team cost of N agents with strategies u’. Under a given information structure,
if the team attains its optimum by a joint strategy (a',--- , 4" ), then no agent can unilaterally take
a new strategy to improve for the team. PbP optimality is a necessary condition for team optimality.
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Our PbP optimality-based approach studies the value function of a representative agent and applies
dynamic programming in an extended state space including an individual state z and a measure p
describing the mean field. This method enables the agent to choose its optimizer in a feedback form
@' = ¢(t, x, u), which differs from [36], where the control perturbation is a non-anticipative process. In
the end we obtain a special Hamilton-Jacobi-Bellman (HJB) equation, which will be called the master
equation for the value function; some heuristic derivation has appeared in [27] without performance
analysis. Master equations have been widely studied in mean field games [6, 9, 14] and also mean field
optimal control [5, 6, 19, 32].

In the setting of social optimization (or large population optimal control), our approach above differs
from some existing works, which approximate the N-agent optimal control problem by a McKean—
Vlasov optimal control problem (see e.g. [19, 20, 30, 41]). As a result, their value function takes the
form Vi, (¢, pt), only characterizing the performance of the population as a whole. However, in practical
cooperative decision scenarios, each constituent agent still desires to know its own performance; our
approach responds to this need and specifies an individual’s value function V(¢,z, ). The authors
in [5] formulate an optimal control problem combing a representative agent’s state equation with the
McKean—-Vlasov dynamics, both controlled by the same process. They prove a dynamic programming
principle without common noise, and the drift term in their master equation is structured differently
from ours.

When the control laws (4!, --- ,4"V) of N agents have been determined from the master equation,
an issue of central importance is their performance. For certain classes of models, the value function
of the controlled McKean—Vlasov dynamics has been shown to be the limit of the value function of the
N-agent optimal control problem as N — oo [8, 19]. However, to our best knowledge, except for LQ
cases [21, 25, 26, 40], there has existed no past work on social optimization addressing the performance
of the infinite population-based control laws when they are applied by finite populations. As it turns
out, our PbP optimality-based approach provides a tractable framework for such performance analysis.
We will establish approximate PbP optimality for the master equation-based control laws in optimizing
Js(é?, which may be viewed as a necessary condition for achieving near social optimality. Naturally, it
is desirable to bound the gap between the attained performance and exact PbP optimality as tightly
as possible. A loose bound would not tell much about performance.

PbP optimality may be viewed as a special case of a Nash equilibrium where all agents take the social
cost as their individual costs. For this reason, our performance estimate in terms of approximate PbP
optimality is similar to the e-Nash equilibrium analysis in mean field games [7]. However, we confront
a far more difficult problem, especially under model nonlinearity. We may think of Js(é\é) as a quantity
of order O(N) while expecting the agent in question to minimize it up to an accuracy of o(1). The
estimate of the performance loss becomes very intricate since we face quantities of such drastically
different scales as O(N) and o(1). In contrast, the e-Nash equilibrium analysis involves quantities of
scales O(1) and o(1), for an agent’s cost and its performance loss, respectively. Under some regularity
conditions pertaining to the solution of the master equation, we prove that 4’ is nearly PbP optimal,
with an inadequacy (or regret) of at most O(1/N) for optimizing JE0.

Our performance analysis depends on exploiting the multi-scale feature when an individual attempts
to optimize the social cost, where the key idea is to decompose the social cost roughly as the sum of a
much larger macroscopic term and another term that carries information on the representative agent
and so will be called the instrumental value function. Meanwhile, we need to introduce two auxiliary
master equations. Such combined usage of functions describing phenomena of different scales, together
with the construction of their equations, has got much of its inspiration from the physics literature on
computing tiny quantities which are superposed to very large ones [1, p. 199-209] [18, p.195-198] and
also from perturbation methods of dynamical systems [23, ch. 3.

The paper is organized as follows. Section 2 introduces the master equation of the value function.
To prepare for performance analysis, Section 3 introduces the instrumental value function and two
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auxiliary master equations. The asymptotic PbP optimality theorem is proved in Section 4. Section 5
illustrates explicit solutions of the master equations by linear-quadratic (LQ) models and a systemic
risk example.

1.2 Notation

The Frobenius norm of a vector or matrix v is denoted by |v|. For the function ¢ (z) from R" to R,
we denote the partial derivatives 0,,¢ and Oy,4;v¢ = 0z, (02,4). Denote 0,¢ = (02,0, -+ ,0,,7%) as
a row vector. The Hessian matrix is 92¢) := (9z,4,v)1<i,j<n, Where 9y,,9 is the (i,7)-th entry of the
matrix. If ¢(x,y) is a scalar function with z,y € R™, we denote

awy¢(xa y) = (al%yj T/’(J% y))lﬁi,jgn-

The evaluation ¥ (z, y)|y=y gives ¢ (z, z). When there is only one space variable x in ¢ (as in ¥ (¢, z, 1)),
we use the short notation 1, = 9,1 and ., = 021).

Let P2(R™) be the space of Borel probability measures on R™ with finite second moment. On
P2(R™), we endow the Wasserstein distance Wa (i, v) so that it becomes a complete metric space [2]. Let
PE . (R™) consist of all probability measures 1 on R™ such that p = & Zle §gi forsomex = (zt,-- -, z¥)
with 2t e R", 1 <i < k.

For a function 1 : R® — R* and a probability measure p, we write the integral f]R" Y(x)p(dx) as
(i, ) or (¢),. We sometimes write such form (u(dy),¥(t,y, 1)) to explicitly indicate the variable of
integration. For two probability measures py and o, (1 — pa, ) = (u1,%) — (e, V).

Denote the agent index set N' = {1,--- , N}, and N_; = N'— {i}. Throughout the paper, the agent
indices 4,5 € N, etc, appearing in (Xti, uf;, Wtj, TR etc.) are always interpreted as a superscript,
and not as an exponent. The controls of the N agents are written as u := (u',--- ,uv). Further
let u™% be the controls of all agents except A;. We follow [9] (which uses the notation §V/u) to
define the measure differentiation for a function V(¢,z, u); for fixed (¢,x), the derivative ¢,V as a
Lebesgue measurable function from R™ to R, is denoted by 6,V (¢, z, 1; y) satisfying the normalization
condition (u(dy),d,V (t,z, p;y)) = 0, where y € R™ after the semicolon is the new variable arising
from the differentiation. Higher order derivatives are similarly introduced and denoted in the form
0,V (t, x, 15y, 2), ete. A function (such as ¢(t, x, u)) is said to be jointly continuous if it is continuous

under the product topology of [0,7] x R™ x Pa(R™).

Unless otherwise indicated, the partial derivative will be based on the actual appearance of the
variables. For example, 0, in 0,0,V (t,y, u; ) means differentiation with respect to the variable after
w, even if we initially introduce the form 0,V (¢, z, ;). The functions x, x1, x2, -+ (such as x(t, ),
x1(t, x, 1), etc.) are reserved as a normalizing term (see Section 5.1 for examples) when differentiating
a function with respect to p. In various estimates we use C,Cy,Cy, - -+ as generic constants which do
not depend on N and may change from place to place.

2 The value function and its master equation

Let U be a nonempty closed subset of R™. Here and hereafter, we reuse C, as a generic constant in
various assumptions. We make the following standing assumptions:

(A1) The map f: R"xUxPy(R™) — R™ is continuous, and Lipschitz continuous in (z, u), uniformly
with respect to u. In addition, |f(z,u,u)| < Co(1 + || + |u| + (|y])u)-

(A2) L:R" x U x Po(R") - Ry and g : R™ x P2(R™) — R, are continuous, and
L(w,u, 1), g, ) < Ca(L+ |2]* + ul® + (Jy])0),

for all (z,u, n) € R™ x U x Py(R™).
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2.1 The ¢-value function

To explain the idea underlying the derivation of the master equation, we analyze a family of (N, ¢)-
indexed control problems for agent A; in a population of N agents. Consider a set of control laws
d)(t,Xf,,ut_k), 1 < k < N, with a continuous function ¢ from [0, 7] x R™ x P3(R™) to U that ensures
a unique solution to the SDE system (1.1).

For each ¢, let VV:¢(¢, 2%, u~%) denote the cost
. . T . . . . .
Ji(t, ', pta() = IE/ L(X, ug, pg ' )ds + Bg(Xp, pp')
t

of agent A; when all N agents apply the control laws 4% = ¢(s, X¥, u7%), 1 <k < N, on [t,T] with
X! =" and p;* = p=t € PN-1(R™). The choice of =% € PN-1(R") is arbitrary, which may be
matched by appropriate initial states of all other agents A;, j # i at time ¢. Then VN2 is a well-
defined function on [0,T] x R™ x PN-1(R"). It is clear that this cost depends on N. For notational
simplicity, we will just write it as V(¢, x%, 1) by dropping the superscript N. We may denote the cost
of A; in this form due to symmetry of the other N — 1 agents. Specifically, if we permutate the other
agents’ initial states, the cost of A; remains the same. We shall call V? the ¢-value function for A;.

Now let the N agents be assigned the initial time-state values (t,27,u=7), 1 < j < N, respectively,
which are subject to the constraint &, + Y1y = LSV 5. for all j. For the initial time
t € [0, 7], denote the controlled state processes for agents A;, j # 1,

dX7 =f(XI, ¢(s, X7, u;7), ps?)ds + odW? + oodW?, s>t (2.1)
For agent A;, we have
dX! =f(XL ul, p;")ds + cdW! + ogdW?, t<s<T, (2.2)

where we take u’ = u’ € U for s € [t,t + ¢) and ul = ¢(s, X}, u;?) on [t + ¢, T]. Under (2.1)—(2.2),
denote

T
Ji(tvxl7ﬂ_laul(')7 ﬁ_z()) = IE/ L(X;u; ,u;z)ds + Eg(X%v M;Z)
t

t+e )
B[ [ Lt s+ VA e Xt (29)
t
Using dynamic programming, we select u’ € U on the small interval [t,t + €] to minimize

E[/ L(Xiul uyh)ds + 3 VOt +e, X{;E,u;ﬁ)}
¢ k=1

and next take N — oo. This allows us to formally derive the master equation of the value function
V(t,x, ), as the limiting form of J;, after finding the minimizer 4 which is further required to be
equal to ¢; see details in appendix A.

2.2 The dynamic programming equation (or master equation)

Denote the matrices ¥ = oo?, ¥y = aoag . We interpret (z,u’) as the state and control of the
representative agent .4; in an infinite population. The master equation of the value function V (¢, x, 1)
takes the form

OV (12, 1) = Valt, 1) (0 8 0) 4 5 TVaa )5 + o)) (2.4)
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+ Lz, ', p) + (u(dy), 0,6,V (t, %, 11;9) [ (y, $(t, 95 1), 1))
+ g dy), O30,V (8, ) (5 + o))
+ (u(dy), Tr[04y0,V (t, , 13 y) Xo])

1
+ 5 </~L®2 (dydz)a Tr[ayz(s,u,uv(t’ z, 3y, Z)EOD;

V(T,z,n) = gz, p), (t,z, 1) € [0, 7] x R™ x Pa(R"), (2.5)
where
' =¢(t, @, 1) (2.6)
is selected according to
®(t,z, 6t 1), p, V() =min @(t, z, 0, 1, V() (2.7)

for

(I)(t7 €, uia s V()) ::Vw(t’ €T, /J)f(&?, ui? M) + L(.’E, ui’ :U’)
+ (u(dy), 026,V (t,y, s ) f (w,u', ).

Definition 2.1. We call the pair (V, ¢), as mappings from [0, 7] x R™ x P3(R") to R and U, respectively,
a solution of the master equation (2.4) if the following conditions are satisfied:

(i) V, 0,V, V,, and V,, are each jointly continuous on [0,7] x R™ x P(R");

3

(i) 6,V (&, 2, 15 9), OV (E, 2, 13y, 2), g0,V (0, 15 y), 026,V (8, 115), Oay 0,V (8, 115), By20,,V (E, 0, 415y, 2)
are jointly continuous in ¢ € [0,T], z,y,z € R™, and u € P2 (R");

)

(iii) ¢ is continuous on [0,T] x R™ x Py(R™) with

(8,2, )| < Co(1+ [2| + (lyl)n);

(iv) there exists a constant C,, such that for all (¢,2,y, z, 1),

16,V (2, 15:9)s 16,V (82, 13y, 2)| < Call + |22 + [y + |22 + ([y)2),
0,0,V (t, 2, 115 9)| < Cal1 + [2] + [yl + ([y[) ),

1050,V (t, 2, 113:9)|, [02y0,V (L, 2, p3y)| < Ca,

(0420, V (t, , 115y, 2)| < Cog;

(v) (V, ¢) satisfies (2.4) with terminal condition (2.5).

For the subsequent analysis, it is necessary to look for a solution of Equation (2.4) with further
restrictions on V. We introduce the following class of functions Cy consisting of all functions V' from
[0,7] x R™ x P2(R™) to R such that (a) V fulfills conditions (i) and (ii) in Definition 2.1, and further-
more, 0,V (t, @, 13y, z,w), 0.6,V (t,z,pu5y), 026,V, 8:0,V, 0y0,,V (t,z, 15y, 2), 026,V 855##‘/,
OzyOupV'y Oybuun V', 0y20,,,V are jointly continuous for ¢t € [0,T7], z,y,z,w € R", p € Po(R™); (b) V
satisfies (2.8) and moreover,
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[V (2, 0)| < Call + [z + (ly)7),

Ve (t, 2, p)| < Ca(l+ || + (yl)n),

[Vaa(t, 2, p)| < Ca,

1008,V (&, 2, 113y)| < Ca(L+ |2 + [y > + (Jy])7),
026,V (t, 2, w3 y)| < Ca(1 + ||+ [y| + {ly))w),

020,V (t, 2, 3 y)| < Cl, (2.9)
0y0,,V (6 2, 3y, 2)| < Ca(l+ 2| + [yl + |2] + (y)w),
|6§5MLV(t,x,u;y,z)|, |02y 0,V (t, 2, 15y, 2)| < Cl,

|0 pupups (8 2, 3y, 2, )| < Ca(L+ [ + [yl + |22 + [w]* + (y])7),
|0y 0V (L, 2, 3y, 2, w) | < Coll + [] + |yl + [2] + [w] + (|y[)w),
10y=0,uV (t, 2, 3y, 2, w)| < C,.

The above additional growth conditions in (2.9) are mainly for ensuring well-defined coefficients in
the equation of U in Section 3 and for constructing a solution of U, which involves differentiating both
sides of (2.4) and leads to various higher order derivatives.

3 Close-loop systems and auxiliary master equations

We begin by introducing the following assumption.
Assumption 3.1. The master equation (2.4) has a solution pair (V, ¢) with V' € Cy.

A question of central interest is what kind of social performance can be achieved when the master
equation-based control law ¢ in (2.6) is used by all N agents. Note that ¢(¢, x, 1) involves the measure-
valued variable p. For its implementation, we will use the actual process p; * in the control laws of
the N agents:

= o(t, X}, ur), 1<i<N. (3.1)
Under the set of control laws 113;, 1 <i < N, the closed-loop system takes the form
dX] =f(X5, ot X, pur D), py )t + 0dW] 4+ odWy, 0<t<T, (3.2)
1<i<N.

To analyze the performance of the control law ¢ in terms of PbP optimality, we need to consider
a general control u; for agent A; while the other agents take

af = o(t, X pu "), 2<k<N. (3.3)

The key question is by how much the social cost may be reduced by optimizing u;. This leads to a
control problem with social cost JED (ul(),a71(-)) and dynamics

dX} =f(X}ul, pYdt + odW} + oodW?, (3.4)

dth :f(th? ¢(t7 tha ,u’t_k)ﬂ ,u’t_k)dt + Uthk + UOthOa
0<t<T, 2<k<N.
To facilitate the performance analysis, we need to examine two functions U and U below, which are

related to the asymptotic behavior of the social costs attained by ¢ as N — oo.

The social cost under the control law ¢ in (2.6) for all agents will serve as a benchmark performance
level. Based on (3.2), we consider the state processes on [s, T):

dX; =f(X{,6(t, X{, 1y "), g )t + odWi + aodW, s<t<T, (3.6)
1<i<N,
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which are assigned the initial condition (s, z',--- ,2"). The use of general initial conditions will enable
us to derive a partial differential equation of the cost

N

(s,xt,--- z) ::ZJi(s,mi,ufi,qS) (3.7)

=1

)

soc,p

subject to dynamics (3.6). Here J;(s, 2, u~%, ¢) means that the cost is evaluated with initial time s,
initial state (2, 4~*), and the same control law ¢ for N agents.

We will look for a suitable representation of Js(é\g)¢. By symmetry of all other agents, agent A; may

write Js(é\é,)¢ in (3.7) as UY. (s, 2%, u™1), where the initial condition p~!, as the empirical probability
distribution of the state values (x2,--- ,z"), is sufficient for describing the behavior of all other agents
as a whole.

We take a decomposition of the form

UN (tzt, u™) =UN(t, 2t ™) + (N = D)U(t, u™h), (3.8)

soc

where the function U, to be identified later, is defined on [0, T] X P2(R"™) and does not depend on
N. Given UY (t,x',p=1), one might choose different pairs (U™V,U) for the right hand side of (3.8).

soc v
However, an appropriate choice of U is crucial in order to prevent uncontrolled growth of UV as

N — oco. We will take

U(t,p) = (u(dy),V(t,y,p)), we Pa(R"), (3.9)

which is well-defined in view of (2.9). Our next step is to get the limit form of U (¢, 2!, u~!), denoted

by U(t,z, ), and determine the equation of U. Since U aggregates the effect of a particular agent’s

state & on the social cost Js((f\g)¢ which itself approaches infinity as N — oo, we shall call U the

instrumental value function (IVF) to distinguish it from the value function V.

3.1 Auxiliary master equations
For (t,z,u) € [0,T] x R™ x Po(R"™), define

f*(t,x,,u) = f(zv¢(t7xvﬂ)7u)’ L*(tvxvu) = L(JT,(,ZS(t,ZE,,u),,UJ).

We introduce the following assumption:
Assumption 3.2. Each of the functions 6, f*, 6,,,, f*, 6,L*, 6., L*, 6,,9 and ¢,,,,g is jointly continuous in
its arguments, and there exists a constant C, such that

0, f (8,2, 3 9)| < Ca(1 + || + |yl + (yl) ),

0 f (8, 3y, 2)] < Ca(1 A+ |2 + [y| + [2] + (lyl) ),
10, L7 (t, 2, ;)| < Ca(L+ |2 + [yl* + (lu)2),

10, L (t, 2, 3y, 2)| < Ca(Q 4|2 + [y? + |22 + (Jyl)2),
16,9(x, 3 y)| < Ca(1+ |2 + 91> + (Jy)7),

10,9, 15y, 2)| < Ca(L+ |2 + [y + 2° + (Jy))7),

for all t € [0,T], x,y,2z € R™.
We introduce the following master equation for the instrumental value function U (¢, x, p):
0:atU(ta‘T?p’)+Ul’(t7xa:u’)f*(t7xnu’) (310)

1
S TelUa (8,2, 1) (5 + S0)] + L (8,2, )
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(u(dy), 0y6,U(t,x, p;y)f*(t,y, 1))
S (u(dy), TIOR8, U (1, . ) (5 + o))
(u(dy), Tr[0ay 0, U (¢, x, 5 y) Xo))
(H2(dydz), Tr{0y=8,,U (1,7, 13, 2) o)
Yy), 0uL”(ty, s w) — 0, L7 (t,y, 13 y))
(u(dy), 08,7 s )6 1, 5:7) — 6 (1,15 9)
), Tr{ (0,8, T s, 2 = 2,

U(T,x,p) = gz, 1) + (u(dy), 6,9(y, s ©) — 6,9y, 15 9)), (3.11)
(t,z,p) € [0, T] x R™ x Po(R"™),

1
s
(

"
"
"
n
+ (u(d
"
n

where U(t, i) is given by (3.9).

It will be helpful to explain how equation (3.10) is derived. Our method is to follow the idea
underlying Feynman-Kac’s formula to derive an equation for UX (¢,2', u~!) using the dynamics of
(X}, ;') in (3.6). Subsequently we separate terms of two different scales, depending on whether they
are multiplied by N — 1, to formally obtain two equations for UY and U, respectively. Finally, taking
N — 00, we obtain a limit form U for UY and its Equation (3.10). See appendix D for details. By
this procedure we have in fact identified the equation of U (see (3.14)) first and then show that (3.9)

gives a solution.

Our next step is to construct a particular solution to master equation (3.10). To do this, we need
to introduce another function M: [0,T] x Po(R?) — R by the following equation:

0= 0:M(t, 1) + (uldy), 0y, M(t, pis ) f* (L, y, 1)) (3.12)
+ 3 (u(dy), TY(G38, M (1, 1) (5 + Zo)))

+ §< #2(dydz), Te{dy-, M1, 13, ) Do)
+ (u®(dydz), 0,6,V (t, 2, 1 9) (6, f* (t v, 115 2) — 8 f* (ty, 15 9)])s
T (a2 (dyduw), Te{[8,20,V (w0, 159, )] [e—y S,

=
~

B
Il

(=)

(t, 1) € [0, T] x Po(R™). (3.13)

We have constructed this equation so as to use M as an adjustment term in the representation
of U (see (3.21) below). With V' known, we may view (3.12) as a linear equation.

Let the class Cps consist of all functions M (¢, i) from [0,7] x P2(R™) to R such that (i) M (¢, p),
M (t, 1) 0, M(t, p13y), SuuM (L, 113y, 2), BybuM(t, 115), 026, M (L, p;y), By=0,, M(t, 15y, 2) are jointly
continuous; (ii) for some constant C,,

10, M (t, 1539)], 16, Mt 15y, 2)| < Ca(1+ |2 + |yI> + (y*) ),
10,0, M (t, ;)| < Co(1+ |yl + (|yl) ),
|3§5MM(t,,u;y)| <y, |3yz5th(t,u;y,z)\ < Cq.

We further introduce the following assumption.
Assumption 3.3. There exists a solution M € Cjps to Equation (3.12).

Theorem 3.4. Under Assumption 3.1, U defined by (3.9) satisfies the following equation

0= 0U(t, 1) + (p, L*(t,y, 1)) + (1, 0y 0, U (t, 3 y) f* (£, y, 1)) (3.14)
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+ 5 {1, (076, U (L, 115 y) (5 + %))

[ A

+ 3 <M®2 (dydz)> Tr[ayz(suuﬁ(ta my, Z)ZO]>7

[\)

U(T,p) = (s 9(y, 1)), (¢, 1) € 10, T] x Pa(R™). (3.15)

Proof. For U defined in (3.9), we have

6, U (t, piy) = V(t,y, 1) + x(t, 1) + (u(dw), 6,V (¢, w, 13 y)), (3.16)
where x is a normalizing term. We have
SunU (b, 13y, 2) = 6,V (t,y, 15 2) + 6, x(E, 5 2) + 6,V (8, 2, 5 y) + xa (6, 1, ) (3.17)

+ <p’(dw)7 5H#V(t7 U}, :u‘a y7 Z)>
Therefore,
0y20,,U (t, 15y, 2) =020,V (t,y, s 2) + 9,20,V (t, 2, 11;y) (3.18)
+ (u(dw), 9y20,, V (t,w, p3y, 2)).

The partial differentiation in the last term can get inside the integration by an application of the
dominated convergence theorem.

Substituting these expressions into the right hand side of (3.14), we obtain

E = 0, V(L y, ) + (s LT (8 y, 1)) + (s Vi (&, y, ) £ (8, 95 1)) (3.19)
+ (U2 (dydw), 8,6,V (t, w, 5 y) f (¢, y, 1))

+ 5 <:u7 Tr[vyy(tv Y, M)(E + EO)D

+

(1= (dydw), Tr[050,,V (t,w, 113y) (3 + o))

(% (dydz), Tr{[0y-6,V (t,y, s 2) + 0y=6,V (t, 2, 3 y)]So })

N RN RN =N -

+ 5 (2 (dydzdw), Te{0y-6,,V (t,w, 13y, 2) o).
By a change of variables, we further apply Lemma B.2 to write the constituent term
<,u®2(dydz), Tr[ayz(suv(tv Zy 3 y)EOD
= (u®?(dydz), Tr[0y.6,V (t,y, 1t; 2) X0 (3.20)

Now after substituting (3.20) into (3.19), we show Z = 0 by integrating both sides of (2.4) using u(dz),
where we have (u(dz), 0:V (t,x, 1)) = Oy (u(dx), V(t,x, 1)). O

We now take

Ult,z,pn) =V (t,z, 1) + M(t, p) (3.21)
+ (uldy), 6,V (t,y, s x) = 6,V (L, y, 15 y))
for (¢t,x,u) € [0,T] x R™ x Py(R"™), and proceed to show that this function satisfies (3.10).
Remark 3.5. We explain the idea behind the representation (3.21). We write UY (t,2',u~!) =
Zfil Ve(t,x', n~") and next expand V?(t,z%, u~%) around p~!. The resulting sum is compared
with (3.8) to suggest the construction in (3.21).

Theorem 3.6. Under Assumptions 3.1, 3.2 and 3.3, U defined by (3.21) is a solution to master equa-
tion (3.10) with terminal condition (3.11).

Proof. See appendix C. O
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3.2 A minimizer property for ¢

The next lemma gives a useful inequality resulting from taking u’ in place of ¢(¢, z, 1) in Equation (3.10)
for U.

Lemma 3.7. Suppose Assumptions 3.1, 3.2 and 3.3 hold and let U be given by (3.21). Then for each
u € U, we have

0 < OU(t, x, 1) + Un(t, x, u) f (, u, 1) (3.22)
S THUaa (6 2,1)(2 + Bo)] + Lz, w,0)
+ (uldy), 9,0, U(t,z, p;y) [ (¢, y, 1))

(u(dy), Te[056,U(t,x, p;y) (X + Zo)])

1(dy), Tr[04y 0, U (¢, 2, b3 y) o))

(u®?(dydz), Tr[0y» 6, U (t, @, 13y, 2)Xo])

(dy), 0, L (t,y, i) = 6uL”(t,y, 3 y))

+ (uldy), 00, U(t, 1 y)[0uf" (tys i) — 6, f™(t,y, 3 y)])

(u(dy), Te{[0y=0,,U (t, 13y, 2)]| 2=y B},

+ + 4+ +
/\E\NM—‘/\I\NH

l\D\H

where U is given by (3.9).

Proof. There are only two terms within (3.22) that depend on u. By (3.21), we have
Us(t, 2, p) = Va(t, z, 1) + (p(dy), 0:0,V (L, 2, 1;y)), (3.23)
where differentiation d, can go inside the integral by dominated convergence. We have

Up(t,z, ) f (2, u, 1) + L(z,u, 1)
= [Va(t, o, ) + (u(dy), 00,V (t, x, s y)1 f (w, u, ) + L(2, u, 1)
> [V (t, @, p) + (uldy), 00,V (8, 2, s )| f*(t, 2, o) + L7 (8,2, 1),

where the inequality is due to the choice of ¢ in (2.6). On the other hand, U satisfies (3.10) by
Theorem 3.6. The lemma follows from (3.10) and the above inequality. O

4 Person-by-person optimality

Assumption 4.1. ¢(t,xz, p) in the solution pair (V, ¢) for (2.4) is Lipschitz continuous in (z, u) € R™ x
P2(R™), uniformly with respect to t.
Assumption 4.2. There exists a constant C'x such that supy maxij<i<ny ]E|X8|2 < Cyk.

Under the standing assumption (A1) and Assumptions 3.1 and 4.1, f*(¢,z, u) is Lipschitz contin-
uous in (x, 1) with linear growth, i.e., for some constant Cf 4,

|f*(t,$7ﬂ) - f*(taya V)‘ < (jf7<25'(|aj - y‘ + WQ(M) V))’ (41)
|t 2, p) < Crg (U4 [ + (yl))-
Proposition 4.3. Under Assumptions 3.1, 3.2, 3.3, 4.1 and 4.2, for (X}, -, X}V) given by (3.2), we

have

sup max sup E|X/|? < Crx,
1<i<N 0<t<T

where the constant Cr x only depends on (7', Cx, Cy 4,2, o).
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Proof. Consider the closed-loop system
dX} = f*(t, X}, uy )dt + cdWi + oodW, 1<i<N. (4.3)

Take p; = %Zf:l 0,5 and pp = %Zle 6,5 with 27,y € R™. Taking a particular coupling of 1y and
po as the distribution assigning probability 1/k at each point (z7,47) € R2”7 we obtain Wa(u1, te) <
(% > lzd — 97 |2)1/? < > |z9 — y7]. So in view of (4.1), f*(¢t, X}, pu; ") is Lipschitz continuous in
(X},--+, X)) ensuring that the SDE system (4.3) has a unique solution on [0,7]. Applying Ito’s
formula to (4.3) and next taking expectation, we have

S

t
X/ = E|X{[ + E / X7 f (s, X2, ) + Te(S + So)lds

, b : 1
<E|X? + TTo(E + S0) + Crgl [ X3 (14 X0+ g 31X
0 Tk

t
. , 1
<EIX{2 + TTe(Z + %) + Cy / (1 +EIXI? + ~ 1 S :E|X§|2)ds.
0 T ki

Denote z; = maxi<;<y E|X}[?. We obtain z; < Cy + C4 fg(l + 2z4)ds. By Gronwall’s inequality, we
obtain the desired estimate with Cr x as specified. O

For any fixed constant Ky > 0, let Z/{;.(J?, consist of all R™-valued processes u;} = u'(t,w) that

satisfy the conditions: (i) u!(t,w) is adapted to the filtration F}¥ := o (X}, WF,

WO k=1,---,N,s <t), (ii) E [ |u'(t,w)[2dt < Ko.

Remark 4.4. Given !, if ul(t, 21, -+ , ) is a Lipschitz feedback control law yielding a unique closed-
loop state process (X}, -+, X}V), we may identify such a control law as the process u*(t, X}, -, X}N),
which is adapted to the filtration F.

Denote 4} = ¢(t, X}, u7 ') in (3.2). Then by Proposition 4.3, i} belongs to L{]I__{]% if K is sufficiently
large.

Theorem 4.5 (Asymptotic person-by-person optimality). Under Assumptions 3.1, 3.2, 3.3, 4.1 and 4.2,
for (3.4)—(3.5) and any fixed Ky > 0, we have

JED(@(-),a%(), -, aN () < inf GO (),82C), - aN () +ew,

socC ul(.)eu;(][\)] socC
where ey = O(1/N) and J) is defined by (1.3).

4.1 Proof of Theorem 4.5

Throughout this subsection, we suppose that all assumptions in Theorem 4.5 hold. Using It6’s formula
we obtain the following lemma.

Lemma 4.6. Let the processes (X}, -+, X}V) be given by (3.4)—(3.5) with initial states (X}, -, XJ")
at t = 0 and u} being any Lipschitz feedback control uj (t, X}, --- , X}¥) ensuring a unique strong solu-
tion to (3.4)77(3.5), and denote the derivatives 6,U (¢, x, j1;y), 8, U (t, , 113y, 2), 6, U (t, j1;9), 8, U (£, 13y, 2)
for U and U defined by (3.21) and (3.9), respectively. Then we have
T
= ]E/ {atU(t7Xt17,ut_1) + Uw(t7Xt17,ut_1)f(th7u%7H’t_1)
0

1 _
5 Tl (1 X 1) (S + To)]
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+N720 S Ut X5, i XV £ (4, X3, )
j>2

ZTr[as(SNU(t7thaMt 7X])(Z + 20)]
j>2

1

ToN )

+ rZTY Ouy0pU (t, X}, i '3 XF) 0]
j>2

1 ,
+ 2(N —1)2 Z Tr[a 5th(t Xl ;XfaXtJ)EO]
§>2,k>2

ZTra 8, Ut X iy ,Xf,Xk)z]}d
k>2

and
EU(T, u7") ~ U(0, 5™ (4.5)

T
:E/ {atU(tvﬂ't +726 6 Ut ut ; )f*(t7X;‘,]7/’Lt_J)
0

> Tr(0p0,U (¢ s X7 (S + Do)
i>2

> Tr[0y:0,U (s XE, X))
§>2,k>2

o)

1

+ 2(N 1)y

22%3 8, U (L iy ,Xf,xk)Z]}d.

k>2

Proof. For agent Aj;, by Ito’s formula involving the measure flow {u; *,0 <t < T} (see e.g. [9, 14, 11]),
we have
dU(t, X} ui ) = (008, X1 7 h) + Un(t, X1 D FOXE b, )]t
STVt X )2 + o)l
+ U (t, X}, 7 D (0dW}E + godW?)
+ ﬁzay%U(t,X#ut L XDV (X gt

j=2
- 2 1 J
+ 2(N _ 1) ];Tr[aydﬂU(tﬂ Xt nu’t 7X )(E + EO)]dt
+—Za 5, Ut X} ur Y X1 (0dW + oodW?)
7j>2
+ r ZTr Oy, U (t, X1,y bs XF)So)dt
k>2

> (0,20, U (X s XFL X ) S0)dt

]>2 k>2

2ZTra 0, U (t, XY, urts XF, XF)Sdt.
k>2
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Integrating both sides on [0, 7] and taking expectation, we obtain (4.4). The proof of (4.5) is similar

and uses the following relation

_ _ _ B 1 _ B o S
dU(t7 ey 1) = atU(t7 M l)dt + 7_1 Z 8y6uU(ta M 1; Xg)f (t7 thhut j)dt

N ,
j>2

+ 2(7 > Tr(070,U (¢, g 5 X7 ) (5 + So)ldt
j>2
+ m > 0,0, Ut s XTI ) (0d W + oodWY)
j>2
e > Tr[0,20,,U (8, s X XT ) St

j>2k>2

SN TR ZTr@ 0, Uty s XF, X FYS)dt.
k>2

(4.6)

To obtain the crucial lower bound in Theorem 4.7 below, we need to slightly rewrite the integrands
in (4.4) and (4.5) to relate to Equations (3.10) and (3.14) for U and U, respectively. We proceed to

introduce the following error terms:

1 .
5(11 ::mzaydﬂU(tathut Xj)[f*(tﬂXgaﬂt ) f (t Xt]a _1)]7

j>2

& = goy =y 2 MO0 U (4 X X X))
k>2

and

=3 0,0, Tt 1 ){f*(t,Xf,u{j)—f*(t,thyu?l)
j>2
1

— O XL X = 0, (6 X s XD

Moreover, for 2 < j < N, we denote

& =Lt X{ 7)) = L7 (8, X] i )

1 . B . o )
- N [6 L (t thv 17 tl)_(SML (t,Xg,/.tt let])]a
:g(X%,uT ) = 9(X%, nzt)
1 _— _— .
- ﬁ[éug(X’%vﬂTl; X%) - 5#9(X%MU’T1; X%)]

Theorem 4.7. For (3.4)—(3.5) and every Lipschitz feedback control law u!, we have

GO (W (), 871()) ZE[U(0, X5, 5" + (N = )T (0, 1151}
T N N
+E/ (f? +€5 4+ ¢ +Z§f)dt+]]«:2§f,
0 =2 =2
where the equality holds if u} = ¢(t, X}, u; ") for all t € [0,7] in (3.4) for agent A;.

Proof. Denote

O = Ut X} i ) + Us(t, X[ iy D F(X ] uf, )

(4.7)
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1 _
+2mUm<t X} 1) (S + o)
b Y080 XE i XD X i)
§>2

+7 Tr[020,U(t, X} py 5 X)) (S + %

+ ZTr D0y 0, U (1, X1, it X))
]>2

Z Tr a Z(SH.UU(tv tha :ut_l; Xf? th)zo]v
j>2 k>2

which consists of the first six lines in the integrand of (4.4) but replaces u; J by p; ! within f* on the
third line. Then from Lemma 4.6, we have the relation

T
E[U(T, X}, u7") = U0, X3, g )] = E /0 (O + &f + £5)(t)dt

Similarly, based on (4.5), we define

e ==(N ~ 1){aT(t,;* +7235 Ut X)X )
j>2
_ 25 T(t. u=t: X7
- 2(N_ ) ;Tr[ay(s#U(t,ut L X)) (2 + o)]
S TP O MOl XE X%l
]>2k>2

and

0% = 0,0, U,y s XD (6. X7 i) = £ (6, X7 V)],

J>2

S p—— ZTr@ O (6 g 5 XE, XF)S).
k>2

Using (4.5), we obtain
(N~ BT 7~ T0,15")) = E [ (0 +84 + )0
0

Subsequently, we obtain

E[U(T7 X’,%W :U’;l) + (N - 1)U(T7 /’67_“1)] (48)
—E[U(0, Xg, 119 ) + (N = 1)T(0, 115)]

T
:E/ (0% + & + &5 + 0P + 6 + eb)dt.
0

We need to further decompose ©% as the sum a of a main component and a small error term. For this
purpose, denote

1 _ B . S ,
= ﬁzayéu(](tvﬂt )[ w2, Xg, 17Xt) O f ™ (X7 s py 1§th)]-
j>2
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Then we have 0% = 0% 4 ¢, where £° is viewed as a small error term. By (3.14), we have
0" = — (N = 1){uy ' (dy), L*(t, y. 157 1)).
For (4.8), denote B
0" =0+ £ + &5+ 6%+ 6% + 5.
Now we have
0" =0"+ 0" +0} + 05 + & + & + ¢
= {8tU(t7Xt17 _1) + U (t Xt17 _1)f(Xt 7ut7.ut )

1 _
+ §T1“[Um(t7th, My 1)(2 + Xo)]

+ 728 0uU (6, Xy s X (8. X iy )
j>2
2 1 -1, yJ
+ mZTr[ﬁyéuU(t,Xpﬂt ; X7) (2 + o)
j>2
" TZTr By, U (1, X1 1yt X F) 0]
j>2
1 1 k j
+m | > T[0y= 0., U X py s XF, XT)50]
j>2,k>2
j>2

- 6ﬂf*(tanaM;17th)]

=T 3 Tr[d,.6, Utpt_l;Xf,th)E]} (=)
k>2

— (N = )y (dy), L (ty, g 1)) + €5+ €5 +€°
=T — (N = 1){u; (dy), L*(t,y, 17 1)) + €7 + &5 + €
Now Lemma 3.7 implies, after setting © = X}, u = pu} and p = p; * in (3.22), that
T"—L(thvut’ t )
+ g H(dy), 0L (ty, iy 5 X)) = 6L (8 y, 1 Y5 ) 2> 0,
where the equality holds if u} = ¢(t, X}, u; ') in both Y and L. It follows from (4.9) that
0" > — L(X} uf, iy ) — (g (dy), SuL* (8, s X7) = 0, L (ty, 1y 5 y))
— (N = D) (g " (dy), L (t,y, 117 )) + €7 + €5 + €.
We have

DL X ) =(N = 1) (dy), L ()

N
+ (M (dy), 0L (b, iy s X = 6L (G, s y)) + D &F
j=2
and, in view of the terminal conditions of U and U,

N N
> 9(XFng’) = U(T, Xp pz") + (N = DU(T, ") + 3]

Jj=2

(4.10)

(4.11)

(4.12)
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Combining (4.10) and (4.11) yields
N ' ‘ N
@*(t) Z _L(thau%nutil) - ZL*(t7XgaM7t_J) +€? +§g + gb + ZgjL (413)
j=2 j=2
By (4.8) and (4.13), we have
E[U(T, X1, pp') + (N = DU(T, 7)) (4.14)
—E[U(0, X5, ") + (N — )U<0 1o )]
T
sz/ [L(Xt17uta +ZL thnU't ]d
0
T
+]E/ (§f+£§+£b+25f)dt
0 o
By (4.12) and (4.14), we have
T N
E/ |:L<Xt1?uta Z tXt7 }dt""_]EZg T7MT>
0 =
ZE[U(OvXOnU’O )+<N_ )U(O?MO )]
T N N
+E/ (g‘f +eg e +Z§f)dt+EZ§§?,
0 j=2 j=2
where the equality holds if u} = ¢(t, X}, u; ') for all t in (3.4) for agent A;. O
Lemma 4.8. For (3.4)—(3.5), we have
a c ]
011671 < o (1 X X2+ {lf),,0) (115)
C
a4 < 4.1
1< o (116)
L 12 7|2 2
1 < g1+ KU+ IXER + (o), ) (117)
C A
671 < g1+ IXHE + X + (o)) (4.15)
Proof. By (3.21) we calculate 0,0, U (t,z, u;y) and use Assumption 3.1 to obtain
1040, U (¢, z, 15 y)| < C(L+ 2|+ |yl + {|y])n)- (4.19)
Next for p=7 == Zg¢j7k=1 3%, we have
[t ) — fr(tad ut) (4.20)

1
= / /citf"‘(t,ﬂvj,/f1 (e = p )y (u T = ) (dy)ds.
0 Jy
Denote fig == =t +s(p™ — p~1) and APty == =7 — p~!. Assumption 3.2 implies

L . 1 L L
‘/6ﬂf (t7$]7ﬂs;y)A]71/‘(dy)‘ :ﬁléﬂf (tvx]a,us;xl)_éﬂf (tax]aﬂs;m3)|
Y
C

- 1
L el ot e S ).
N_1(+|x|+|x|+N_1kZ>2|x|

<
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Subsequently, by (4.19) and (4.20), we have

€5 < (L4 X3+ X712 + () -) (4.21)

N -1

C ,
< m(l + X P+ X+ <\y|2>u;1)-

Next, we use the growth conditions of V', as specified by Cy, and the semi-symmetry property (B.11)
to establish

0,8, X1, XE, XE)| < C, (122)
which implies the bound of [£4| in (4.16). To get the bound of £, we write
Frta?, w7 = (82l u ) + (AP udy), Suf (82t ny)) (4.23)
/ / / 50 f"( (tya?d, u - st(u™? —pu )y, 2)
. AP (dy) AP p(dz)drds.

Denote fisr == p~ '+ s7(u7 — p~'). Then
/Mf*(t,a:j,ﬂs,f;y,Z)N’lu(dy)N’lu(dZ)
Y,z
1 . . . . . ,
= m /[6/,1,uf <t7 xj7 Hs,13 xla Z) - 6uuf (t7 xj y Ms, T3 SL'], Z)]A]Jlj’(dz)
4
1 % i oA 1,1 * i oA i
= m{[‘suuf (tvx s Ms, 73, T )_5mtf (t,x y Ms, 7527, X )]
- [5upf* (t, xja ﬂs,ﬂ xl’ l'j) - 5,upf*(ta xj’ ,[Ls,‘r; mja xj)] }
Consequently, under Assumption 3.2, we have

) 5Wf (t.2?, sy, 2 )N’lu(dy)N’lu(dZ)( (4.24)

C

L ,
LR S R L B /)
We use Assumption 3.1 to obtain

10y0,U (t, 1:9)| < 10,V (8 y, )| + [{u(dw), 0,6,V (t, w, 3 )| (4.25)
< O+ [yl + (ylw)-

By (4.23), (4.24) and (4.25), we obtain the bound of [£°| in (4.15). Finally, we follow the method
n (4.23) to obtain (4.17) and (4.18). O

Lemma 4.9. There exists a constant Ck, depending on Ky such that for (3.4)—(3.5), we have
sup sup max  E|X}|? < Ck,. (4.26)

N reuy, 1<i<N,0<t<T
r

Proof. By Itd’s formula, we have
¢
X X3P+ [ X k) + (S o) ds
0

t
+ / X (cdW} + ogdW?).
0
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We have

N

1
XU PR )] < X (11 Jud s O 1XE)
k=2

N
1
<C(1+ X1+ ulP + — D IXEP).
<O+ X + [l + 5 D 1XY]
k=2
Then it follows that
¢
E|X!? <E|X}*+ C/ (1 +Elull* + max E|X§\2)ds. (4.27)
o 1<k<N
Similarly, for & > 2, we use Assumption (A1) and linear growth of ¢ in Definition 2.1 to obtain
¢
E|XF? <E|XE)? + C/ (1 + max ]E\X§|2)ds. (4.28)
0 1<k<N
Next we follow the proof of Proposition 4.3 to use Gronwall’s lemma to obtain (4.26). O

Proof of Theorem 4.5. By Theorem 4.7, Lemmas 4.8 and 4.9, we obtain

JM @t a ) = B[U0, X, ug ) + (N = 1)T(0, ug 1)] + O(1/N),
Js(é\é)(ul, ﬁ_l) 2 E[U(O, X(}nual) + (N - 1)U(Ov NEl)] - O(I/N)

for all ul(+) € Z/l]}_f]%. Then Theorem 4.5 follows readily. O

5 Explicit solutions in LQ models

This section uses LQ mean field social optimization models to illustrate explicit solutions of the master
equations of V', M and U. The individual agent has the dynamics

dX} = (AX] + Bui + GX")dt + DAW} + DodW?, 1<i<N, (5.1)
|2

where the initial states are independent with E|X§|?> < oo. The individual cost is given by

T ) ) . . iy
Ji=E / (X7 = Tx{7 = nf3 +ui” Ruf)dt + E|X] - Tp X5 —ngl3 (5.2)

where Xt(fi) = Z;.v:l’j#i X/ and |;13|%2 = 27 Qz. We have symmetric matrices Q > 0 and R > 0.

Denote the social cost Jiw = SN i

5.1 The master equation of the value function

Denote Z == (u(dy),y) € R™ as a function of p. For the model (5.1)—(5.2), corresponding to (2.6) we
determine

® =V, (t,x,u)(Az + Bu' + GZ) + |z — Tz — n|§ + u'T Ru'
+ (u(dy), 026,V (L, y, s 2)(Az + Bu' + G1)).

The minimizer of ® takes the form

i 1 -
u = (b(ta ‘Thu) = _ER 1BT [VxT(t,1‘7p,) + <:U’(dy)7 8§5HV(1€, y,ILL,ZE»] :
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The master equation (2.4) becomes
— 0V (t,x, )
=V, (1,2, 1) (Az + G2) + S Tx[Va (1,7, 1) (DD + DoY)
+ |z —Tz —nl3 - inBR_lBTVIT
(u(dy), 8:0,V (t.y, s x)) - BRT' BT - (u(dy), 83 6,V (t,y, s )
1(dy), 0y0,V (t, x, s y) [Ay + Bo(t, y, n) + G))
(u(dy), Tx[076,V (¢, x, s y) (DD” + Do D )])
p(dy), Tr[,y 6,V (¢, 2, 415y) Do Dg ])

+ + + + +
[Nl NN I BTN

(u®2(dydz), Tr[Dy.0,, V (t, 2, 13 y, ) Dy DT ]),
_ - 2
where V(T,z, p) = |z —T'yZ —nylg, -
We take the ansatz

V(t,z,p) =z P(t)z + T A(t)Z + 22T H(t)z
+ 227 S(t) + 227 0(t) + r(t),

(5.3)

where the functions P(t), A(t), ---, r(t) are to be determined, with P(t) and A(t) being symmetric.

We calculate
5,V (t,x, puyy) = 287 Ay + 227 Hy + 2970 + x (¢, 2, p),
O V(t,x, iy, 2) = 2T Ay + Sux(t, @, s 2) + x1(t, 2, y, ),
and derive the ordinary differential equation (ODE) system:
P=—-A"P—-PA+PBR'BTP-Q,
A=—(A+H)BR'BT(A+HT)
—~A[A+G-BR'BY(P+A+H+HT)
~[A+G—-BR'BY(P+A+H+H)TA
+HT'BR'BTH - HTG-GTH -17qr,
H=-ATH+PBR'BTH
—H[A+G-BR'BY(P+A+H+H")] - PG+ Qr,
S=—-ATS+ PBR'BTS + HBR'BT(S +0) + Qn,
0=H"BR'BTS + ABR'B”(S +0)
—[A+G—-BR'BY(P+A+H+H)"0
—(A+ H)BR'BT9 - G*'S —-17Qn,
i =STBR™'BTS + " BR™'BT (25 + 0)
~Tr[(P+A+H+H")(DyD})] - Te(PDDT) — 5" Qn,

where the terminal conditions are

P(T) = Qy, AT) =T7QsTy, H(T) = -Q;Ty,

S(T) = —=Qyny, 0(T) = T'¢Qyny, r(T) = nf Qsny.

We determine the control law

o(t,x,u) =— R 'BY[Pr+ (A+ H+H")z+ S +0].

(5.10)
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Theorem 5.1. The ODE system (5.4)—(5.9) has a unique solution (P, A,--- ,7) on [0,T].

Proof. We first obtain a unique solution P on [0,7]. Denote Z := P+ A+ H + H”. By the ODEs of
(P, A, H), we can show that Z satisfies the following equation

Z=—(A+)TZ2-Z(A+G)+ ZBR'BTZ - (1 -D)TQ(I -T), (5.11)

where Z(T) = (I — F?)Qf(l —TI'y). We start by solving the standard Riccati equation (5.11) to get a
unique solution Z(t) on [0,T]. Setting P+ A+ H + H” in (5.6) as Z, we determine H using a linear
equation, and further obtain A = Z — P — H — H”. Subsequently, we solve two linear equations to
obtain (5, 6). Next, r is determined from a linear equation.

The above calculation gives a solution of (5.4)—(5.9) on [0, T, which is clearly unique by the local
Lipschitz continuity of the vector field of the ODE system. O

5.2 The equation of M

Given the control law ¢ in (5.10), we determine
f*(t,z,pn) =(A— BR'BTP)x + Gt — BR™'B"(S +0),
where
G(t) =G — BR'BT(A(t) + H(t) + HT(t)). (5.12)
Now master equation (3.12) reduces to the following form:
0 =0 M(t, p) + ((dy), [0y0, M (t, s y)If*(t,y, 1)) (5.13)
+ 3 (udy), Tr(035,M (1, 9) (DD + Do D))
+ %(um (dydz), Tr[0y20,,, M (t, p; y, 2) Do DL )
— (' (dydz), 0,0,V (t. 2, )] - [0 (L ys ) = 0 f (13 2)])
+ Tr(ADDT),
M(T,u) =0, (t,p) €][0,T] x P2(R™). (5.14)
We take the ansatz
M(t,p) = (u,y" I (t)y) + 2" TIG(t) + 227 6°(t) + r°(2), (5.15)
where TI¢(¢) and II§(¢) are symmetric. This gives
0 (t, py) = y I3 (t)y + 22 105 (8)y + 297 0°(1) + x(t, 1),
S M (t, 3y, 2) = 22T TSy + 6, x(¢, 1 2) + x1(, y, ).

We derive the following linear ODE system:
1Y = —T9(A - BR 'BTP)— (A— BR™'B"P)TII? — (HG + GTHT),
Iy = -T9(A+G - BR'BTP) - (A+ G - BR'BTP)"1I3
~19G -GS + HG + GTHT,
0°=—(A+G—BR'BTP)T0° + (I1{ + 1) BR~' BT (S + 0),
7 =20°TBR™'BT (S + 0) — Tr[(TIS + A)DDT + (IS + T13) (Do DY),

with the terminal conditions II$(T) = TI(T) = 0, 6°(T) = 0 and r°(T) = 0, where the functions
(P,A,H, G, S, 0) have been determined from Theorem 5.1 and (5.12). The next proposition is obvious.
Proposition 5.2. The ODE system of (II9,113,0°,7°) has a unique solution on [0, T].

Remark 5.3. In view of Theorem 5.1 and Proposition 5.2, for the model (5.1)—(5.2), we may verify
Assumptions 3.1, 3.2, 3.3, and 4.1.
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5.3 The solution of U
We use (3.21) to construct a solution of U in the linear quadratic case and obtain
U(t,,p) =2" Pr+ (u,y" (05 — H — H)y) + 2" (113 — A)z (5.16)
+ 26T (A + H+ HDZ + 227 (S + 0) + 2370° + 1 + 1,

where Z := (y),. On the other hand, we may also directly solve (3.10) by looking for quadratic solutions
of the following form

Ut,z,p) =" T () + (u, y TS (t)y) + 2" I3 (t)z (5.17)
+ 22T (1) Z 4 227 S°(t) 4+ 227 6°(t) + r°(2),

where IIS (), II$(¢) and II$(¢) are symmetric matrix functions of ¢.

Theorem 5.4. For the model (5.1)—(5.2), the master equation (3.10) has a unique solution U within
the class of quadratic solutions, which coincides with the representation (5.16).

Proof. By use of (5.17), we derive an ODE system for (II§,IIS,--- ,7°). We further show solvability
the ODEs one by one, in the following order to take 1 = P, IS =1 — H — HT I =A+H + HT,
I =11 — A, S = S5+46, 6° = 6° and r° = r + r°. The solution is clearly unique by the local
Lipschitz continuity property of the vector field of the ODE system of (II{,IIS,--- ,r°). O

5.4 An example from systemic risk

In the system of inter-bank lending and borrowing, the state processes of N banks, as the log-
capitalization defined in [15], have dynamics

dX] = uldt + o(\/1 — p2dW; + pdW?), 0<p<1,

with the initial value X§, where W2, W}, ---, W/ are independent standard Brownian motions. The
N banks obtain the social optimal strategy through minimizing

N
TS @) =3 Au()), wi=(uteee u),
i=1
where .
T =B [ 20X X+ B, X4)
0

with Xt(_i) = D i X/, running cost

L(zi7ui7z) = (ui)2 + 2quz(xz - Z) + eﬂ(xi - 2)23 q2 S €0,

and terminal cost g(x?, 2) = c¢(z* — 2)2. The parameters ¢, ¢y and c are positive with ¢ < ¢y to ensure
convexity of the running cost L(x?,u’,z). See [15] for an interpretation of ¢ in terms of incentive for
lending/borrowing.

5.4.1 The direct solution

Denote x = (a!,--- ,2™)T. The value function is

Usge(t:x) = inf > E [ / L, XCD)ds 4+ g(Xi, X5
ue i=1 t
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where (¢,x) € [0,7] x RY. By solving the HJB equation of UZ,

coc, We obtain

UN (t,x) =xTP(t)x + (1),
where P(¢) has N diagonal entries m; and off-diagonal entries all equal to s, with

€0N
N-1

0=7'r1—(7r1+q)2—(772—%)2(]\/'—1)—1-

0= -t ) - e ) -

where 71 (T) = ¢cN/(N — 1) and m2(T) = —cN/(N — 1)2. The optimal control law of the i-th bank is

N
a™Ni(t,x) = —(m 4+ @)at — (71'2— Nq—1> Z z*. (5.18)
k#i,k=1
Denote the ODE
0=P;— (Pi+q)?+e, PiT)=c, (5.19)

which has a unique solution on [0,7]. We can further show supg<,<7 |m1(t) — Ps(t)] = O(1/N). By
checking the ODE of (N — 1)z, we obtain supg<,<7 [(N — 1)m(t) + Py(t)] = O(1/N). As N — oo,
the optimal control law (5.18) takes the limiting form

a'(t, xt, ) = [Pa(t) + q)(& — 2V, (5.20)

where T = (u,y). Comparing (5.20) with the open-loop and closed-loop Nash equilibria proposed
in [15], the social optimum has the same solution as the mean field game has in the limit N — oco.

5.4.2 The master equation-based control

By (2.6), we obtain the minimizer

;i 1 1
u = —in(t,%u) _Q(‘T—x) - §<ﬂ(dy)78m6uv(tvyaﬂ;‘r)>7 (521)
where 7 = (u,y). We take the ansatz V (¢, z, u) = P(t)x? + A(t)z? + 2H (t)z% + r(t) and derive

0=P—(P+q)2—|—eo,
0=A+(A+H)?—(H—q)? —2AP+A+2H) + €,
0=H—(P+q)(H—q)— H(P+A+2H) — e,
0 =74 0?P +c*p*(A+2H),
where P(T) = ¢, A(T) = ¢, H(T) = —c, r(T) = 0. Clearly, P = P on [0,T]. Denote Z; := A + 2H,
and we use the equations of A and H to write the ODE:

0=21+(Z1—q)* = 2P+ Z1)(Z1 — q) — €0, Zi(T) = —c, (5.22)

for which we can show that Z; = —P is a solution. By uniqueness of the solution of (5.22), it follows
that A +2H = —P on [0,T]. Subsequently, we determine H from a linear equation using the equation
of H after setting A + 2H as —P; this in turn determines A. The above solution (P, A, H) is unique.
The control law (5.21) now becomes

W' (t,x,7) = —{[P(t) + gz + [A(t) + 2H(t) — q]z}
= [P(t) + q](z — z),

which agrees with (5.20).
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6 Concluding remarks

Our performance estimate via multi-scale analysis has been based on existence of sufficiently well
behaved solutions of two master equations for V' and M. For future work, it will be of interest to
develop existence results following such methods as in [9, 16] for more specific models.

Appendix A: A formal derivation of the master equation of V/

This appendix considers a more general model with diffusion coefficients o(X?, uf, ;%) and
oo(X}, ul, ;") before specializing to the form in (1.1). This will give us more insights into the dynamic
programming method. Below we accordingly denote X(x,u, i) = (00T )(x,u, u) and So(z,u, u) =
(ang)(z7 U, ,[L).

Now we take initial time ¢ € [0,T) and initial states (z*,--- ,2V). For the feedback control law ¢,
denote the controlled state processes for agents A;, j # i, as

dX] =f(X], (s, X1, p77), p3 7 )ds + o (X, (s, X1, s 7)), pg?)dW (A.1)
+00(XI,0(s, X, 17), p3?)dW?, s>t

For agent A;, we have

where we take ul = u’ € U for s € [t,t + €) and u’ = ¢(s, X, u; %) on [t +¢€,T).

A.1 The control perturbation of A;

Note that V?(¢,z°, i) is defined on [0,7] x R™ x PN=1(R"), where PNX—1(R") is only a subset of
P2(R™). We still formally denote the derivative &,V ¢(¢, 2, u; y), which is interpreted in the following
sense: for any v € PN-1(R"),

VO(t,z'v) = VO(t,z', p) = /%W(t, o’ s y) (v — ) (dy) + o(Wa(v, ).

We give an example to illustrate.
Example A.1. Suppose h(t, z¢, p~%) = 27T (t) 2" + 2T, (1) 2D 4+ 20T 5 (4) 2, where (-9 ==
Y) i = 75 E;V:Lj# 27 and II; (t) and Il5(t) are symmetric. Then

Suh(t, ', p'y) = 2y Mo (8)(y) s + 22" Mo (t)y + x(t,2', 1),
where x(t,2%, u~%) is a normalizing term.

We further formally denote the second order derlvatlve 8V ( u ,2). We make formal usage
of partial derivatives 0,V?, 0,:V?, 8£,V¢ 040, VO (t, 2%, 115y), Opi g0 Vo(t,zt, uyy), 8§5MV¢(t,xi,u;y),
By=0u, VO (t, 2" 3y, 2).

A.2 Cost estimate of A;

Under (A.1)-(A.2), let J; be given by (2.3). Taking a fixed constant control u’ (given the initial
condition (¢, 2%, u~%)) on the small interval [t,t + €], we have the approximation

Ji =L(z' ' p e + VOt 2t u ) (A.3)
+ VOt e+ 0, VOt at ) fat ut e

1 o o
+ §Tr[8iiV¢(t,a:’,uﬂ)E(xl,u’,uﬂ)]e
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+ %Tr[@iiV¢(t,mi,u_i)zo(l‘i, ', u)e

+ E(Ap~H(dy), 5,V (t, ', p s y))

+ E(AT (dy), 0,50, VO (t, 2, s y)ED)

+oE / / SVt iy, 2) A (dy) A~ (d)
+ ofe),

where Ay~ = p;!, — p~* and
gilt (x u 7“ )(Wtz+e - Wtz) + Uo(xi7uivﬂ_i)(wt()+e - Wto)

The three expectations in (A.3) are needed since the empirical distribution ;. _ﬁe is random. Within J;,
denote

Ki(t,a’, p=" ub) = L' ul, p=") 4 0, VOt a', =) fah ul, p ™)
1 ) ) o )
SR AR G DTN T)
1 i —1 T o,1 —1
+ §Tr[8ilv¢(t,x 7/1' )Eo(.’IJ ,’LL 7:“’ )]

The sum K; explicitly depends on u’. The remaining components in .J; receive either no or negligible
impact from u’. The optimal choice of u*, however, is not to simply minimize XC;. Instead, one should
take into account the impact of u’ on all other agents, which we call the social impact.

We check the double integral term in J;. As N — oo, we obtain the approximation
E / / VOt sy, 2) A (dy) A~ (d2)

N*//Trayzéwv tx,uy7 z)
00(z: 9t 2 1), 1) (y: 9ty 1), ) | ldy (=),

where p~% has been approximated by .

A.3 Cost estimate for all other agents

We check how u} = u’ on [t,t + €] affects the cost of agent A;, j # i. By symmetry of the dynamics
of the N agents on [t + €, T, the cost of A; on [t,T] may be written as

Jj(txjnufijau(’)) = E{/ L(Xj usa,u's )d$+V¢(t+€,XtJ+ea#;ge)}a (A4)
t

where u! = ¢(s, X7, u;7) on the whole interval [t,T]. In general J;(t,z7, p=7 u(-)) # VO(t, 27, u=7)
since u’ may differ from ¢(s, X%, u;%) on [t,t + €]. Then we take the expansion of (A.4) to formally
obtain

Jy =L@’ ¢t a!, p ), p e+ VOt 20, )
+8tV¢’(t wl I )e+ 0 VOt ad, u ) 2 tad, p ), p e
+ Tr[a VOt ad, )5, ot ad, ), e

+ %Tr[aij VOt 2l w7 So(2?, ot a7, ), 7 )]e
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+ E(ApT (dy), 8,V (t, a7,y y))
+E(Ap I (dy), 8,58,V (t, 27, 7)€l )

1 A A A ,
438 [ [ BVt s ) A ) A )+ o
zJy
=Jj1++ Jj,g + 0(6),

where & = o(x7, u, u_j)(VthJre — W) +oo(a?, ud, w ) (WEe = WP) with w? = ¢(t,27, p=7). The nine
terms J; ;, are identified by their order of appearance. Note that the first six terms in the sum are not
affected by u? € U.

In the following we use the notation 6,V?(t,z,u;y) and 8,,V(t,z,p;y,2). Thus 9,.0,,V?
(t, 29, p; ¥, %) stands for 8.6,V (t, 27, u;y, 2)|y=ak 2=gi- We have

Jir =Bl — 17)(dy), 5, Ve (t, 27, n ™5 y))

1 ) ) ) )
:7_ Z E[duv¢(t,x]’M_J;Xf+€) - 6MV¢(ta'r]7/’L_];xk)]
keN—{i,j}
1 o C
+ ﬁE[éuV‘i’(t,xﬂu LX) =6, VOt 2l wT st

where the second to last line has a much smaller dependence on ' than the last line has. Specifically,
when v’ has a change of magnitude O(1), it results in an O(e) change of X/, which in turn causes
an O(e?/N) change of X}, .. For J; 7, we estimate the second component in the above sum and have

Jj17vi = ﬁE[(SHVd)(t? xj7 :uij; Xti-l—e) - 5HV¢(ta Ija :u‘ij; xl)}
1

= m{axi5uv¢(t7$j,u_j;xi)f(xi,ui,u—i)e

1 o S
+ 5Tr[85i5#V¢(t,m], p ) E(xt ut, pw)]e

1 o o
+ iTr[aiidlLV‘b(t,xj, p ) S (at, ut, wm")]e+ 0(6)}.

Next we have

Jj,8 = E<A,u'7j (dy)a 8a:j 5,LLV¢ (ta xja ij; y)£g>

1 ) ) ) ) )
:7]\[ — 1E [8zj5uv¢(t,xj, M_J;Xf+€) — 8zj6/1,v¢(t,x‘77 M—];xk)]g
kEN_]'
1 o
=~ 1 Z Tr [3wjzk5uv¢(t,x],uﬂ;mk)
k‘GNf]‘

coo(@®,ub, ) ol (20w ) € + oe).
In the last summation u! = ¢(¢,z!, ") for all I € N_;. Within the above sum for J;g, denote its

component with k& = ¢, which depends on u*:

Jj,S,i = ﬁTr[a'ﬂxiéuv(ﬁ(ta xja,u_j;xi) . UO(wiauinu_i)o-g(mjv uj7ﬂ_j)]'

To analyze J; 9, denote

gkl = JMMV¢(t7 xja ,uij; Xf+ev th+e) - 5IWV¢(t’ ‘ij “7j; xk’ Xé+e)
- 5,uuV¢(t, zj’ Mij§ th+67 xl) + §uuV¢(ta -fj» ijQ fka Il)-
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We have

1

Ji :=7E//6MMV¢(t,wj,u‘j;y,Z)Au‘j(dy)Au‘j(dZ)
zJy

2
1
Zm Z E&k

k,leN_;

1 o
:m Z {TI' |:8yz§/.tﬂv¢(t’ .’EJ7 n J ; I’k’ ml)
k#Lk IEN_;

. oo(xl,ul,,u_l)UOT(xk,uk,u_k)}e + 0(6)}
1 N
- - ¢ J oIk ok
+ 3N 1) Z {Tr[ayzcsuﬂv (t,x?, w7 2" x)
kEN_]‘
(3 + Zo) @k, b, w7 e+ o()

where u! = ¢(t, 2!, u!) for each [ € N_;. Subsequently, within the expression of J; 9, we have the
following u* dependent components:

Jj9.i = m Z Tr [@Z%Vfﬁ(t,xﬂ,u Ty ak 2t
keN—{i,j}
(@, ul, p ol (@8, ol b, p ), )|

€ =g i

+ m Z | Tr[ayzéqus(t,x],u Jix ,xl)
leN—{i,j}

! UO(‘rla ¢(t7 zla uil)7 .u“il)a(q)w(xiv uia :uil):|

 Tr[0,.6,, V(27 a2t - (S0 + E)(, ).

Tow o1y
A.4 Approximation

For large N, all the empirical distributions =7, 1 < j < N, may be approximated by a common
p € PN=1. For J;7,, denote

Ut y, ma' u') = 0,6, VO (t,y, ps a') f(a*,ul, )
1 . o
+ 5 Tr(07: 0,V (b y, s 2" S(a', ', )
+ iTr[a§15HV¢(tay7/~‘va )20(1' U 7/‘1“)}

We take the approximation

Z Jj,77i ~ 6/ F],7(t7ya/j/7$zauz):u(dy) = K2(t7xi7ui7/j/)6a

JEN_; Rm
> Tisaim e/ Tr[0y0:6, VO (L, y, 13 2o (2, u' w)ag (y, Gt y, 1), )] p(dy)
je,/\/',i R™

= K3(t,z", u’, p)e.

Next,

Z Jj0,i

JEN_;
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€ . . . .
%WZ/Tr[aymicmV‘f’(t?xj,u;y,:vz) ~oo(a',u', wog (y, ot y, ), )] p(dy)
i#i Y

€ j i i
g 2 . T2 ) (e, 02 ) ) o )
VE)

€ . . .
zi / /Tr[aywl(s,u#vd)(tvwnu;yvmz) : 00(x17uzvﬂ)o—g(y7(ZS(tayau)a:u’)]M(dy)/i(dw)
wJyy

€ . . .
5 [ 1l 2) - 00(a 6 20,1008 (o' ) (A )

=Ky (t, x%, u’, p)e.

A.5 Cooperative optimizer selection

Within the mean field limit, we consider p € P2(R™), and the control law ¢(t, x, p). The function
V®(t,z,p) is defined on [0,T] x R™ x Py(R™) and does not depend on N. By adding up Ky, Kz, K3,
and K4, we define

(I)¢(t7 xZ, uiv My V¢())
=L(z,u’, ) + 0,V (t, x, ) f (w, 0, 1)
+ %Tr[ai‘/‘b(t,x, )2 (z, v, )] + %Tr[f)iV‘b(t,m, 1) 2o(z, ', )]
+ <u(dy), {%%V‘f’(t, y, ;) f(z,u', )
+ Tr[04y 0,V (2, y, 13 )00 (y, D(t, Y, 1), p)og (z,u, )]

1 i

+ 7TI‘[8£5HV¢(L Y, 15 J))Zo(ﬂ?, ui7 M)] }M(dy)>

+ 3 <,U,®2 (dyd’IU), Tr[ayx(suuvd) (ta w, (3Y, Jf) : 00(1‘7 ui7 H’)Ug(yv ¢(t7 Y, U)7 ,u)]>

NN

+ *<,u®2(dzdw), Tr 8“5““1/‘1’(15, W, 45 T, Z)

00 (2, 0L, 2 1), )f (', )] ), (A.5)

[\)

where the control law ¢ has been used by other agents. We take 4’ as a minimizer of ®? to obtain

O (t,a, 4 (t, x, ), pu, VO()) = rr;ln O (t, z,u’, 1, V(). (A.6)

The selection of u’ takes into account its impact on both .J; and all other agents’ costs. The remaining
step is to specify ¢ by a consistency condition to be introduced below.

A.6 The master equation

Combining (2.3), (A.3) and the optimizer selection rule (A.6), we introduce the master equation (as a
special HIB equation):

— 0V (t,x, )

, 1 .
Vi (b, ) f (2, 0, 1) + S T2V (¢, 2, ) B, 0, )]

1 ) )
+ iTr[aﬁV(t,x, IU’)EO(xa ﬁlmuﬂ + L(I, ﬁlhu’)

+ </u'(dy)’ ayéﬂv(ta xz, /u'; y)f(ya d)(ta Y, /~L)a /u')>
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+ S (u(dy), Te[076,V (t, 2, 15 9) Sy, d(t,y, 1), 1)])

(u(dy), Te[076,V (t, x, s y) X0 (y, 6(t,y, 1), 1))
1u(dy), Tr[04y 0,V (t, 2, p3y) - 00(y, (v, 1), p)oa (2, 4, 1))
<,u®2(dydz)7Tr Oy20u,V (t, 2z, 115y, 2)

co0(z, ¢(t, 2, 1), )og (y, d(t,y, 1), u)} >

+ + +
N = < N =N =

where (t,z, 1) € [0,T] x R™ x P3(R™) and the terminal condition is

V(T,z,p) = g(, p).

Moreover, the control law ¢ is required to be equal to the optimizer @7, i.e.,

W' (t, o, p) =arg mi%@¢(t,m,ui,u,V(-)), (A.7)
u'e
o(t,x, p) =" (t, 2, p), (A.8)

where (A.8) is called the consistency condition and
O (t,x,u', 1, V()
= L, 1) + Vit 2 1) (20, 1)
+ STV (6, )50, )] + STV (12,0, o )]
+ <u(dy)7 {%%V(t, y, ;@) f (w0’ o)
+ Te[0ay 0,V (¢, 1 2) 00 (y, Gt y, 1), )G (0, )]

1 .
+ 5 Tr[020,V (1 y, s @) X, ' o))

+ fTr[3§§uV(t, Y, 1 I)Eo(LE, uia ,LL)] }>

+ ~ (u®(dydw), Tr[0ye 0,V (8w, w3y, ) - a0 (, u', w)ag (y, d(t, y, ), 11)])

N =N =N

+ 7<M®2 (dZdw)7 Tr[aazzé,u,uv(t, w, W5 T, Z) : JO(Zv d)(ta 2, N)a N)UOT(% uia ,U,)]>, (Ag)

where the control law ¢ in ®? has been used by other agents.

Remark A.2. The value function V' corresponds to a representative agent A4; interacting with an infinite
population.

Remark A.3. When o and oq are constant matrices, ® in (A.9) reduces to the simpler form @ in

Section 2.

Appendix B: Preliminary lemmas and semi-symmetry property

Lemma B.1. Suppose the function ¥(z,y) from R™ x R™ to R has continuous partial derivatives
Owy¥(z,y) and Oy, (z,y), and denote h(z,y) = Ozyt(x,y). Then

Duy(y, ) = (h(y, )" (B.2)

Proof. The (i, j)-th entry in 0,10 (x, y) is Op,y; ¥ (7, y) and the (j,i)-th entry in 9, (x, y) is Oy, (z, y).
Now (B.1) follows from Schwarz’s theorem [22]. Next (B.1) yields (B.2) by switching = and y. O
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Lemma B.2. Let £ € R™*" be symmetric. Suppose 0,,6,V (t,y, u; 2) and 9,.6,V (t,y, u; z) are con-
tinuous in (y, z). Then

Tr[0.,0,V (t,y, p; 2) 2] = Tr[9,.6,V (L, y, 1; 2)], (B.3)
Tr[0y20,V (t,y, 115 2) 8] sy = Tr[0y20,V (8, 2, 11:9) E] | o=y (B.4)

Proof. If D and ¥ are n x n matrices and ¥ is symmetric, then we have
Tr(DE) = Tr(¥D) = Tr[(ED)T] = Tr(DTY), (B.5)

which together with Lemma B.1 yields (B.3). Denote h(y, z) = 0,.0,V (t,y, 1; 2). By Lemma B.1,
0y26,V (t,z,1;y) = (h(z,y))T, which combined with (B.5) implies (B.4). O

Consider a continuous function ¥(t,s): R. = [0,T] x [0,¢) — R, where ¢ > 0. Define the partial
derivatives 0. (t, s), 0s¥(t, s) and 0,0s¥(t, s) on R., where each partial derivative is interpreted as a
one-sided derivative when we take d; (95, resp.) at t =0 or t =T (at s = 0, resp.). For instance, for
0 <t<T, we have

ds1(t,0) == lim vt —¥(t.0)

e—07t €

The next lemma extends the symmetry property of second order partial derivatives in Schwarz’s
theorem [22] to the case of boundary points of a region. The proof uses essentially the same argument
as in [22, p.317] and is omitted here.

Lemma B.3. Suppose v satisfies the following conditions:
(i) The partial derivatives 0. (¢, s), Osv(t, s), and 9;051(t, s) exist on R,.
(ii) 0;0s1¥(t, s) is continuous at the point (g, 0) for ty € [0,T].

Then 050:9 (o, 0) exists and J,0: (o, 0) = 0:0s1(to,0).

Lemma B.4. Suppose V(t7 x, ) is a function from [0, 7] x R™ x P(R™) to R, satisfying the following
conditions:

(i) 8tf/(t,x,u), 5MV(t,x,u;y) and atéﬂff(t,x,u;y) exist and are jointly continuous in (¢,z,pu) €
[0,T] x R™ x Po(R™) and (t,z,y, 1) € [0,T] x R?" x Py(R"), respectively;

(ii) for each constant K > 0,
16,V (t. 2, 3 9)], 1016,V (¢, 2, 15y)| < Cre(1+ Jyl?)

holds for all ¢ € [0,T], z,y € R™, u € P2(R™) whenever |z| < K and Wa(u,dp) < K (equivalently,
(1, [y]?) < K?), where Cf is a constant depending on K.

Then the derivative d,,(9,V (¢, , 1)) (y) exists, and moreover,
6#(875‘7@7377”))(1/) - at(sﬂv(tvxnuf;y) (BG)
for all t € [0,T],z,y € R", u € Po(R"™).
Proof.

Step 1. We show the normalization property of BtéuV(t, x, u;y). By the normalization property of
0.V, we have (u(dy), 0,V (t,z,pn;y)) = 0, which implies

0= 9 (uldy), 0,V (t, 2, ) = (u(dy), 00,V (t, , 113)),

due to condition (ii) and an application of the dominated convergence theorem.
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Step 2. Let p; and ps both from P2 (R™) be fixed. For t € [0,7T] and s € [0, 1], set
b(t,s) = V(t, 2, 1+ sv),
where v = pgy — p1. We have
Aup(t,s) = 8,V (t,x, 1 + sv) (B.7)

for (t,s) € [0,T] x [0,1]. We proceed to check 9st(t, s). Suppose s € (0,1). Then 6MV evaluated
at (1 + sv gives

lim ¢(t7 s+ 6) - '(/J(t, S)
el0 €

= (v(dy), (&V(t,x, w1+ sv;y)).
Next, we have

lim U(t,s —€) —(t,s) — lim V(t,x,,ul +sv+4e(u —p2)) — V(t,m,,ul + sv)
el0 —€ el0 €

= <(/1‘1 - MQ)(dy)7 5ﬂv(t7 T, fh1 + sv; y)>

=(v(dy), 0,V (t, 2, i1 + sv;y)).

The second equality resultsAfrom the definition of ¢ Mf/. We similarly obtain the one-sided deriva-
tive of ¥(t,-) as (v(dy), 6,V (t,x 1 + sv;y)) at s = 0 and s = T. Therefore for all s € [0,T7],
059 (t, s) exists and

Ds(t, s) = (w(dy), 6,V (t, 2, 1 + sv3y)). (B.8)
Subsequently, by (B.8), for each fixed t € (0,T), we have

0:00(t, s) = 0 (v(dy), 6,V (t,x, 1 + sv;y))
= (v(dy), 00,V (t,x, 1 + sv3y)), s € [0,T], (B.9)
where the second equality results from condition (ii). We similarly obtain (B.9) for ¢ = 0 and
t="T.
Step 3. As (t',s') — (t,s) € [0,T] x [0,1], we may show Wa(u1 + s'v, 11 + sv) — 0 using [38,

Theorem 6.9], and therefore 8,0,V (', z, u1 + 'v;y) — 90,V (t, 2, u1 + sv;y) by condition (i).
Subsequently, 9;0s¢(t', s") — 0:051(t, s) by (B.9) and the dominated convergence theorem under
condition (ii). Hence 0,051 (t, s) is continuous in (¢, s) € [0,7] x [0,1]. Therefore by Lemma B.3,
0s011(t, s) exists at each point (¢,0), ¢ € [0,T], and moreover,

s0(1,0) = 9 (t,0) = (v(dy), 0,V (¢, 2 ;) (B.10)
where the second equality follows from (B.9). By (B.7) and (B.10), we have

liﬁ)l %[atf/(u z, i1 + ev) — OV (t, @, p1)] = 9s04(t, 0)

= <V(dy)7 at(sy,f/(t? T 13 y>>
for all py € Po(R™). So 5M(8tf/(t,x, u1))(y) exists. Recalling Step 1, we obtain (B.6). O

Proposition B.5. ([9]) Suppose that both d,¢(y; y) and ¥, (1;y, 2) exist and are jointly continuous
in their arguments and that for each K > 0, [0,¢(u; y)|, 6,0 (13 v, 2)| < Cr (1 + |y|* + |2]?) holds for
all y, z € R™ whenever p satisfies Wa(p, d9) < K. Then

O3y, 2) = Sputb(s 2,y) + 0pb (13 y) — 6,90 (15 2). (B.11)

The equality (B.11) will be called the semi-symmetry property of §,,% and has been proved in [9]
for bounded derivatives. But the proof there can be easily adapted to the quadratic growth case.
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Appendix C: Proof of Theorem 3.6

It is clear that (3.21) satisfies the terminal condition (3.11). We will next differentiate both sides of
Equation (2.4) of V, and use further transformations to generate several equations. By adding up
these equations, we can verify the solution (3.21) for U.

C.1 The equation of V/
We redisplay the master equation of V:
0= 0V (t,z,p) + Va(t,z, u) f*(t,z, 1)

4 %Tr[sz(t, 2, 1) (5 + 0] + L* (6,2, 1)
+ (uldz), 0:6,V (t, @, pi; 2) f (L, 2, 1))
+ 5 {a(d2), 028, (1,2, 2)(2 + %0))
+ (u(dz), Tr[0,20,V (t, , 15 2) Xo])

+ S B (d2dw), {00V (1, s 2, 0) o),
where (¢,x, 1) € [0,T] x R™ x Pg(R™).

C.2 The equation of 0,0,V

T

Using x; within z = (x1,--- ,2,)" in place of ¢ in Lemma B.4 and recalling the growth conditions of

Cy, we can show
020,V (t,x, 1) = (0,0 V (b2, 1) (), 020,V (1, 5y) = (8,02V (¢, 2, 1)) (y)-
Taking measure differentiation of the master equation of V" above and using y as the newly generated

variable, in view of Lemma B.4, we have

0 :8t5HV(t,:L‘,/J,;y) (Cl)
+ 020,V (t, x, s y) f(t, 2, ) 4+ Vo (t, 2, 1) 0, f7 (8, 2, 15 )

1 *
+ S Tr[070,V (82, 15 y) (2 + Z0)] + 0, L7 (¢, 7, 113 y)
+ (u(dz), 0.0,V (t, 2, s 2,9) f* (L, 2, )

(u®%(dzdw), Tr([0200 0 V (E, 2, 113 2, w, y) o)),
+0y0,V (1 y) [ (8 y, 1) + xa (8, @, 1)
T8,V (2, 1) (5 + Bo)] + xalt, 7, )

+ Tr[0,y0,V (¢, x, 3 y) Xo] + x3(t, z, 1)

1
+ 5 (u(dw), Tr[gyw(suuv(tv Z, 13y, ’(U)Z()D + X4(t7 Zz, :U')

1
+ §<,u(dz), Tr[azy(suuv(ta x, 15 2,Y) Xo]) + x5 (L, z, ).

In the above, the measure differentiation can get inside integration by dominated convergence.
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C.3 The summed equation

By switching variables in (C.1) and integration, we obtain two more equations for O (u(dy),
0,V (t,y, ;) and O {u(dy), 8,V (t,y, 1;y)), respectively. We have

0 =0,V (t,x, ) + 0, M(t, ) + Oy {pu(dy), 6,V (t,y, w; x)) — Oe{p(dy), 6,V (t,y, 13 y))
+ \IJVa

where

= Vo(t,z,pn) f*(t,z, 1)
4 5 T Ve (6,2, 1) (5 + Do)] + L (¢, 1)
+ (u(dz), 0:0,V (t, z, s 2) f*(t, 2, 1))
+ 3 (=), 020, (8, 2)(5 + o))
- {uldz), T(D,28,V (1, 2, 1 2)Zo))
b5 (0 ), Te{OaV (1,2, 2,0) )
+ (u(dy), 0y, M (t, s y) £ (¢, y, 1)
(p(dy), Tr[28,M (L 55 ) (S + Zo)])

(u ®2(dydz) Tr([0y20,,, M (t, 1y, 2)Xo])
n®?(dydz), 8,6,V (t, z, ;Y0 f *(t,y, 15 2) — 8 f (£, 9, 1159)))
(12 (dydw), Tr{[8y=6,,V (£, w, 1y, 2)]] =y T}),

1
ol
1
g
+ (u®
+

1
2

—~

w(dy), 0y0,V (t,y, i 2) [ (ty, ) + Oy V (£, y, )6, f (t, s 115 2))
(u(dy), Tx[0;6,V (8, y, 1 ) (S + o))

(dy), 6, L*(t,y, p; x))
p®?(dydz), 0.0,V (t,y, 2, 2) f*(t, 2, 1))
p®?(dydz), 0.0,V (t,y, s 2)8, f* (t, z, p; )

(u®2(dydz), Te[026,,V (t,y, 15 2, 2) (5 + 2o)))
92 (dydz), Te[0,20,,V (t,y, 115 2, ) o))

(13 (dydzdw), Tr[0z0 0V (8, y, 15 2, w, ) o),
w(dy), 06,V (t,y, s ) f*(t, z, 1))

(u(dy), Te[026,V (¢, y, s 2) (X + o)])

p(dy), Tr[0y2 6,V (¢, y, p; ©) Xo])

(1@ (dwdy), Tr[0pu 0,V (t, y, 1 2, w) X))

o~ o~ o~ —
t[\)\

+ + 4+ + + o+ o+ + o+ o+
=

NI =N =T N= T N= N

(12 (dzdy), Tr[0220,,.V (t,, 15 2, ) So))

_|_

— (u(dy), 046,V (t, y, ;)] | o=y [ (t, y, 1) + Vi (t,y, )0 f (E, y, 1159))
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(u(dy), Te{[056,V (¢, y, 115 2)][a=y (2 + So)})

dy), 6, L"(t,y, 1:y))
L (dydz) 020,V (t,y, 15 2,y) f*(t, 2, 1))
,u®2(dydz) D20,V (t,y, 115 2)0, ™ (t, 2, 115 9))

(1= (dydz), Te[026,,,V (£, y, 15 2,y) (2 + Do)])

O (dydz), Te{[0y=0,.V (8, 183 2,2)]|a=y Z0})
(1% (dydzdw), Tr[0:0 00V (t,y, 15 2,0, y) o)),
— (u(dy), [020,V (£, Y, 15 2)] o=y £ (. 9, 1))

(u(dy), Te{[036,V (t,y, 1; 2)] o=y (Z + o) })

— (u(dy), Te{[0ya 6,V (. y, 3 7))o=y o)

(1% (dwdy), Tr{[Opw0yuV (8, Y, 1132, w)] o=y Do )

/\/\/\
tw\»—*
®/‘\

|
—~ —
7; ] \

[\D\P—‘

M\H

5 (P2 (dzdy), Tr{[0:00,uV (.Y, 113 2, )] =y 0 }).

[\ »—k[\)\»—l

We have split the above sum into several groups for ease of reading.

On the other hand, using the expressions (3.9) and (3.21) for U and U, we evaluate the right hand
side of (3.10), excluding 0;U, to get the sum

9
Yy = Z Gy,
k=1
with the components:

Gii= Vo(t,o,u) f*(t,z, p) + (u(dy), 00,V (t,y, p; ) f*(t, z, p),

Gy = %Tr{[Vm(L z, 1) + (pu(dy), 026,V (t,y, ;)] (S + So)} + L*(t, 2, ),

+ (u®2 (dwdy), (00, V (t, w, 12, y) — 8,6,V (t,w, s w, y)1 f*(E,y, 1))
+ (u(dy), 0410,V (t,y, s x) — 0,V (t,y, s )| f* ( y, 1),

Gy = %< (dy), Te{[050,V (t,x, ;) + 050, M (t, 11; )] (2 + To)})

+
M\»—lM\»—l

(u ®2(dwdy), Tr{[agéwV(t, w, 1 T, Y) — 6§6WV(t7 w, pw;w, y)](E 4+ 3g)})
(u(dy), Te{3[6,V (t,y, ;) — 6,V (£, y, 1; 9)|(Z + Xo)}),

Gs = (u(dy), Tr[02y 6,V (£, x, 11;9) Xo]) + (1 (dwdy), Tr[Day b,V (£, w, p; 2, y) So))
+ </,L(dy), Tr[axyauv(ta Y, 13 .13)20”7

1
Gs = 5<u®2(dyd2), Tr{ayz [%MV(t, T, 15y, 2) + 6 Mt 15y, 2)

+ </u‘(dw)7 6###V(t, w, (3 T,Y, Z) - 5###V(tv w, p;w,y, Z)>
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+ (SHMV(t, Zy 3 Ty y) - 6HHV(t7 Zy 15z, y)
+ 0,V (ty, s, 2) = 0,V (Ey, 13y, Z)] ZO}>,

G7 = (u(dy), 0,L*(t,y, ;) — 6, L*(t,y, 1:y)),

Gs = (u(dy), 0,[V(t,y, ) + (u(dw), 0,V (t,w, 11;9))]
O f (g, s ) = O, f (t y, 15 )],

1
Gy : 5</¢(dy), Tr{ [Gyzéu‘/(t, Y, 13 2) + 0yz0,V (L, 2, 13 y)

+ (p(dw), 0y-0,,V (t, w, 1; y, z)>} |Z=y2}>.

We have followed Section 1.2 for the notation of partial derivatives. For instance, in the last line of
Gs, 0y acts on two places of 6,V (¢,y, 1;y).

C.4 Reduction to simpler equations

It suffices to show

I (C.2)

Both sides of (C.2) share many common components. We can cancel out G1, G2, G7 and Gg from both
sides. We further cancel out G5 from both sides after rewriting G using (B.3) and the semi-symmetry
property (B.11). Subsequently, we further cancel out several terms in G, G4, Gg and Gy that are
shared by ¥y . Now to show (C.2), it suffices to show

Ui, = 0, (C.3)
where
T, ::<u®2(dydz),ZL(SWV(t,y,u;z,x)f*(t,mu))
T (U (dydz), TH{028,,V (b, y, 13, 2)(E + So)))
+ (u®?(dydz), Tr[0y.0,,.V (t, y, 1 2, 2)Xo])
+

(p ®3(dydzdw), Tr[0z 6V (£, Y, 155 2, w, ) So])

l\DM—‘/\M\H

— (p(dy), [0y0,V (t, s 3 )] |a=y £ (t, 9, 1))
— S (uldy), Te{[0;0,V (t, y, 1; )] |o=y (X + T0)})
D2 (dydz), 08,V (t,y, 113 2,y) [ (1, 2, 1)
(u®?(dydz), Tr{026,,V (8 y, s 2, y) (S + o) })
2 (dydz), Te{[0y= 0V (t,y, 13 2, )]l a=y Do })
= S dydzdw), OV 0,620, ) S0l
— ((dy), [020,V (Y, 145 2)] o=y £ (2, 9, 1))
(u(dy), Te{[026,V (t, Y, 1t; )] 2=y (S + Z0)})
(dy), Tr{[0y26,.V (t, y, p; 7))o=y X0 })

1
2
—
1
TV
—

1
2
—(n
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1

- 5 </~L®2 (dwdy), T‘I‘{[awwéuu‘/(u Y, 43 T, w)] ‘x:y20}>
1

- 5 <:u®2 (dZdy)7 Tr{[azz(suuv(tv Y, 15 =, -T)] |m:y20}>

and
Ul =G+ Gy + G + Gy,

with the components:

Gilﬁ = <,u®2(dwdy), [8?/5,1Luv(t7 w, ,U, z, y) - ayaﬂuv(ta w, /J“v w, y)]f* (ta % /J“)>
— (uldy), 0y [0,V (t, y, s )1 f*(E,y, 1)),

1
Gli= 5 (u(dwdy), {026,V (1w, s 2, ) — 028,V (6w, 0, )} (S + Bo) )

- S, TGV (1 )5 + S0,

1
Gé = §<M®2(dyd2’)7 ’I‘r{ayz [(M(dw)a 6uuuv(ta W, 3,7y, Z) - 6MM/J«V(t> w, s w, Y, Z))

+ 0,V (2, s 2,y) — 0,V (8, 2, 15 2,y)
+0u V(ty, s, 2) — 0,V (E Yy, 15y, Z)} Eo}>,
1

Gy = §<,u(dy), Tr{ [8yZ6MV(t,y,u; z) + 0y20,V (¢, 2, 1 y)}

=

We use the relation
0,V (t,y, 1;9)] = 0y0,V (t, y, 115 2)|amy + 0[0,V (E, y, 11 7) o=y

and next the semi-symmetry property (B.11) of §,,,V to rewrite G3. This eliminates G} as a common
part of both sides of (C.3). Now we only need to show

Ui = 0, (C.4)
where
1
WY =5 (u* (dydz), Te026,,V (8, y, 13 2, 2) (2 + Xo)])
+ <.u®2 (dydz), Tr[ayzauuv(ta Y, 43 2, x)EOD

1
+ 5 </J®3 (dded’LU), ’I‘r[azw(suuuv(ta Y, 15 2, W, JI)ZOD

(u(dy), Te{[026,V (t, y, 11 @) o=y (S + Zo)})
(1®2(dydz), Tr{926,,V (t,y, 1 2,9) (2 + o) })
N®2(dydz)7 Tr{[ayz(sﬂﬂv(t7 Y, 11 2, 7)) |z:y20}>

(u®3 (dydzdw), Tr[0u 0,0,V (L, y, 13 2, w, ) So])

N = N =

—~

(u(dy), Te{[026,V (£, y, 11 @) o=y (S + Zo)})
p(dy), Tr{[0yz 6,V (t, y, 1t; )| 2=y X0 })

N = N =

—~
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1
- 5 </~L®2 (dwdy)a T\I‘{[awwéuu‘/(u Y, 15 s w)] ‘x:y20}>

- %(Lt@z(dzdy), Tr{[0:20u,V (£, Y, 115 2, )] la=y X0 })
and
Ui =Gy + Gy + Gy
with the components G, G§ and G§ taking the same form as in W{,.
We rewrite G} using the semi-symmetry property (B.11) of §,,V and next the relation
[ (Y, y)] = [Ozat(2,Y) + Oyytb(m,) + Oayth(, y) + Oyato (2, Y)]a—y-

Subsequently, we cancel out G} + G§ as a common part of U2, and ¥%,. Then to show (C.4), it suffices
to show

P = G, (C.5)
where G} is the same as in ¥}, and
U3, =(u®?(dydz), Tr[0y20,,V (. y, p; 2, 2)So])
* %(u@)s(dydzdw), Tr [0z 0V (£, 152, w, ) Xo])
— (n®?(dydz), Te{[0y:0,V (£, Y, 113 2, 7))o=y 0 })

1

- 5 <M®3 (ddedw)a Tr[azwauuuv(ta Y, p; 2, W, Z/)EOD
1

- 5 <:u®2 (dwdy)a Tr{[azwauuv(ta Y, 3, w)] ‘x=y20}>

1
- 5 <,U,®2 (dZdy)v Tr{[azxéuuv(tv Y, 15 2, ZE)] |ﬁc=y20}>'

Using the semi-symmetry property (B.11) twice, we obtain

5uupv(t7 w, 1 T,Y, z) :(sﬂuuv(ta w, WY, 2, -T) + 5M,U«V(ta w, 13y, ‘T)
- 25##V(t7 wa N’v Y, Z) + 5##V(t7 ’U.), /1’7 $, Z)a

and subsequently,
8yz[5uuuv(t7 w, s x,Y, Z) - 5uuuv(ta w, p; w, Y, Z)]
= Oy [0V (L w, 115y, 2, 8) — 6,0V (8,0, 13y, 2, w)].

Now to show (C.5), we only need to show

Ui = G2,
where
Uy =(u®?(dydz), Tr[0y20,,V (£, y, s 2, 2) So])
— (u®*(dydz), Te{[0y=0,,V (8, y, 1: 2, 2)] 2=y X0 })
- %(,L@?(dwdy),Tr{[amdwv(t,y,u;%w)]\z:yﬁob
— 5 d2y), Te{ [0V (6,15 2,2)) =y Bo)
and

1
G = §<u®2(dyd2), Tr{c‘“)yz [5WV(t, 2%, y) = OV (t, 2, 113 2,)

+ 0,V (ty, wx,2) — 0,V (t,y, 15y, z)} EO}>.
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After transforming the z-dependent terms of GZ using the semi-symmetry property (B.11) and
comparing with ¥{, to get rid of shared terms, to show (C.5), we only need to show

<N®2 (dydz), Tr{[ayzéuuv(tv Y, U3z, x)] |I:y20}> (C-6)

1
+ ) </~L®2 (dwdy), Tr{[axwéuuv(ta Y, 5 x, w)] |r:y20}>

1
+ 5 <N®2 (dZdy)7 Tr{[azw(suuv(ta yv /1'; Z, {I?)] |z:y20}>

1
=5 (U (dydz), Tr{0y: [V (£, 2,115 2,9) + 0V (Y, 139, 2)]0})
+ (P2 (dydz), Tr[d,:0,V (t,y, 13 2) %))

After changing the notation on the LHS and expanding the partial differentiation on the RHS, (C.6)
is equivalently written as

(u®2(dydz), Te{[0y=0,V (t,ys 113 2, )] e=y B0 })
3 (dyd2), Tr{[0y=6,,V (1w, 1, 9]y Do)
5 s (dydz), Te{[02y 8,V (8,0, 152, 9)] iy Do)
:%<u®2(dydz), D] (10,28 V (1 3 20 + 10,28V (0 2152, 0)] o
+ [0y20,,V (8, 2 15y, 2)][a=y + [0y20,,V (8 y, 3 2, Z)]|I:y)20}>
+ (U2 (dydz), Tr[y.6,V (t,y, 1; 2)%0)),

which, after cancellation of the last two terms of LHS and next rewriting the first term of LHS by the
semi-symmetry property (B.11), reduces to

(U2 (dydz), Tr{0y: [0,V (t, y, s 2, 2) + 6,V (t,y, 13 2) — 6,V (t,y, 113 2)] S0 }Hamy)

1
= (12 (dydz), Te{ (10,20 V (8,2, 15 2, 9)loms + (040 V (69,152, 2)] o=y ) So )
+ <M®2 (dydz)a Tr[ayzéuv(ta Y, 1 Z)EOD

The above equality is equivalent to
</1*®2 (dydz), Tr[ayz(suuv(ta Y, K3 x, Z)EO] ‘I:y>

1
= §<,u®2(dydz),Tr{([5‘y25WV(t, Zy 5T, y)”m:z + [5'yz§WV(t,y, M z, Z)]‘m:y)20}>'

The last equality indeed holds in view of Lemma B.1 and equality (B.5). We conclude that (C.2)
holds, which completes the proof.

Appendix D: Derivation of Equations (3.10) and (3.14) for U and U

Let UN (t,z%, u~!) be the social cost in (3.7) and (3.8). In the formal derivation below, we suppose
the functions behave well so that the small error terms o(e) holds uniformly with respect to all N. We
have

t+e N
Une(t,zt,p™t) =E{/ [L*(S,Xi,us‘l)+ZL*(8»X§,u;k)]ds (D.1)
t k=2

UM+ X it + (N = DT+ e i)}
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N
=L*(t,z", p e+ Z L*(t, 2% u=%)e 4+ No(e)
k=2
FEUN(t+ ¢, Xjyoo i) + (N = DEU(t + €, pi)-

We make the expansion

N N
ZL*(vakaH_k) :ZL*(S xkvu_l)
k=2 k= N
+Z Y(dy), 0, L* (t, 2", 1™ 5 9)) + o(1/N)]
k=2
=(N— (" (dy), L*(t,y, n 1))
+Z dy), 0, L*(t, 2" p~y)) (= &)
+0( ),

where o(1) — 0 as N — co. We have
;X
61 = Xr 4 Z[auL*(tv"Ekauil; 1,1) - 5ML*(ta xkvuil;xk)]

N -1
k=2

= (= Ndy), 8, L*(t,y,pu s2t) — 8, L*(t,y, 1~ 5 y)).

In the following we have such designated variables z,y,z as in the functions UY (t x, 1),
a#UN(t,lL',M;y), (’9WUN(t,x,u;y,z), 5uﬁ(taﬂ;y) and 5##U(t,u;y,z). Denote Ay’ik — :u‘t—‘,-( w -k
for all 1 < k < N. Now we formally make the expansion

UN(t+6 Xt+67lu’t+e)
:UN(t,:L‘ Y )+atUN(t7x17.u71)€

1
+ 0, UN (t, =) f (2t p e + iTr[agUN(t,asl,u_l)(Z +Xo)]e

+(Au" N (dy), 6, UN (1,2t uhy) (= &)
+ <Aﬂ71(dy)a az(sILUN(tv xlv ,uil; y)
) [UO(WtO+e - Wto) + U(Wt1+e - th)]> (= &3)

1 _ _ _
+ S AnTH dy) ApTH (dz), 6, U (82t 1y, 2)) (=5 8a)
+ o(e).
We similarly have

U(t+ e p) = Ut p) + 0,0 (8, = )e
“Ndy), 6, Ut nhy)) (= &)

(Ap(dy)Ap= ' (dz), 6,0 (t, 1 5y, 2)) (= &)
(€).

(Ap
1

_|_
+2
+o

We have

N
1 _ _
]Eé-Z = ﬁE E [6HUN(1§,(L‘1,,LL I;Xf+6)_6MUN(t7xlaM 17xk)]
k=2
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N
Z{a S UN (2t = a®) £ (8, 2%, ke

1 _
+ 5Tr[8§5“UN(t, ot 2R (2 4 Zo))e + o(e)}
= e{u™ (dy), 9,0, U™ (t,at, ™) f* (ty )
1
el (dy), S TO,UN (10 ) (5 + S+ ofe)

and

N

> {[aféﬂUN(t, 2 L XE ) — 0,6, UM (82t Y2
k=2

oo (Wiye = WE) + o (Wi - W]}
= (" (dy), Tr[0sy 8, U™ (¢, 2, p15y)So])e + ofe).

Next we have

1 _ _
&a :m Z [5uuU (t z! y b ! th+e7th+e) 5HHUN(t7x17M 17XgaXf+e)
7,k>2
— 5WUN(t7x1,u_1,th+E, Xk + (S,J,LUN(t,gcl,/fl,)(g,Xf)}7
and
1 N o1 1.5 k
E¢, = ml@ Z {Tr[ayz(SWU (t,z , pu 2l x)
G k>2
(X = XE)(X e = XDT| + 00
= O 3 E Z { v[0y20,, UY (t,xl,ufl;xj,xk)20}6+o(e)}
- Jk>2
1 1.k
+ mEZ{Tr 0y20,, UN (t, 2t =t 2 2 )E]eJro(e)}
k>2
1, _ _ _
:§<,LL 1(dy).u l(dz)> Tr[ayz(s,uuUN(taxla,u 1;y,2)20}>€
1 -1 Ny o1 -1
+m<# (dy), Tr{[0y20,, U (t, 2", 17 5y, 2)|[a=y X })e + o(e€).
We have
N —_
=5 llEzé Ut p b Xfve) = 0,0 (5 a")]
k=2
N
N : Z{a S U (t, ) fo(t, 2%, ™)
k=2
+ §Tr[825ﬂﬁ(t, k) (S + Eo)]}e + o(e)
- _
=~ {0,8,0(t, 128 1 (8, 2% i)
k=2

+ %Tr[@j%ﬁ(t, k) (S 4 20)) }e + o(e)
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1 Y _
- ﬂkz:?ayaﬂmt,u—l,m’f)
S = (dy), Suf* (2", 1T y)) + o(1/N)]e
1 N

=1 {3y5uv(t’u’1;x’“)f*(t,xk,ufl)
k=2

1 o
+ 5 Te[028,T(t p 5 a") (5 + Bo)] e

N
+ ﬁ kzﬁ {aya,ﬁ(t, p Lz
0 (t3F,Ya) — 8 (et e |
+o(1/N)e + ofe).
So we have
(N = DEE =e(N = 1)(u™"(dy), 9,6,0(tn"9)f (b, 1)
+ SOt ) (5 + So)])
+e(p N dy), 8,8, Ut p= )0, f* Ly, ™t at) = 8, f* (6w, ™5 0)])
+o(1)e + No(e),
where o(1) — 0 as N — oc.
Similarly, we have

1 7T —1...7 ..k
EgG = mE Z {Tr[ayzéﬂuU(t,u ,l’j,(L‘ )

Jk=2

(X = XD = XD | +ole)}

1 e _ .
- mE > {Tr[ayz‘sle(tvl‘ 1;Ij,$k)20]e+o(e)}
J,k>2
# U -1, .k .k
+ 2(N— 1)2E§{Tr[ayz5uu(](t,ﬂ T, T )Z]€+O(€)}

1 - _
= 5u Ydy)p~ " (dz), Tr[0y.0,,U(t, n~ "1y, 2)To)e

+ ﬁg'bil(dy)? Tr{[ayz(s‘ulu.ﬁ(t, /1,71; Y, Z)] |z:y2}>€ + 0(6).

Therefore, we have
1 _ _ = _
(N = DEE =5 (N —1)(u Hdy)n™H(dz), Tr[0y20,,U (8 15y, 2)o))e

45 (), T[0T u ", 2)]lo=y Bhe + No(e).

Using the local expansion of the right hand side of (D.1) and next letting ¢ — 0, we obtain the
following equation

0=L*(t,z",p ") + (N = 1) (" (dy), L*(t,y, n™ "))
+ (uNdy), 6, L*(t,y,p ") = 6, LF(ty, )
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+ o, UN(t, 2t ) + 0, UN (8, 2, =) f* (8, 2t Y
+ %Tr[(’)iUN(t, ot ) (Z + o))

+(u" N (dy), 9,6, UN (t, 2t s y) f¥ (8 y, 7 h))

o ). TrO28,UN (i) (5 4 So))

2
+ (M (dy), Tr[04y 0, UN (¢, 2", p3y) o))
+ %W‘l(dy)u‘l(d& Tr(0y= 0, U™ (8,2, "5y, 2)S0])
+2(N1 317 ), Te{[8y:0,,0 (50179, 2)) oy )
(N = 1D)8T(t, p )
(N = 1) (dy), 8,0, Tt 1) f (b yo ™)
SN = ) (dy), T8t ) (5 + So))
+ (N dy), 0,0, U (t, ™5 9) (6, f* (b y, ™ 2") = 8, f* (g, ™5 0)])
SOV = ) () (d2), Tef0y 0T (1 ,2)50))

[t

+ 57N dy), Tr{(0y20,T(t n7" 5y, 2)] =y 2) + (1),

where o(1) = 0 as N — oc.

Collecting all components with coefficient N — 1 together, we rewrite the above equation in the
form

0 =(N = D){ 0Tt ™) + (= (dy), L (t,y, 1)
+ (N (dy), 0,6, Ut ™ ) f* (g, )
5 0 (), T, Tt 9)(5 + o))

1 _

+ 5(#‘1(dy)u‘l(dz), Tr[é’yzéwU(t,u‘l;y,Z)EoD}

+oUN (2t ) + 0, UN (txt w ) (et )
1

+ S TZUN (¢t ) (2 4 D)) + L7t 2 p )

+ (uH(dy), 9,0, UN (t,xt, Y y) by, )
1 _

+ §<,LL 1(dy)a Tr[@j(;uUN(t,xl,u 1; y)(z + EO)])

+ {u(dy), Tr[0uy 0, UN (t, 2", 11;9) %))

1 _ _
+§<N_1(dy)ﬂ 1(d2)7 Tr[ayzéuuUN(tvxl»N 1§y72)20}>

s i (dy), (0,0, 0" (bt p g 2]y 2)

<u 1d) Su L (t,y, p~ 2ty = 0, L (ty, )
dy), 0y8, U (t, ™ sy) [ f* (ty, s 2h) = 8, f (L y, ™))

S (), Te{(0,:8, T (159, 2)] oy D) + 00,
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Provided that we have chosen the function U (¢, i) to satisfy (3.14), then the above equation further

implies

0 =0,UN(t,a, u= ) + 0, UN(t, 2, p= 1) f*(t, 2, ™ h) (D.2)
RO ()2 4 )] + L (1, )
+ (N (dy), 0,0, UN (¢, x5 y) f (ty, n )
gl dy), TN (i) (5 + S))

+ (u(dy), Tr[0,y0,UN (t, 2", 13 y)20])

1, _ _ _
+§<U 1(dy)M 1(d2’>, Tr[ayZ(SHNUN(tvxlaﬂ 1;yvz)20]>

sy W (dy), Tr{[0y:0,, UN (82t ™ sy, 2)] =y B

+

+(u M (dy), 6, L (t,y, w2t — 6, L7 (ty, 1))

+(u M (dy), 9,0, U(t, 1™ )0 f* (ty, s a") = Suf* (ty, Y5 9)])
+

(™ (dy), Tre{[0y20,,U(t 11y, 2)]]2=yB}) + 0(1).

Taking N — oo, we obtain (3.10) as the limiting form of (D.2).
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