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Abstract : We consider mean field social optimization in nonlinear diffusion models. By dynamic
programming with a representative agent employing cooperative optimizer selection, we derive a new
Hamilton–Jacobi–Bellman (HJB) equation to be called the master equation of the value function.
Under some regularity conditions, we establish ϵ-person-by-person optimality of the master equation-
based control laws, which may be viewed as a necessary condition for nearly attaining the social
optimum. A major challenge in the analysis is to obtain tight estimates, within an error of O(1/N), of
the social cost having order O(N). This will be accomplished by multi-scale analysis via constructing
two auxiliary master equations. We illustrate explicit solutions of the master equations for the linear-
quadratic (LQ) case, and give an application to systemic risk.

Keywords : Controlled diffusion, mean field social optimization, person-by-person optimality, dy-
namic programming, master equation



Les Cahiers du GERAD G–2024–45 1

1 Introduction

Mean field social optimization studies decision problems involving a large number of agents which have

a common optimization objective and interact through coupling in their individual dynamics or costs, or

both [25]. These problems are also referred to as large population optimal control [20]. The cooperative

behavior of the agents differs from the noncooperative behavior of the agents in mean field games [7].

The reader is referred to [3, 24, 25, 28, 40] for the analysis of social optima in a linear-quadratic

(LQ) framework. McKean–Vlasov optimal control has been studied in [5, 8, 13, 19, 30, 32, 37, 41],

and may be heuristically interpreted as a limit form of large population optimal control. Cooperative

mean field control has applications in economic theory [31], collective choice problems [34], multi-

agent flocking [33], and power systems [17]. The notion of social optima is also useful for measuring

(in)efficiency of mean field games [4, 10].

In this paper we analyze social optimization for a class of nonlinear models. Consider a population

of agents Ai, 1 ≤ i ≤ N , satisfying the stochastic differential equations (SDEs):

dXi
t =f(X

i
t , u

i
t, µ

−i
t )dt+ σdW i

t + σ0dW
0
t , 1 ≤ i ≤ N, t ≥ 0, (1.1)

where Xi
t and uit are agent Ai’s state and control, respectively, and

µ−i
t :=

1

N − 1

∑
1≤j≤N,j ̸=i

δXj
t

is the empirical distribution of all other N − 1 agents, with δx being the dirac measure at x ∈ Rn.

The initial states {Xi
0, 1 ≤ i ≤ N} are independent with finite second moment. The N + 1 standard

Brownian motions {W j , 0 ≤ j ≤ N}, as the individual noises and the common noise, respectively, are

independent and also independent of the initial states. The dimensions of Xi
t , u

i
t, W

i
t and W 0

t are

n, n1, n2, n3, respectively, and f , σ and σ0 have compatible dimensions. We restrict to the case of

constant noise coefficients. Our approach can deal with state and control dependent noise.

Agent Ai has its own cost

Ji(u
i(·),u−i(·)) = E

∫ T

0

L(Xi
t , u

i
t, µ

−i
t )dt+ E g(Xi

T , µ
−i
T ), (1.2)

where u−i(·) denotes the controls of all agents other than Ai. To avoid heavy notation, we do not

include t as an argument in f, σ, σ0 and L, but can treat the t-dependent case without further difficulty.

The social cost is given by

J (N)
soc (u) =

N∑
i=1

Ji, (1.3)

where u := (u1, · · · , uN ).

1.1 Method, analytical challenges, and contributions

One may attempt to minimize the social cost by directly solving an optimal control problem. This

approach, however, becomes infeasible when N is large. Instead, we develop our solution by studying

the optimizing behavior of a representative agent. We exploit a simple but useful idea in team decision

theory called person-by-person (PbP) optimality. The reader is referred to [29, 35, 39] for its charac-

terization and to [12] for its feedback form in decentralized stochastic control. To explain the idea, let

J (u1, · · · , uN ) be the team cost of N agents with strategies ui. Under a given information structure,

if the team attains its optimum by a joint strategy (û1, · · · , ûN ), then no agent can unilaterally take

a new strategy to improve for the team. PbP optimality is a necessary condition for team optimality.
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Our PbP optimality-based approach studies the value function of a representative agent and applies

dynamic programming in an extended state space including an individual state x and a measure µ

describing the mean field. This method enables the agent to choose its optimizer in a feedback form

ûi = ϕ(t, x, µ), which differs from [36], where the control perturbation is a non-anticipative process. In

the end we obtain a special Hamilton–Jacobi–Bellman (HJB) equation, which will be called the master

equation for the value function; some heuristic derivation has appeared in [27] without performance

analysis. Master equations have been widely studied in mean field games [6, 9, 14] and also mean field

optimal control [5, 6, 19, 32].

In the setting of social optimization (or large population optimal control), our approach above differs

from some existing works, which approximate the N -agent optimal control problem by a McKean–

Vlasov optimal control problem (see e.g. [19, 20, 30, 41]). As a result, their value function takes the

form Vmv(t, µ), only characterizing the performance of the population as a whole. However, in practical

cooperative decision scenarios, each constituent agent still desires to know its own performance; our

approach responds to this need and specifies an individual’s value function V (t, x, µ). The authors

in [5] formulate an optimal control problem combing a representative agent’s state equation with the

McKean–Vlasov dynamics, both controlled by the same process. They prove a dynamic programming

principle without common noise, and the drift term in their master equation is structured differently

from ours.

When the control laws (û1, · · · , ûN ) of N agents have been determined from the master equation,

an issue of central importance is their performance. For certain classes of models, the value function

of the controlled McKean–Vlasov dynamics has been shown to be the limit of the value function of the

N -agent optimal control problem as N → ∞ [8, 19]. However, to our best knowledge, except for LQ

cases [21, 25, 26, 40], there has existed no past work on social optimization addressing the performance

of the infinite population-based control laws when they are applied by finite populations. As it turns

out, our PbP optimality-based approach provides a tractable framework for such performance analysis.

We will establish approximate PbP optimality for the master equation-based control laws in optimizing

J
(N)
soc , which may be viewed as a necessary condition for achieving near social optimality. Naturally, it

is desirable to bound the gap between the attained performance and exact PbP optimality as tightly

as possible. A loose bound would not tell much about performance.

PbP optimality may be viewed as a special case of a Nash equilibrium where all agents take the social

cost as their individual costs. For this reason, our performance estimate in terms of approximate PbP

optimality is similar to the ϵ-Nash equilibrium analysis in mean field games [7]. However, we confront

a far more difficult problem, especially under model nonlinearity. We may think of J
(N)
soc as a quantity

of order O(N) while expecting the agent in question to minimize it up to an accuracy of o(1). The

estimate of the performance loss becomes very intricate since we face quantities of such drastically

different scales as O(N) and o(1). In contrast, the ϵ-Nash equilibrium analysis involves quantities of

scales O(1) and o(1), for an agent’s cost and its performance loss, respectively. Under some regularity

conditions pertaining to the solution of the master equation, we prove that ûi is nearly PbP optimal,

with an inadequacy (or regret) of at most O(1/N) for optimizing J
(N)
soc .

Our performance analysis depends on exploiting the multi-scale feature when an individual attempts

to optimize the social cost, where the key idea is to decompose the social cost roughly as the sum of a

much larger macroscopic term and another term that carries information on the representative agent

and so will be called the instrumental value function. Meanwhile, we need to introduce two auxiliary

master equations. Such combined usage of functions describing phenomena of different scales, together

with the construction of their equations, has got much of its inspiration from the physics literature on

computing tiny quantities which are superposed to very large ones [1, p. 199-209] [18, p.195-198] and

also from perturbation methods of dynamical systems [23, ch. 3].

The paper is organized as follows. Section 2 introduces the master equation of the value function.

To prepare for performance analysis, Section 3 introduces the instrumental value function and two
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auxiliary master equations. The asymptotic PbP optimality theorem is proved in Section 4. Section 5

illustrates explicit solutions of the master equations by linear-quadratic (LQ) models and a systemic

risk example.

1.2 Notation

The Frobenius norm of a vector or matrix v is denoted by |v|. For the function ψ(x) from Rn to R,
we denote the partial derivatives ∂xi

ψ and ∂xixj
ψ := ∂xi

(∂xj
ψ). Denote ∂xψ := (∂x1

ψ, · · · , ∂xn
ψ) as

a row vector. The Hessian matrix is ∂2xψ := (∂xixjψ)1≤i,j≤n, where ∂xixjψ is the (i, j)-th entry of the

matrix. If ψ(x, y) is a scalar function with x, y ∈ Rn, we denote

∂xyψ(x, y) := (∂xiyjψ(x, y))1≤i,j≤n.

The evaluation ψ(x, y)|y=x gives ψ(x, x). When there is only one space variable x in ψ (as in ψ(t, x, µ)),

we use the short notation ψx = ∂xψ and ψxx = ∂2xψ.

Let P2(Rn) be the space of Borel probability measures on Rn with finite second moment. On

P2(Rn), we endow theWasserstein distanceW2(µ, ν) so that it becomes a complete metric space [2]. Let

Pk
em(Rn) consist of all probability measures µ on Rn such that µ = 1

k

∑k
i=1 δxi for some x = (x1, · · · , xk)

with xi ∈ Rn, 1 ≤ i ≤ k.

For a function ψ : Rn → Rk and a probability measure µ, we write the integral
∫
Rn ψ(x)µ(dx) as

⟨µ, ψ⟩ or ⟨ψ⟩µ. We sometimes write such form ⟨µ(dy), ψ(t, y, µ)⟩ to explicitly indicate the variable of

integration. For two probability measures µ1 and µ2, ⟨µ1 − µ2, ψ⟩ := ⟨µ1, ψ⟩ − ⟨µ2, ψ⟩.

Denote the agent index set N = {1, · · · , N}, and N−i = N −{i}. Throughout the paper, the agent
indices i, j ∈ N , etc, appearing in (Xi

t , u
i
t, W

j
t , x

i, uj , etc.) are always interpreted as a superscript,

and not as an exponent. The controls of the N agents are written as u := (u1, · · · , uN ). Further

let u−i be the controls of all agents except Ai. We follow [9] (which uses the notation δV/δµ) to

define the measure differentiation for a function V (t, x, µ); for fixed (t, x), the derivative δµV , as a

Lebesgue measurable function from Rn to R, is denoted by δµV (t, x, µ; y) satisfying the normalization

condition ⟨µ(dy), δµV (t, x, µ; y)⟩ = 0, where y ∈ Rn after the semicolon is the new variable arising

from the differentiation. Higher order derivatives are similarly introduced and denoted in the form

δµµV (t, x, µ; y, z), etc. A function (such as ψ(t, x, µ)) is said to be jointly continuous if it is continuous

under the product topology of [0, T ]× Rn × P2(Rn).

Unless otherwise indicated, the partial derivative will be based on the actual appearance of the

variables. For example, ∂x in ∂xδµV (t, y, µ;x) means differentiation with respect to the variable after

µ, even if we initially introduce the form δµV (t, x, µ; y). The functions χ, χ1, χ2, · · · (such as χ(t, µ),

χ1(t, x, µ), etc.) are reserved as a normalizing term (see Section 5.1 for examples) when differentiating

a function with respect to µ. In various estimates we use C,C1, C2, · · · as generic constants which do

not depend on N and may change from place to place.

2 The value function and its master equation

Let U be a nonempty closed subset of Rn1 . Here and hereafter, we reuse Ca as a generic constant in

various assumptions. We make the following standing assumptions:

(A1) The map f : Rn×U×P2(Rn) → Rn is continuous, and Lipschitz continuous in (x, µ), uniformly

with respect to u. In addition, |f(x, u, µ)| ≤ Ca(1 + |x|+ |u|+ ⟨|y|⟩µ).

(A2) L : Rn × U× P2(Rn) → R+ and g : Rn × P2(Rn) → R+ are continuous, and

L(x, u, µ), g(x, µ) ≤ Ca(1 + |x|2 + |u|2 + ⟨|y|⟩2µ),

for all (x, u, µ) ∈ Rn × U× P2(Rn).
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2.1 The ϕ-value function

To explain the idea underlying the derivation of the master equation, we analyze a family of (N,ϕ)-

indexed control problems for agent Ai in a population of N agents. Consider a set of control laws

ϕ(t,Xk
t , µ

−k
t ), 1 ≤ k ≤ N , with a continuous function ϕ from [0, T ]× Rn × P2(Rn) to U that ensures

a unique solution to the SDE system (1.1).

For each ϕ, let V N,ϕ(t, xi, µ−i) denote the cost

Ji(t, x
i, µ−i, û(·)) = E

∫ T

t

L(Xi
s, u

i
s, µ

−i
s )ds+ Eg(Xi

T , µ
−i
T )

of agent Ai when all N agents apply the control laws ûks = ϕ(s,Xk
s , µ

−k
s ), 1 ≤ k ≤ N , on [t, T ] with

Xi
t = xi and µ−i

t = µ−i ∈ PN−1
em (Rn). The choice of µ−i ∈ PN−1

em (Rn) is arbitrary, which may be

matched by appropriate initial states of all other agents Aj , j ̸= i at time t. Then V N,ϕ is a well-

defined function on [0, T ] × Rn × PN−1
em (Rn). It is clear that this cost depends on N . For notational

simplicity, we will just write it as V ϕ(t, xi, µ) by dropping the superscript N . We may denote the cost

of Ai in this form due to symmetry of the other N − 1 agents. Specifically, if we permutate the other

agents’ initial states, the cost of Ai remains the same. We shall call V ϕ the ϕ-value function for Ai.

Now let the N agents be assigned the initial time-state values (t, xj , µ−j), 1 ≤ j ≤ N , respectively,

which are subject to the constraint 1
N δxj + N−1

N µ−j = 1
N

∑N
k=1 δxk for all j. For the initial time

t ∈ [0, T ], denote the controlled state processes for agents Aj , j ̸= i,

dXj
s =f(Xj

s , ϕ(s,X
j
s , µ

−j
s ), µ−j

s )ds+ σdW j
s + σ0dW

0
s , s ≥ t. (2.1)

For agent Ai, we have

dXi
s =f(X

i
s, u

i
s, µ

−i
s )ds+ σdW i

s + σ0dW
0
s , t ≤ s ≤ T, (2.2)

where we take uis ≡ ui ∈ U for s ∈ [t, t + ϵ) and uis = ϕ(s,Xi
s, µ

−i
s ) on [t + ϵ, T ]. Under (2.1)–(2.2),

denote

Ji(t, x
i, µ−i, ui(·), û−i(·)) := E

∫ T

t

L(Xi
s, u

i
s, µ

−i
s )ds+ Eg(Xi

T , µ
−i
T )

= E
[ ∫ t+ϵ

t

L(Xi
s, u

i, µ−i
s )ds+ V ϕ(t+ ϵ,Xi

t+ϵ, µ
−i
t+ϵ)

]
. (2.3)

Using dynamic programming, we select ui ∈ U on the small interval [t, t+ ϵ] to minimize

E
[ ∫ t+ϵ

t

L(Xi
s, u

i, µ−i
s )ds+

N∑
k=1

V ϕ(t+ ϵ,Xk
t+ϵ, µ

−k
t+ϵ)

]
and next take N → ∞. This allows us to formally derive the master equation of the value function

V (t, x, µ), as the limiting form of Ji, after finding the minimizer ûi which is further required to be

equal to ϕ; see details in appendix A.

2.2 The dynamic programming equation (or master equation)

Denote the matrices Σ := σσT , Σ0 := σ0σ
T
0 . We interpret (x, ui) as the state and control of the

representative agent Ai in an infinite population. The master equation of the value function V (t, x, µ)

takes the form

−∂tV (t, x, µ) = Vx(t, x, µ)f(x, û
i, µ) +

1

2
Tr[Vxx(t, x, µ)(Σ + Σ0)] (2.4)
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+ L(x, ûi, µ) + ⟨µ(dy), ∂yδµV (t, x, µ; y)f(y, ϕ(t, y, µ), µ)⟩

+
1

2
⟨µ(dy),Tr[∂2yδµV (t, x, µ; y)(Σ + Σ0)]⟩

+ ⟨µ(dy),Tr[∂xyδµV (t, x, µ; y)Σ0]⟩

+
1

2
⟨µ⊗2(dydz),Tr[∂yzδµµV (t, x, µ; y, z)Σ0]⟩,

V (T, x, µ) = g(x, µ), (t, x, µ) ∈ [0, T ]× Rn × P2(Rn), (2.5)

where

ûi :=ϕ(t, x, µ) (2.6)

is selected according to

Φ(t, x, ϕ(t, x, µ), µ, V (·)) =min
ui

Φ(t, x, ui, µ, V (·)) (2.7)

for

Φ(t, x, ui, µ, V (·)) :=Vx(t, x, µ)f(x, ui, µ) + L(x, ui, µ)

+ ⟨µ(dy), ∂xδµV (t, y, µ;x)f(x, ui, µ)⟩.

Definition 2.1. We call the pair (V, ϕ), as mappings from [0, T ]×Rn×P2(Rn) to R and U, respectively,
a solution of the master equation (2.4) if the following conditions are satisfied:

(i) V , ∂tV , Vx and Vxx are each jointly continuous on [0, T ]× Rn × P2(Rn);

(ii) δµV (t, x, µ; y), δµµV (t, x, µ; y, z), ∂yδµV (t, x, µ; y), ∂2yδµV (t, x, µ; y), ∂xyδµV (t, x, µ; y), ∂yzδµµV (t, x, µ; y, z)

are jointly continuous in t ∈ [0, T ], x, y, z ∈ Rn, and µ ∈ P2(Rn);

(iii) ϕ is continuous on [0, T ]× Rn × P2(Rn) with

|ϕ(t, x, µ)| ≤ Cϕ(1 + |x|+ ⟨|y|⟩µ);

(iv) there exists a constant Ca such that for all (t, x, y, z, µ),
|δµV (t, x, µ; y)|, |δµµV (t, x, µ; y, z)| ≤ Ca(1 + |x|2 + |y|2 + |z|2 + ⟨|y|⟩2µ),
|∂yδµV (t, x, µ; y)| ≤ Ca(1 + |x|+ |y|+ ⟨|y|⟩µ),
|∂2yδµV (t, x, µ; y)|, |∂xyδµV (t, x, µ; y)| ≤ Ca,

[∂yzδµµV (t, x, µ; y, z)| ≤ Ca;

(2.8)

(v) (V, ϕ) satisfies (2.4) with terminal condition (2.5).

For the subsequent analysis, it is necessary to look for a solution of Equation (2.4) with further

restrictions on V . We introduce the following class of functions CV consisting of all functions V from

[0, T ]×Rn ×P2(Rn) to R such that (a) V fulfills conditions (i) and (ii) in Definition 2.1, and further-

more, δµµµV (t, x, µ; y, z, w), ∂xδµV (t, x, µ; y), ∂2xδµV , ∂tδµV , ∂yδµµV (t, x, µ; y, z), ∂xδµµV , ∂2yδµµV ,

∂xyδµµV , ∂yδµµµV , ∂yzδµµµV are jointly continuous for t ∈ [0, T ], x, y, z, w ∈ Rn, µ ∈ P2(Rn); (b) V

satisfies (2.8) and moreover,
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|V (t, x, µ)| ≤ Ca(1 + |x|2 + ⟨|y|⟩2µ),
|Vx(t, x, µ)| ≤ Ca(1 + |x|+ ⟨|y|⟩µ),
|Vxx(t, x, µ)| ≤ Ca,

|∂tδµV (t, x, µ; y)| ≤ Ca(1 + |x|2 + |y|2 + ⟨|y|⟩2µ),
|∂xδµV (t, x, µ; y)| ≤ Ca(1 + |x|+ |y|+ ⟨|y|⟩µ),
|∂2xδµV (t, x, µ; y)| ≤ Ca,

|∂yδµµV (t, x, µ; y, z)| ≤ Ca(1 + |x|+ |y|+ |z|+ ⟨|y|⟩µ),
|∂2yδµµV (t, x, µ; y, z)|, |∂xyδµµV (t, x, µ; y, z)| ≤ Ca,

|δµµµ(t, x, µ; y, z, w)| ≤ Ca(1 + |x|2 + |y|2 + |z|2 + |w|2 + ⟨|y|⟩2µ),
|∂yδµµµV (t, x, µ; y, z, w)| ≤ Ca(1 + |x|+ |y|+ |z|+ |w|+ ⟨|y|⟩µ),
|∂yzδµµµV (t, x, µ; y, z, w)| ≤ Ca.

(2.9)

The above additional growth conditions in (2.9) are mainly for ensuring well-defined coefficients in

the equation of U in Section 3 and for constructing a solution of U , which involves differentiating both

sides of (2.4) and leads to various higher order derivatives.

3 Close-loop systems and auxiliary master equations

We begin by introducing the following assumption.

Assumption 3.1. The master equation (2.4) has a solution pair (V, ϕ) with V ∈ CV .

A question of central interest is what kind of social performance can be achieved when the master

equation-based control law ϕ in (2.6) is used by all N agents. Note that ϕ(t, x, µ) involves the measure-

valued variable µ. For its implementation, we will use the actual process µ−i
t in the control laws of

the N agents:

ûit = ϕ(t,Xi
t , µ

−i
t ), 1 ≤ i ≤ N. (3.1)

Under the set of control laws ûit, 1 ≤ i ≤ N , the closed-loop system takes the form

dXi
t =f(X

i
t , ϕ(t,X

i
t , µ

−i
t ), µ−i

t )dt+ σdW i
t + σ0dW

0
t , 0 ≤ t ≤ T, (3.2)

1 ≤ i ≤ N.

To analyze the performance of the control law ϕ in terms of PbP optimality, we need to consider

a general control u1t for agent A1 while the other agents take

ûkt = ϕ(t,Xk
t , µ

−k
t ), 2 ≤ k ≤ N. (3.3)

The key question is by how much the social cost may be reduced by optimizing u1t . This leads to a

control problem with social cost J
(N)
soc (u1(·), û−1(·)) and dynamics

dX1
t =f(X1

t , u
1
t , µ

−1
t )dt+ σdW 1

t + σ0dW
0
t , (3.4)

dXk
t =f(Xk

t , ϕ(t,X
k
t , µ

−k
t ), µ−k

t )dt+ σdW k
t + σ0dW

0
t , (3.5)

0 ≤ t ≤ T, 2 ≤ k ≤ N.

To facilitate the performance analysis, we need to examine two functions U and U below, which are

related to the asymptotic behavior of the social costs attained by ϕ as N → ∞.

The social cost under the control law ϕ in (2.6) for all agents will serve as a benchmark performance

level. Based on (3.2), we consider the state processes on [s, T ]:

dXi
t =f(X

i
t , ϕ(t,X

i
t , µ

−i
t ), µ−i

t )dt+ σdW i
t + σ0dW

0
t , s ≤ t ≤ T, (3.6)

1 ≤ i ≤ N,
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which are assigned the initial condition (s, x1, · · · , xN ). The use of general initial conditions will enable

us to derive a partial differential equation of the cost

J
(N)
soc,ϕ(s, x

1, · · · , xN ) :=

N∑
i=1

Ji(s, x
i, µ−i, ϕ) (3.7)

subject to dynamics (3.6). Here Ji(s, x
i, µ−i, ϕ) means that the cost is evaluated with initial time s,

initial state (xi, µ−i), and the same control law ϕ for N agents.

We will look for a suitable representation of J
(N)
soc,ϕ. By symmetry of all other agents, agent A1 may

write J
(N)
soc,ϕ in (3.7) as UN

soc(s, x
1, µ−1), where the initial condition µ−1, as the empirical probability

distribution of the state values (x2, · · · , xN ), is sufficient for describing the behavior of all other agents

as a whole.

We take a decomposition of the form

UN
soc(t, x

1, µ−1) = UN (t, x1, µ−1) + (N − 1)U(t, µ−1), (3.8)

where the function U , to be identified later, is defined on [0, T ] × P2(Rn) and does not depend on

N . Given UN
soc(t, x

1, µ−1), one might choose different pairs (UN , U) for the right hand side of (3.8).

However, an appropriate choice of U is crucial in order to prevent uncontrolled growth of UN as

N → ∞. We will take

U(t, µ) := ⟨µ(dy), V (t, y, µ)⟩, µ ∈ P2(Rn), (3.9)

which is well-defined in view of (2.9). Our next step is to get the limit form of UN (t, x1, µ−1), denoted

by U(t, x, µ), and determine the equation of U . Since U aggregates the effect of a particular agent’s

state x on the social cost J
(N)
soc,ϕ which itself approaches infinity as N → ∞, we shall call U the

instrumental value function (IVF) to distinguish it from the value function V .

3.1 Auxiliary master equations

For (t, x, µ) ∈ [0, T ]× Rn × P2(Rn), define

f∗(t, x, µ) := f(x, ϕ(t, x, µ), µ), L∗(t, x, µ) := L(x, ϕ(t, x, µ), µ).

We introduce the following assumption:

Assumption 3.2. Each of the functions δµf
∗, δµµf

∗, δµL
∗, δµµL

∗, δµg and δµµg is jointly continuous in

its arguments, and there exists a constant Ca such that

|δµf∗(t, x, µ; y)| ≤ Ca(1 + |x|+ |y|+ ⟨|y|⟩µ),
|δµµf∗(t, x, µ; y, z)| ≤ Ca(1 + |x|+ |y|+ |z|+ ⟨|y|⟩µ),
|δµL∗(t, x, µ; y)| ≤ Ca(1 + |x|2 + |y|2 + ⟨|y|⟩2µ),
|δµµL∗(t, x, µ; y, z)| ≤ Ca(1 + |x|2 + |y|2 + |z|2 + ⟨|y|⟩2µ),
|δµg(x, µ; y)| ≤ Ca(1 + |x|2 + |y|2 + ⟨|y|⟩2µ),
|δµµg(x, µ; y, z)| ≤ Ca(1 + |x|2 + |y|2 + |z|2 + ⟨|y|⟩2µ),

for all t ∈ [0, T ], x, y, z ∈ Rn.

We introduce the following master equation for the instrumental value function U(t, x, µ):

0 =∂tU(t, x, µ) + Ux(t, x, µ)f
∗(t, x, µ) (3.10)

+
1

2
Tr[Uxx(t, x, µ)(Σ + Σ0)] + L∗(t, x, µ)
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+ ⟨µ(dy), ∂yδµU(t, x, µ; y)f∗(t, y, µ)⟩

+
1

2
⟨µ(dy), Tr[∂2yδµU(t, x, µ; y)(Σ + Σ0)]⟩

+ ⟨µ(dy),Tr[∂xyδµU(t, x, µ; y)Σ0]⟩

+
1

2
⟨µ⊗2(dydz),Tr[∂yzδµµU(t, x, µ; y, z)Σ0]⟩

+ ⟨µ(dy), δµL∗(t, y, µ;x)− δµL
∗(t, y, µ; y)⟩

+ ⟨µ(dy), ∂yδµU(t, µ; y)[δµf
∗(t, y, µ;x)− δµf

∗(t, y, µ; y)]⟩

+
1

2
⟨µ(dy),Tr{[∂yzδµµU(t, µ; y, z)]|z=yΣ}⟩,

U(T, x, µ) = g(x, µ) + ⟨µ(dy), δµg(y, µ;x)− δµg(y, µ; y)⟩, (3.11)

(t, x, µ) ∈ [0, T ]× Rn × P2(Rn),

where U(t, µ) is given by (3.9).

It will be helpful to explain how equation (3.10) is derived. Our method is to follow the idea

underlying Feynman–Kac’s formula to derive an equation for UN
soc(t, x

1, µ−1) using the dynamics of

(X1
t , µ

−1
t ) in (3.6). Subsequently we separate terms of two different scales, depending on whether they

are multiplied by N − 1, to formally obtain two equations for UN and U , respectively. Finally, taking

N → ∞, we obtain a limit form U for UN and its Equation (3.10). See appendix D for details. By

this procedure we have in fact identified the equation of U (see (3.14)) first and then show that (3.9)

gives a solution.

Our next step is to construct a particular solution to master equation (3.10). To do this, we need

to introduce another function M : [0, T ]× P2(R2) → R by the following equation:

0 = ∂tM(t, µ) + ⟨µ(dy), ∂yδµM(t, µ; y)f∗(t, y, µ)⟩ (3.12)

+
1

2
⟨µ(dy),Tr[∂2yδµM(t, µ; y)(Σ + Σ0)]⟩

+
1

2
⟨µ⊗2(dydz),Tr[∂yzδµµM(t, µ; y, z)Σ0]⟩

+ ⟨µ⊗2(dydz), ∂yδµV (t, z, µ; y)[δµf
∗(t, y, µ; z)− δµf

∗(t, y, µ; y)]⟩,

+
1

2
⟨µ⊗2(dydw),Tr{[∂yzδµµV (t, w, µ; y, z)]|z=yΣ}⟩,

M(T, µ) = 0, (t, µ) ∈ [0, T ]× P2(Rn). (3.13)

We have constructed this equation so as to use M as an adjustment term in the representation

of U (see (3.21) below). With V known, we may view (3.12) as a linear equation.

Let the class CM consist of all functions M(t, µ) from [0, T ] × P2(Rn) to R such that (i) M(t, µ),

∂tM(t, µ) δµM(t, µ; y), δµµM(t, µ; y, z), ∂yδµM(t, µ; y), ∂2yδµM(t, µ; y), ∂yzδµµM(t, µ; y, z) are jointly

continuous; (ii) for some constant Ca,

|δµM(t, µ; y)|, |δµµM(t, µ; y, z)| ≤ Ca(1 + |x|2 + |y|2 + ⟨|y|2⟩µ),
|∂yδµM(t, µ; y)| ≤ Ca(1 + |y|+ ⟨|y|⟩µ),
|∂2yδµM(t, µ; y)| ≤ Ca, |∂yzδµµM(t, µ; y, z)| ≤ Ca.

We further introduce the following assumption.

Assumption 3.3. There exists a solution M ∈ CM to Equation (3.12).

Theorem 3.4. Under Assumption 3.1, U defined by (3.9) satisfies the following equation

0 = ∂tU(t, µ) + ⟨µ,L∗(t, y, µ)⟩+ ⟨µ, ∂yδµU(t, µ; y)f∗(t, y, µ)⟩ (3.14)
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+
1

2
⟨µ,Tr[∂2yδµU(t, µ; y)(Σ + Σ0)]⟩

+
1

2
⟨µ⊗2(dydz),Tr[∂yzδµµU(t, µ; y, z)Σ0]⟩,

U(T, µ) = ⟨µ, g(y, µ)⟩, (t, µ) ∈ [0, T ]× P2(Rn). (3.15)

Proof. For U defined in (3.9), we have

δµU(t, µ; y) = V (t, y, µ) + χ(t, µ) + ⟨µ(dw), δµV (t, w, µ; y)⟩, (3.16)

where χ is a normalizing term. We have

δµµU(t, µ; y, z) = δµV (t, y, µ; z) + δµχ(t, µ; z) + δµV (t, z, µ; y) + χ1(t, µ, y) (3.17)

+ ⟨µ(dw), δµµV (t, w, µ; y, z)⟩.

Therefore,

∂yzδµµU(t, µ; y, z) =∂yzδµV (t, y, µ; z) + ∂yzδµV (t, z, µ; y) (3.18)

+ ⟨µ(dw), ∂yzδµµV (t, w, µ; y, z)⟩.

The partial differentiation in the last term can get inside the integration by an application of the

dominated convergence theorem.

Substituting these expressions into the right hand side of (3.14), we obtain

Ξ := ∂t⟨µ, V (t, y, µ)⟩+ ⟨µ,L∗(t, y, µ)⟩+ ⟨µ, Vy(t, y, µ)f∗(t, y, µ)⟩ (3.19)

+ ⟨µ⊗2(dydw), ∂yδµV (t, w, µ; y)f∗(t, y, µ)⟩

+
1

2
⟨µ,Tr[Vyy(t, y, µ)(Σ + Σ0)]⟩

+
1

2
⟨µ⊗2(dydw),Tr[∂2yδµV (t, w, µ; y)(Σ + Σ0)]⟩

+
1

2
⟨µ⊗2(dydz),Tr{[∂yzδµV (t, y, µ; z) + ∂yzδµV (t, z, µ; y)]Σ0}⟩

+
1

2
⟨µ⊗3(dydzdw),Tr{∂yzδµµV (t, w, µ; y, z)Σ0}⟩.

By a change of variables, we further apply Lemma B.2 to write the constituent term

⟨µ⊗2(dydz),Tr[∂yzδµV (t, z, µ; y)Σ0]⟩
= ⟨µ⊗2(dydz),Tr[∂yzδµV (t, y, µ; z)Σ0]. (3.20)

Now after substituting (3.20) into (3.19), we show Ξ = 0 by integrating both sides of (2.4) using µ(dx),

where we have ⟨µ(dx), ∂tV (t, x, µ)⟩ = ∂t⟨µ(dx), V (t, x, µ)⟩.

We now take

U(t, x, µ) =V (t, x, µ) +M(t, µ) (3.21)

+ ⟨µ(dy), δµV (t, y, µ;x)− δµV (t, y, µ; y)⟩

for (t, x, µ) ∈ [0, T ]× Rn × P2(Rn), and proceed to show that this function satisfies (3.10).

Remark 3.5. We explain the idea behind the representation (3.21). We write UN
soc(t, x

1, µ−1) =∑N
i=1 V

ϕ(t, xi, µ−i) and next expand V ϕ(t, xi, µ−i) around µ−1. The resulting sum is compared

with (3.8) to suggest the construction in (3.21).

Theorem 3.6. Under Assumptions 3.1, 3.2 and 3.3, U defined by (3.21) is a solution to master equa-

tion (3.10) with terminal condition (3.11).

Proof. See appendix C.
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3.2 A minimizer property for ϕ

The next lemma gives a useful inequality resulting from taking ui in place of ϕ(t, x, µ) in Equation (3.10)

for U .

Lemma 3.7. Suppose Assumptions 3.1, 3.2 and 3.3 hold and let U be given by (3.21). Then for each

u ∈ U, we have

0 ≤ ∂tU(t, x, µ) + Ux(t, x, µ)f(x, u, µ) (3.22)

+
1

2
Tr[Uxx(t, x, µ)(Σ + Σ0)] + L(x, u, µ)

+ ⟨µ(dy), ∂yδµU(t, x, µ; y)f∗(t, y, µ)⟩

+
1

2
⟨µ(dy), Tr[∂2yδµU(t, x, µ; y)(Σ + Σ0)]⟩

+ ⟨µ(dy),Tr[∂xyδµU(t, x, µ; y)Σ0]⟩

+
1

2
⟨µ⊗2(dydz),Tr[∂yzδµµU(t, x, µ; y, z)Σ0]⟩

+ ⟨µ(dy), δµL∗(t, y, µ;x)− δµL
∗(t, y, µ; y)⟩

+ ⟨µ(dy), ∂yδµU(t, µ; y)[δµf
∗(t, y, µ;x)− δµf

∗(t, y, µ; y)]⟩

+
1

2
⟨µ(dy),Tr{[∂yzδµµU(t, µ; y, z)]|z=yΣ}⟩,

where U is given by (3.9).

Proof. There are only two terms within (3.22) that depend on u. By (3.21), we have

Ux(t, x, µ) = Vx(t, x, µ) + ⟨µ(dy), ∂xδµV (t, x, µ; y)⟩, (3.23)

where differentiation ∂x can go inside the integral by dominated convergence. We have

Ux(t, x, µ)f(x, u, µ) + L(x, u, µ)

= [Vx(t, x, µ) + ⟨µ(dy), ∂xδµV (t, x, µ; y)]f(x, u, µ) + L(x, u, µ)

≥ [Vx(t, x, µ) + ⟨µ(dy), ∂xδµV (t, x, µ; y)]f∗(t, x, µ) + L∗(t, x, µ),

where the inequality is due to the choice of ϕ in (2.6). On the other hand, U satisfies (3.10) by

Theorem 3.6. The lemma follows from (3.10) and the above inequality.

4 Person-by-person optimality

Assumption 4.1. ϕ(t, x, µ) in the solution pair (V, ϕ) for (2.4) is Lipschitz continuous in (x, µ) ∈ Rn ×
P2(Rn), uniformly with respect to t.

Assumption 4.2. There exists a constant CX such that supN max1≤i≤N E|Xi
0|2 ≤ CX .

Under the standing assumption (A1) and Assumptions 3.1 and 4.1, f∗(t, x, µ) is Lipschitz contin-

uous in (x, µ) with linear growth, i.e., for some constant Cf,ϕ,

|f∗(t, x, µ)− f∗(t, y, ν)| ≤ Cf,ϕ(|x− y|+W2(µ, ν)), (4.1)

|f∗(t, x, µ)| ≤ Cf,ϕ(1 + |x|+ ⟨|y|⟩µ). (4.2)

Proposition 4.3. Under Assumptions 3.1, 3.2, 3.3, 4.1 and 4.2, for (X1
t , · · · , XN

t ) given by (3.2), we

have

sup
N

max
1≤i≤N

sup
0≤t≤T

E|Xi
t |2 ≤ CT,X ,

where the constant CT,X only depends on (T,CX , Cf,ϕ,Σ,Σ0).
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Proof. Consider the closed-loop system

dXi
t = f∗(t,Xi

t , µ
−i
t )dt+ σdW i

t + σ0dW
0
t , 1 ≤ i ≤ N. (4.3)

Take µ1 = 1
k

∑k
j=1 δxj and µ2 = 1

k

∑k
j=1 δyj with xj , yj ∈ Rn. Taking a particular coupling of µ1 and

µ2 as the distribution assigning probability 1/k at each point (xj , yj) ∈ R2n, we obtain W2(µ1, µ2) ≤
( 1k

∑
j |xj − yj |2)1/2 ≤

∑
j |xj − yj |. So in view of (4.1), f∗(t,Xi

t , µ
−i
t ) is Lipschitz continuous in

(X1
t , · · · , XN

t ) ensuring that the SDE system (4.3) has a unique solution on [0, T ]. Applying Itô’s

formula to (4.3) and next taking expectation, we have

E|Xi
t |2 = E|Xi

0|2 + E
∫ t

0

[XiT
s f∗(s,Xi

s, µ
−i
s ) + Tr(Σ + Σ0)]ds

≤ E|Xi
0|2 + TTr(Σ + Σ0) + Cf,ϕE

∫ t

0

|Xi
s|
(
1 + |Xi

s|+
1

N − 1

∑
k ̸=i

|Xk
s |
)
ds

≤ E|Xi
0|2 + TTr(Σ + Σ0) + C1

∫ t

0

(
1 + E|Xi

s|2 +
1

N − 1

∑
k ̸=i

E|Xk
s |2

)
ds.

Denote zt = max1≤i≤N E|Xi
t |2. We obtain zt ≤ C2 + C1

∫ t

0
(1 + 2zs)ds. By Grönwall’s inequality, we

obtain the desired estimate with CT,X as specified.

For any fixed constant K0 > 0, let UK0

FN consist of all Rn1 -valued processes u1t := u1(t, ω) that

satisfy the conditions: (i) u1(t, ω) is adapted to the filtration FN
t := σ(Xk

0 ,W
k
s ,

W 0
s , k = 1, · · · , N, s ≤ t), (ii) E

∫ T

0
|u1(t, ω)|2dt ≤ K0.

Remark 4.4. Given û−1, if u1(t, x1, · · · , xN ) is a Lipschitz feedback control law yielding a unique closed-

loop state process (X1
t , · · · , XN

t ), we may identify such a control law as the process u1(t,X1
t , · · · , XN

t ),

which is adapted to the filtration FN
t .

Denote û1t = ϕ(t,X1
t , µ

−1
t ) in (3.2). Then by Proposition 4.3, û1t belongs to UK0

FN if K0 is sufficiently

large.

Theorem 4.5 (Asymptotic person-by-person optimality). Under Assumptions 3.1, 3.2, 3.3, 4.1 and 4.2,

for (3.4)–(3.5) and any fixed K0 > 0, we have

J (N)
soc (û1(·), û2(·), · · · , ûN (·)) ≤ inf

u1(·)∈UK0
FN

J (N)
soc (u1(·), û2(·), · · · , ûN (·)) + ϵN ,

where ϵN = O(1/N) and J
(N)
soc is defined by (1.3).

4.1 Proof of Theorem 4.5

Throughout this subsection, we suppose that all assumptions in Theorem 4.5 hold. Using Itô’s formula

we obtain the following lemma.

Lemma 4.6. Let the processes (X1
t , · · · , XN

t ) be given by (3.4)–(3.5) with initial states (X1
0 , · · · , XN

0 )

at t = 0 and u1t being any Lipschitz feedback control u1t (t,X
1
t , · · · , XN

t ) ensuring a unique strong solu-

tion to (3.4)–(3.5), and denote the derivatives δµU(t, x, µ; y), δµµU(t, x, µ; y, z), δµU(t, µ; y), δµµU(t, µ; y, z)

for U and U defined by (3.21) and (3.9), respectively. Then we have

E[U(T,X1
T , µ

−1
T )− U(0, X1

0 , µ
−1
0 )] (4.4)

= E
∫ T

0

{
∂tU(t,X1

t , µ
−1
t ) + Ux(t,X

1
t , µ

−1
t )f(X1

t , u
1
t , µ

−1
t )

+
1

2
Tr[Uxx(t,X

1
t , µ

−1
t )(Σ + Σ0)]
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+
1

N − 1

∑
j≥2

∂yδµU(t,X1
t , µ

−1
t ;Xj

t )f
∗(t,Xj

t , µ
−j
t )

+
1

2(N − 1)

∑
j≥2

Tr[∂2yδµU(t,X1
t , µ

−1
t ;Xj

t )(Σ + Σ0)]

+
1

N − 1

∑
j≥2

Tr[∂xyδµU(t,X1
t , µ

−1
t ;Xk

t )Σ0]

+
1

2(N − 1)2

∑
j≥2,k≥2

Tr[∂yzδµµU(t,X1
t , µ

−1
t ;Xk

t , X
j
t )Σ0]

+
1

2(N − 1)2

∑
k≥2

Tr[∂yzδµµU(t,X1
t , µ

−1
t ;Xk

t , X
k
t )Σ]

}
dt

and

E[U(T, µ−1
T )− U(0, µ−1)] (4.5)

= E
∫ T

0

{
∂tU(t, µ−1

t ) +
1

N − 1

∑
j≥2

∂yδµU(t, µ−1
t ;Xj

t )f
∗(t,Xj

t , µ
−j
t )

+
1

2(N − 1)

∑
j≥2

Tr[∂2yδµU(t, µ−1
t ;Xj

t )(Σ + Σ0)]

+
1

2(N − 1)2

∑
j≥2,k≥2

Tr[∂yzδµµU(t, µ−1
t ;Xk

t , X
j
t )Σ0]

+
1

2(N − 1)2

∑
k≥2

Tr[∂yzδµµU(t, µ−1
t ;Xk

t , X
k
t )Σ]

}
dt.

Proof. For agent A1, by Itô’s formula involving the measure flow {µ−1
t , 0 ≤ t ≤ T} (see e.g. [9, 14, 11]),

we have

dU(t,X1
t , µ

−1
t ) = [∂tU(t,X1

t , µ
−1
t ) + Ux(t,X

1
t , µ

−1
t )f(X1

t , u
1
t , µ

−1
t )]dt

+
1

2
Tr[Uxx(t,X

1
t , µ

−1
t )(Σ + Σ0)]dt

+ Ux(t,X
1
t , µ

−1
t )(σdW 1

t + σ0dW
0
t )

+
1

N − 1

∑
j≥2

∂yδµU(t,X1
t , µ

−1
t ;Xj

t )f
∗(t,Xj

t , µ
−j
t )dt

+
1

2(N − 1)

∑
j≥2

Tr[∂2yδµU(t,X1
t , µ

−1
t ;Xj

t )(Σ + Σ0)]dt

+
1

N − 1

∑
j≥2

∂yδµU(t,X1
t , µ

−1
t ;Xj

t )(σdW
j
t + σ0dW

0
t )

+
1

N − 1

∑
k≥2

Tr[∂xyδµU(t,X1
t , µ

−1
t ;Xk

t )Σ0]dt

+
1

2(N − 1)2

∑
j≥2,k≥2

Tr[∂yzδµµU(t,X1
t , µ

−1
t ;Xk

t , X
j
t )Σ0]dt

+
1

2(N − 1)2

∑
k≥2

Tr[∂yzδµµU(t,X1
t , µ

−1
t ;Xk

t , X
k
t )Σ]dt.
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Integrating both sides on [0, T ] and taking expectation, we obtain (4.4). The proof of (4.5) is similar

and uses the following relation

dU(t, µ−1
t ) = ∂tU(t, µ−1

t )dt+
1

N − 1

∑
j≥2

∂yδµU(t, µ−1
t ;Xj

t )f
∗(t,Xj

t , µ
−j
t )dt (4.6)

+
1

2(N − 1)

∑
j≥2

Tr[∂2yδµU(t, µ−1
t ;Xj

t )(Σ + Σ0)]dt

+
1

N − 1

∑
j≥2

∂yδµU(t, µ−1
t ;Xj

t )(σdW
j
t + σ0dW

0
t )

+
1

2(N − 1)2

∑
j≥2,k≥2

Tr[∂yzδµµU(t, µ−1
t ;Xk

t , X
j
t )Σ0]dt

+
1

2(N − 1)2

∑
k≥2

Tr[∂yzδµµU(t, µ−1
t ;Xk

t , X
k
t )Σ]dt.

To obtain the crucial lower bound in Theorem 4.7 below, we need to slightly rewrite the integrands

in (4.4) and (4.5) to relate to Equations (3.10) and (3.14) for U and U , respectively. We proceed to

introduce the following error terms:

ξa1 :=
1

N − 1

∑
j≥2

∂yδµU(t,X1
t , µ

−1
t ;Xj

t )[f
∗(t,Xj

t , µ
−j
t )− f∗(t,Xj

t , µ
−1
t )],

ξa2 :=
1

2(N − 1)2

∑
k≥2

Tr[∂yzδµµU(t,X1
t , µ

−1
t ;Xk

t , X
k
t )Σ],

and

ξb :=
∑
j≥2

∂yδµU(t, µ−1
t ;Xj

t )
{
f∗(t,Xj

t , µ
−j
t )− f∗(t,Xj

t , µ
−1
t )

− 1

N − 1
[δµf

∗(t,Xj
t , µ

−1
t ;X1

t )− δµf
∗(t,Xj

t , µ
−1
t ;Xj

t )]
}
.

Moreover, for 2 ≤ j ≤ N , we denote

ξLj :=L∗(t,Xj
t , µ

−j
t )− L∗(t,Xj

t , µ
−1
t )

− 1

N − 1
[δµL

∗(t,Xj
t , µ

−1
t ;X1

t )− δµL
∗(t,Xj

t , µ
−1
t ;Xj

t )],

ξgj :=g(Xj
T , µ

−j
T )− g(Xj

T , µ
−1
T )

− 1

N − 1
[δµg(X

j
T , µ

−1
T ;X1

T )− δµg(X
j
T , µ

−1
T ;Xj

T )].

Theorem 4.7. For (3.4)–(3.5) and every Lipschitz feedback control law u1, we have

J (N)
soc (u1(·), û−1(·)) ≥E[U(0, X1

0 , µ
−1
0 ) + (N − 1)U(0, µ−1

0 )] (4.7)

+ E
∫ T

0

(
ξa1 + ξa2 + ξb +

N∑
j=2

ξLj

)
dt+ E

N∑
j=2

ξgj ,

where the equality holds if u1t = ϕ(t,X1
t , µ

−1
t ) for all t ∈ [0, T ] in (3.4) for agent A1.

Proof. Denote

Θa := ∂tU(t,X1
t , µ

−1
t ) + Ux(t,X

1
t , µ

−1
t )f(X1

t , u
1
t , µ

−1
t )
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+
1

2
Tr[Uxx(t,X

1
t , µ

−1
t )(Σ + Σ0)]

+
1

N − 1

∑
j≥2

∂yδµU(t,X1
t , µ

−1
t ;Xj

t )f
∗(t,Xj

t , µ
−1
t )

+
1

2(N − 1)

∑
j≥2

Tr[∂2yδµU(t,X1
t , µ

−1
t ;Xj

t )(Σ + Σ0)]

+
1

N − 1

∑
j≥2

Tr[∂xyδµU(t,X1
t , µ

−1
t ;Xk

t )Σ0]

+
1

2(N − 1)2

∑
j≥2,k≥2

Tr[∂yzδµµU(t,X1
t , µ

−1
t ;Xk

t , X
j
t )Σ0],

which consists of the first six lines in the integrand of (4.4) but replaces µ−j
t by µ−1

t within f∗ on the

third line. Then from Lemma 4.6, we have the relation

E[U(T,X1
T , µ

−1
T )− U(0, X1

0 , µ
−1
0 )] = E

∫ T

0

(Θa + ξa1 + ξa2 )(t)dt.

Similarly, based on (4.5), we define

Θb :=(N − 1)
{
∂tU(t, µ−1

t ) +
1

N − 1

∑
j≥2

∂yδµU(t, µ−1
t ;Xj

t )f
∗(t,Xj

t , µ
−1
t )

+
1

2(N − 1)

∑
j≥2

Tr[∂2yδµU(t, µ−1
t ;Xj

t )(Σ + Σ0)]

+
1

2(N − 1)2

∑
j≥2,k≥2

Tr[∂yzδµµU(t, µ−1
t ;Xk

t , X
j
t )Σ0]

}
,

and

Θ̄b
1 :=

∑
j≥2

∂yδµU(t, µ−1
t ;Xj

t )[f
∗(t,Xj

t , µ
−j
t )− f∗(t,Xj

t , µ
−1
t )],

Θb
2 :=

1

2(N − 1)

∑
k≥2

Tr[∂yzδµµU(t, µ−1
t ;Xk

t , X
k
t )Σ].

Using (4.5), we obtain

(N − 1)E[U(T, µ−1
T )− U(0, µ−1

0 )] = E
∫ T

0

(Θb + Θ̄b
1 +Θb

2)(t)dt.

Subsequently, we obtain

E[U(T,X1
T , µ

−1
T ) + (N − 1)U(T, µ−1

T )] (4.8)

− E[U(0, X1
0 , µ

−1
0 ) + (N − 1)U(0, µ−1

0 )]

= E
∫ T

0

(Θa + ξa1 + ξa2 +Θb + Θ̄b
1 +Θb

2)dt.

We need to further decompose Θ̄b
1 as the sum a of a main component and a small error term. For this

purpose, denote

Θb
1 :=

1

N − 1

∑
j≥2

∂yδµU(t, µ−1
t ;Xj

t )[δµf
∗(t,Xj

t , µ
−1
t ;X1

t )− δµf
∗(t,Xj

t , µ
−1
t ;Xj

t )].
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Then we have Θ̄b
1 = Θb

1 + ξb, where ξb is viewed as a small error term. By (3.14), we have

Θb =− (N − 1)⟨µ−1
t (dy), L∗(t, y, µ−1

t )⟩.

For (4.8), denote

Θ∗ := Θa + ξa1 + ξa2 +Θb + Θ̄b
1 +Θb

2.

Now we have

Θ∗ =Θa +Θb +Θb
1 +Θb

2 + ξa1 + ξa2 + ξb

=
{
∂tU(t,X1

t , µ
−1
t ) + Ux(t,X

1
t , µ

−1
t )f(X1

t , u
1
t , µ

−1
t )

+
1

2
Tr[Uxx(t,X

1
t , µ

−1
t )(Σ + Σ0)]

+
1

N − 1

∑
j≥2

∂yδµU(t,X1
t , µ

−1
t ;Xj

t )f
∗(t,Xj

t , µ
−1
t )

+
1

2(N − 1)

∑
j≥2

Tr[∂2yδµU(t,X1
t , µ

−1
t ;Xj

t )(Σ + Σ0)]

+
1

N − 1

∑
j≥2

Tr[∂xyδµU(t,X1
t , µ

−1
t ;Xk

t )Σ0]

+
1

2(N − 1)2

∑
j≥2,k≥2

Tr[∂yzδµµU(t,X1
t , µ

−1
t ;Xk

t , X
j
t )Σ0]

+
1

N − 1

∑
j≥2

∂yδµU(t, µ−1
t ;Xj

t )[δµf
∗(t,Xj

t , µ
−1
t ;X1

t )

− δµf
∗(t,Xj

t , µ
−1
t ;Xj

t )]

+
1

2(N − 1)

∑
k≥2

Tr[∂yzδµµU(t, µ−1
t ;Xk

t , X
k
t )Σ]

}
(=: Υ)

− (N − 1)⟨µ−1
t (dy), L∗(t, y, µ−1

t )⟩+ ξa1 + ξa2 + ξb

=Υ− (N − 1)⟨µ−1
t (dy), L∗(t, y, µ−1

t )⟩+ ξa1 + ξa2 + ξb.

Now Lemma 3.7 implies, after setting x = X1
t , u = µ1

t and µ = µ−1
t in (3.22), that

Υ + L(X1
t , u

1
t , µ

−1
t ) (4.9)

+ ⟨µ−1
t (dy), δµL

∗(t, y, µ−1
t ;X1

t )− δµL
∗(t, y, µ−1

t ; y)⟩ ≥ 0,

where the equality holds if u1t = ϕ(t,X1
t , µ

−1
t ) in both Υ and L. It follows from (4.9) that

Θ∗ ≥− L(X1
t , u

1
t , µ

−1
t )− ⟨µ−1

t (dy), δµL
∗(t, y, µ−1

t ;X1
t )− δµL

∗(t, y, µ−1
t ; y)⟩

− (N − 1)⟨µ−1
t (dy), L∗(t, y, µ−1

t )⟩+ ξa1 + ξa2 + ξb. (4.10)

We have

N∑
j=2

L∗(t,Xj
t , µ

−j
t ) =(N − 1)⟨µ−1

t (dy), L∗(t, y, µ−1
t )⟩ (4.11)

+ ⟨µ−1
t (dy), δµL

∗(t, y, µ−1
t ;X1

t )− δµL
∗(t, y, µ−1

t ; y)⟩+
N∑
j=2

ξLj

and, in view of the terminal conditions of U and U ,

N∑
j=1

g(Xj
T , µ

−j
T ) = U(T,X1

T , µ
−1
T ) + (N − 1)U(T, µ−1

T ) +

N∑
j=2

ξgj . (4.12)
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Combining (4.10) and (4.11) yields

Θ∗(t) ≥ −L(X1
t , u

1
t , µ

−1
t )−

N∑
j=2

L∗(t,Xj
t , µ

−j
t ) + ξa1 + ξa2 + ξb +

N∑
j=2

ξLj . (4.13)

By (4.8) and (4.13), we have

E[U(T,X1
T , µ

−1
T ) + (N − 1)U(T, µ−1

T )] (4.14)

− E[U(0, X1
0 , µ

−1
0 ) + (N − 1)U(0, µ−1

0 )]

≥ −E
∫ T

0

[
L(X1

t , u
1
t , µ

−1
t ) +

N∑
j=2

L∗(t,Xj
t , µ

−j
t )

]
dt

+ E
∫ T

0

(
ξa1 + ξa2 + ξb +

N∑
j=2

ξLj

)
dt.

By (4.12) and (4.14), we have

E
∫ T

0

[
L(X1

t , u
1
t , µ

−1
t ) +

N∑
j=2

L∗(t,Xj
t , µ

−j
t )

]
dt+ E

N∑
j=1

g(Xj
T , µ

−j
T )

≥ E[U(0, X1
0 , µ

−1
0 ) + (N − 1)U(0, µ−1

0 )]

+ E
∫ T

0

(
ξa1 + ξa2 + ξb +

N∑
j=2

ξLj

)
dt+ E

N∑
j=2

ξgj ,

where the equality holds if u1t = ϕ(t,X1
t , µ

−1
t ) for all t in (3.4) for agent A1.

Lemma 4.8. For (3.4)–(3.5), we have

|ξa1 |, |ξb| ≤
C

N − 1
(1 + |X1

t |2 + |Xj
t |2 + ⟨|y|2⟩µ−1

t
), (4.15)

|ξa2 | ≤
C

N − 1
, (4.16)

|ξLj | ≤
C

|N − 1|2
(1 + |X1

t |2 + |Xj
t |2 + ⟨|y|2⟩µ−1

t
), (4.17)

|ξgj | ≤
C

|N − 1|2
(1 + |X1

T |2 + |Xj
T |

2 + ⟨|y|2⟩µ−1
T
). (4.18)

Proof. By (3.21) we calculate ∂yδµU(t, x, µ; y) and use Assumption 3.1 to obtain

|∂yδµU(t, x, µ; y)| ≤ C(1 + |x|+ |y|+ ⟨|y|⟩µ). (4.19)

Next for µ−j := 1
N−1

∑N
k ̸=j,k=1 δxk , we have

f∗(t, xj , µ−j)− f∗(t, xj , µ−1) (4.20)

=

∫ 1

0

∫
y

δµf
∗(t, xj , µ−1 + s(µ−j − µ−1); y)(µ−j − µ−1)(dy)ds.

Denote µ̂s := µ−1 + s(µ−j − µ−1) and ∆j,1µ := µ−j − µ−1. Assumption 3.2 implies∣∣∣ ∫
y

δµf
∗(t, xj , µ̂s; y)∆

j,1µ(dy)
∣∣∣ = 1

N − 1
|δµf∗(t, xj , µ̂s;x

1)− δµf
∗(t, xj , µ̂s;x

j)|

≤ C

N − 1

(
1 + |xj |+ |x1|+ 1

N − 1

∑
k≥2

|xk|
)
.
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Subsequently, by (4.19) and (4.20), we have

|ξa1 | ≤
C

N − 1
(1 + |X1

t |2 + |Xj
t |2 + ⟨|y|⟩2

µ−1
t
) (4.21)

≤ C

N − 1
(1 + |X1

t |2 + |Xj
t |2 + ⟨|y|2⟩µ−1

t
).

Next, we use the growth conditions of V , as specified by CV , and the semi-symmetry property (B.11)

to establish

|∂yzδµµU(t,X1
t , µ

−1
t ;Xk

t , X
k
t )| ≤ C, (4.22)

which implies the bound of |ξa2 | in (4.16). To get the bound of |ξb|, we write

f∗(t, xj , µ−j) =f∗(t, xj , µ−1) + ⟨∆j,1µ(dy), δµf
∗(t, xj , µ−1; y)⟩ (4.23)

+

∫ 1

0

∫ 1

0

∫
y,z

sδµµf
∗(t, xj , µ−1 + sτ(µ−j − µ−1); y, z)

·∆j,1µ(dy)∆j,1µ(dz)dτds.

Denote µ̂s,τ := µ−1 + sτ(µ−j − µ−1). Then∫
y,z

δµµf
∗(t, xj , µ̂s,τ ; y, z)∆

j,1µ(dy)∆j,1µ(dz)

=
1

N − 1

∫
z

[δµµf
∗(t, xj , µ̂s,τ ;x

1, z)− δµµf
∗(t, xj , µ̂s,τ ;x

j , z)]∆j,1µ(dz)

=
1

(N − 1)2

{
[δµµf

∗(t, xj , µ̂s,τ ;x
1, x1)− δµµf

∗(t, xj , µ̂s,τ ;x
j , x1)]

− [δµµf
∗(t, xj , µ̂s,τ ;x

1, xj)− δµµf
∗(t, xj , µ̂s,τ ;x

j , xj)]
}
.

Consequently, under Assumption 3.2, we have∣∣∣ ∫
y,z

δµµf
∗(t, xj , µ̂s,τ ; y, z)∆

j,1µ(dy)∆j,1µ(dz)
∣∣∣ (4.24)

≤ C

(N − 1)2
(1 + |x1|+ |xj |+ ⟨|y|⟩µ−1).

We use Assumption 3.1 to obtain

|∂yδµU(t, µ; y)| ≤ |∂yV (t, y, µ)|+ |⟨µ(dw), ∂yδµV (t, w, µ; y)⟩| (4.25)

≤ C(1 + |y|+ ⟨|y|⟩µ).

By (4.23), (4.24) and (4.25), we obtain the bound of |ξb| in (4.15). Finally, we follow the method

in (4.23) to obtain (4.17) and (4.18).

Lemma 4.9. There exists a constant CK0
depending on K0 such that for (3.4)–(3.5), we have

sup
N

sup
u1∈UK0

FN

max
1≤i≤N,0≤t≤T

E|Xi
t |2 ≤ CK0

. (4.26)

Proof. By Itô’s formula, we have

|X1
t |2 =|X1

0 |2 +
∫ t

0

[
X1T

s f(X1
s , u

1
s, µ

−1
s ) + Tr(Σ + Σ0)

]
ds

+

∫ t

0

X1T
s (σdW 1

s + σ0dW
0
s ).
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We have

|X1T
s f(X1

s , u
1
s, µ

−1
s )| ≤ C|X1

s | ·
(
1 + |X1

s |+ |u1s|+
1

N − 1

N∑
k=2

|Xk
s |
)

≤ C
(
1 + |X1

s |2 + |u1s|2 +
1

N − 1

N∑
k=2

|Xk
s |2

)
.

Then it follows that

E|X1
t |2 ≤ E|X1

0 |2 + C

∫ t

0

(
1 + E|u1s|2 + max

1≤k≤N
E|Xk

s |2
)
ds. (4.27)

Similarly, for k ≥ 2, we use Assumption (A1) and linear growth of ϕ in Definition 2.1 to obtain

E|Xk
t |2 ≤ E|Xk

0 |2 + C

∫ t

0

(
1 + max

1≤k≤N
E|Xk

s |2
)
ds. (4.28)

Next we follow the proof of Proposition 4.3 to use Grönwall’s lemma to obtain (4.26).

Proof of Theorem 4.5. By Theorem 4.7, Lemmas 4.8 and 4.9, we obtain

J (N)
soc (û1, û−1) = E[U(0, X1

0 , µ
−1
0 ) + (N − 1)U(0, µ−1

0 )] +O(1/N),

J (N)
soc (u1, û−1) ≥ E[U(0, X1

0 , µ
−1
0 ) + (N − 1)U(0, µ−1

0 )]−O(1/N)

for all u1(·) ∈ UK0

FN . Then Theorem 4.5 follows readily.

5 Explicit solutions in LQ models

This section uses LQ mean field social optimization models to illustrate explicit solutions of the master

equations of V , M and U . The individual agent has the dynamics

dXi
t = (AXi

t +Buit +GX
(−i)
t )dt+DdW i

t +D0dW
0
t , 1 ≤ i ≤ N, (5.1)

where the initial states are independent with E|Xi
0|2 <∞. The individual cost is given by

Ji = E
∫ T

0

(|Xi
t − ΓX

(−i)
t − η|2Q + uiTt Ruit)dt+ E|Xi

T − ΓfX
(−i)
T − ηf |2Qf

, (5.2)

where X
(−i)
t := 1

N−1

∑N
j=1,j ̸=iX

j
t and |x|2Q := xTQx. We have symmetric matrices Q ≥ 0 and R > 0.

Denote the social cost J
(N)
soc =

∑N
i=1 Ji.

5.1 The master equation of the value function

Denote x̄ := ⟨µ(dy), y⟩ ∈ Rn as a function of µ. For the model (5.1)–(5.2), corresponding to (2.6) we

determine

Φ =Vx(t, x, µ)(Ax+Bui +Gx̄) + |x− Γx̄− η|2Q + uiTRui

+ ⟨µ(dy), ∂xδµV (t, y, µ;x)(Ax+Bui +Gx̄)⟩.

The minimizer of Φ takes the form

ûi = ϕ(t, x, µ) = −1

2
R−1BT

[
V T
x (t, x, µ) + ⟨µ(dy), ∂Tx δµV (t, y, µ;x)⟩

]
.
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The master equation (2.4) becomes

− ∂tV (t, x, µ)

=Vx(t, x, µ)(Ax+Gx̄) +
1

2
Tr[Vxx(t, x, µ)(DD

T +D0D
T
0 )]

+ |x− Γx̄− η|2Q − 1

4
VxBR

−1BTV T
x

+
1

4
⟨µ(dy), ∂xδµV (t, y, µ;x)⟩ ·BR−1BT · ⟨µ(dy), ∂Tx δµV (t, y, µ;x)⟩

+ ⟨µ(dy), ∂yδµV (t, x, µ; y)[Ay +Bϕ(t, y, µ) +Gx̄]⟩

+
1

2
⟨µ(dy),Tr[∂2yδµV (t, x, µ; y)(DDT +D0D

T
0 )]⟩

+ ⟨µ(dy),Tr[∂xyδµV (t, x, µ; y)D0D
T
0 ]⟩

+
1

2
⟨µ⊗2(dydz),Tr[∂yzδµµV (t, x, µ; y, z)D0D

T
0 ]⟩,

where V (T, x, µ) = |x− Γf x̄− ηf |2Qf
.

We take the ansatz

V (t, x, µ) =xTP (t)x+ x̄TΛ(t)x̄+ 2xTH(t)x̄ (5.3)

+ 2xTS(t) + 2x̄T θ(t) + r(t),

where the functions P (t), Λ(t), · · · , r(t) are to be determined, with P (t) and Λ(t) being symmetric.

We calculate

δµV (t, x, µ; y) = 2x̄TΛy + 2xTHy + 2yT θ + χ(t, x, µ),

δµµV (t, x, µ; y, z) = 2zTΛy + δµχ(t, x, µ; z) + χ1(t, x, y, µ),

and derive the ordinary differential equation (ODE) system:

Ṗ = −ATP − PA+ PBR−1BTP −Q, (5.4)

Λ̇ = −(Λ +H)BR−1BT (Λ +HT ) (5.5)

− Λ[A+G−BR−1BT (P + Λ+H +HT )]

− [A+G−BR−1BT (P + Λ+H +HT )]TΛ

+HTBR−1BTH −HTG−GTH − ΓTQΓ,

Ḣ = −ATH + PBR−1BTH (5.6)

−H[A+G−BR−1BT (P + Λ+H +HT )]− PG+QΓ,

Ṡ = −ATS + PBR−1BTS +HBR−1BT (S + θ) +Qη, (5.7)

θ̇ = HTBR−1BTS + ΛBR−1BT (S + θ) (5.8)

− [A+G−BR−1BT (P + Λ+H +HT )]T θ

− (Λ +H)BR−1BT θ −GTS − ΓTQη,

ṙ = STBR−1BTS + θTBR−1BT (2S + θ) (5.9)

− Tr[(P + Λ+H +HT )(D0D
T
0 )]− Tr(PDDT )− ηTQη,

where the terminal conditions are

P (T ) = Qf , Λ(T ) = ΓT
f QfΓf , H(T ) = −QfΓf ,

S(T ) = −Qfηf , θ(T ) = ΓfQfηf , r(T ) = ηTf Qfηf .

We determine the control law

ϕ(t, x, µ) =−R−1BT [Px+ (Λ +H +HT )x̄+ S + θ]. (5.10)
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Theorem 5.1. The ODE system (5.4)–(5.9) has a unique solution (P,Λ, · · · , r) on [0, T ].

Proof. We first obtain a unique solution P on [0, T ]. Denote Z := P +Λ+H +HT . By the ODEs of

(P,Λ, H), we can show that Z satisfies the following equation

Ż = −(A+G)TZ − Z(A+G) + ZBR−1BTZ − (I − Γ)TQ(I − Γ), (5.11)

where Z(T ) = (I − ΓT
f )Qf (I − Γf ). We start by solving the standard Riccati equation (5.11) to get a

unique solution Z(t) on [0, T ]. Setting P +Λ+H +HT in (5.6) as Z, we determine H using a linear

equation, and further obtain Λ = Z − P − H − HT . Subsequently, we solve two linear equations to

obtain (S, θ). Next, r is determined from a linear equation.

The above calculation gives a solution of (5.4)–(5.9) on [0, T ], which is clearly unique by the local

Lipschitz continuity of the vector field of the ODE system.

5.2 The equation of M

Given the control law ϕ in (5.10), we determine

f∗(t, x, µ) =(A−BR−1BTP )x+ Ĝx̄−BR−1BT (S + θ),

where

Ĝ(t) := G−BR−1BT (Λ(t) +H(t) +HT (t)). (5.12)

Now master equation (3.12) reduces to the following form:

0 =∂tM(t, µ) + ⟨µ(dy), [∂yδµM(t, µ; y)]f∗(t, y, µ)⟩ (5.13)

+
1

2
⟨µ(dy),Tr[∂2yδµM(t, µ; y)(DDT +D0D

T
0 )]⟩

+
1

2
⟨µ⊗2(dydz),Tr[∂yzδµµM(t, µ; y, z)D0D

T
0 ]⟩

− ⟨µ⊗2(dydz), [∂yδµV (t, z, µ; y)] · [δµf∗(t, y, µ; y)− δµf
∗(t, y, µ; z)]⟩

+Tr(ΛDDT ),

M(T, µ) = 0, (t, µ) ∈ [0, T ]× P2(Rn). (5.14)

We take the ansatz

M(t, µ) = ⟨µ, yTΠo
1(t)y⟩+ x̄TΠo

2(t)x̄+ 2x̄T θo(t) + ro(t), (5.15)

where Πo
1(t) and Πo

2(t) are symmetric. This gives

δµM(t, µ; y) = yTΠo
1(t)y + 2x̄TΠo

2(t)y + 2yT θo(t) + χ(t, µ),

δµµM(t, µ; y, z) = 2zTΠo
2y + δµχ(t, µ; z) + χ1(t, y, µ).

We derive the following linear ODE system:

Π̇o
1 =−Πo

1(A−BR−1BTP )− (A−BR−1BTP )TΠo
1 − (HĜ+ ĜTHT ),

Π̇o
2 =−Πo

2(A+ Ĝ−BR−1BTP )− (A+ Ĝ−BR−1BTP )TΠo
2

−Πo
1Ĝ− ĜTΠo

1 +HĜ+ ĜTHT ,

θ̇o =− (A+ Ĝ−BR−1BTP )T θo + (Πo
1 +Πo

2)BR
−1BT (S + θ),

ṙo =2θoTBR−1BT (S + θ)− Tr[(Πo
1 + Λ)DDT + (Πo

1 +Πo
2)(D0D

T
0 )],

with the terminal conditions Πo
1(T ) = Πo

2(T ) = 0, θo(T ) = 0 and ro(T ) = 0, where the functions

(P,Λ, H, Ĝ, S, θ) have been determined from Theorem 5.1 and (5.12). The next proposition is obvious.

Proposition 5.2. The ODE system of (Πo
1,Π

o
2, θ

o, ro) has a unique solution on [0, T ].

Remark 5.3. In view of Theorem 5.1 and Proposition 5.2, for the model (5.1)–(5.2), we may verify

Assumptions 3.1, 3.2, 3.3, and 4.1.
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5.3 The solution of U

We use (3.21) to construct a solution of U in the linear quadratic case and obtain

U(t, x, µ) =xTPx+ ⟨µ, yT (Πo
1 −H −HT )y⟩+ x̄T (Πo

2 − Λ)x̄ (5.16)

+ 2xT (Λ +H +HT )x̄+ 2xT (S + θ) + 2x̄T θo + r + ro,

where x̄ := ⟨y⟩µ. On the other hand, we may also directly solve (3.10) by looking for quadratic solutions

of the following form

U(t, x, µ) =xTΠ⋄
1(t)x+ ⟨µ, yTΠ⋄

2(t)y⟩+ x̄TΠ⋄
3(t)x̄ (5.17)

+ 2xTΠ⋄
4(t)x̄+ 2xTS⋄(t) + 2x̄T θ⋄(t) + r⋄(t),

where Π⋄
1(t), Π

⋄
2(t) and Π⋄

3(t) are symmetric matrix functions of t.

Theorem 5.4. For the model (5.1)–(5.2), the master equation (3.10) has a unique solution U within

the class of quadratic solutions, which coincides with the representation (5.16).

Proof. By use of (5.17), we derive an ODE system for (Π⋄
1,Π

⋄
2, · · · , r⋄). We further show solvability

the ODEs one by one, in the following order to take Π⋄
1 = P , Π⋄

2 = Πo
1 −H −HT , Π⋄

4 = Λ+H +HT ,

Π⋄
3 = Πo

2 − Λ, S⋄ = S + θ, θ⋄ = θo, and r⋄ = r + ro. The solution is clearly unique by the local

Lipschitz continuity property of the vector field of the ODE system of (Π⋄
1,Π

⋄
2, · · · , r⋄).

5.4 An example from systemic risk

In the system of inter-bank lending and borrowing, the state processes of N banks, as the log-

capitalization defined in [15], have dynamics

dXi
t = uitdt+ σ(

√
1− ρ2dW i

t + ρdW 0
t ), 0 ≤ ρ ≤ 1,

with the initial value Xi
0, where W

0
t , W

1
t , · · · , WN

t are independent standard Brownian motions. The

N banks obtain the social optimal strategy through minimizing

J (N)
soc (u(·)) =

N∑
i=1

Ji(u(·)), u := (u1, · · · , uN ),

where

Ji(u(·)) = E
∫ T

0

L(Xi
t , u

i
t, X

(−i)
t )dt+ Eg(Xi

T , X
(−i)
T )

with X
(−i)
t := 1

N−1

∑
j ̸=iX

j
t , running cost

L(xi, ui, z) = (ui)2 + 2qui(xi − z) + ϵ0(x
i − z)2, q2 ≤ ϵ0,

and terminal cost g(xi, z) = c(xi − z)2. The parameters q, ϵ0 and c are positive with q2 ≤ ϵ0 to ensure

convexity of the running cost L(xi, ui, z). See [15] for an interpretation of q in terms of incentive for

lending/borrowing.

5.4.1 The direct solution

Denote x = (x1, · · · , xN )T . The value function is

UN
soc(t,x) = inf

u(·)

N∑
i=1

E

[∫ T

t

L(Xi
s, u

i
s, X

(−i)
s )ds+ g(Xi

T , X
(−i)
T )

]
.



Les Cahiers du GERAD G–2024–45 22

where (t,x) ∈ [0, T ]× RN . By solving the HJB equation of UN
soc, we obtain

UN
soc(t,x) = xTP(t)x+ r(t),

where P(t) has N diagonal entries π1 and off-diagonal entries all equal to π2, with

0 = π̇1 − (π1 + q)2 −
(
π2 −

q

N − 1

)2

(N − 1) +
ϵ0N

N − 1
,

0 = π̇2 − 2(π1 + q)
(
π2 −

q

N − 1

)
−

(
π2 −

q

N − 1

)2

(N − 2)− ϵ0N

(N − 1)2
,

where π1(T ) = cN/(N − 1) and π2(T ) = −cN/(N − 1)2. The optimal control law of the i-th bank is

ûN,i(t,x) = −(π1 + q)xi −
(
π2 −

q

N − 1

) N∑
k ̸=i,k=1

xk. (5.18)

Denote the ODE

0 = Ṗd − (Pd + q)2 + ϵ0, Pd(T ) = c, (5.19)

which has a unique solution on [0, T ]. We can further show sup0≤t≤T |π1(t) − Pd(t)| = O(1/N). By

checking the ODE of (N − 1)π2, we obtain sup0≤t≤T |(N − 1)π2(t) + Pd(t)| = O(1/N). As N → ∞,

the optimal control law (5.18) takes the limiting form

ûi(t, xi, µ) = [Pd(t) + q](x̄− xi), (5.20)

where x̄ := ⟨µ, y⟩. Comparing (5.20) with the open-loop and closed-loop Nash equilibria proposed

in [15], the social optimum has the same solution as the mean field game has in the limit N → ∞.

5.4.2 The master equation-based control

By (2.6), we obtain the minimizer

ûi = −1

2
Vx(t, x, µ)− q(x− x̄)− 1

2
⟨µ(dy), ∂xδµV (t, y, µ;x)⟩, (5.21)

where x̄ := ⟨µ, y⟩. We take the ansatz V (t, x, µ) = P (t)x2 + Λ(t)x̄2 + 2H(t)xx̄+ r(t) and derive

0 = Ṗ − (P + q)2 + ϵ0,

0 = Λ̇ + (Λ +H)2 − (H − q)2 − 2Λ(P + Λ+ 2H) + ϵ0,

0 = Ḣ − (P + q)(H − q)−H(P + Λ+ 2H)− ϵ0,

0 = ṙ + σ2P + σ2ρ2(Λ + 2H),

where P (T ) = c, Λ(T ) = c, H(T ) = −c, r(T ) = 0. Clearly, P = Pd on [0, T ]. Denote Z1 := Λ + 2H,

and we use the equations of Λ̇ and Ḣ to write the ODE:

0 = Ż1 + (Z1 − q)2 − 2(P + Z1)(Z1 − q)− ϵ0, Z1(T ) = −c, (5.22)

for which we can show that Z1 = −P is a solution. By uniqueness of the solution of (5.22), it follows

that Λ+2H = −P on [0, T ]. Subsequently, we determine H from a linear equation using the equation

of Ḣ after setting Λ + 2H as −P ; this in turn determines Λ. The above solution (P,Λ, H) is unique.

The control law (5.21) now becomes

ûi(t, x, x̄) = −{[P (t) + q]x+ [Λ(t) + 2H(t)− q]x̄}
= [P (t) + q](x̄− x),

which agrees with (5.20).
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6 Concluding remarks

Our performance estimate via multi-scale analysis has been based on existence of sufficiently well

behaved solutions of two master equations for V and M . For future work, it will be of interest to

develop existence results following such methods as in [9, 16] for more specific models.

Appendix A: A formal derivation of the master equation of V

This appendix considers a more general model with diffusion coefficients σ(Xi
t , u

i
t, µ

−i
t ) and

σ0(X
i
t , u

i
t, µ

−i
t ) before specializing to the form in (1.1). This will give us more insights into the dynamic

programming method. Below we accordingly denote Σ(x, u, µ) := (σσT )(x, u, µ) and Σ0(x, u, µ) :=

(σ0σ
T
0 )(x, u, µ).

Now we take initial time t ∈ [0, T ) and initial states (x1, · · · , xN ). For the feedback control law ϕ,

denote the controlled state processes for agents Aj , j ̸= i, as

dXj
s =f(Xj

s , ϕ(s,X
j
s , µ

−j
s ), µ−j

s )ds+ σ(Xj
s , ϕ(s,X

j
s , µ

−j
s ), µ−j

s )dW j
s (A.1)

+ σ0(X
j
s , ϕ(s,X

j
s , µ

−j
s ), µ−j

s )dW 0
s , s ≥ t.

For agent Ai, we have

dXi
s =f(X

i
s, u

i
s, µ

−i
s ) + σ(Xi

s, u
i
s, µ

−i
s )dW i

s + σ0(X
i
s, u

i
s, µ

−i
s )dW 0

s , s ≥ t, (A.2)

where we take uis ≡ ui ∈ U for s ∈ [t, t+ ϵ) and uis = ϕ(s,Xi
s, µ

−i
s ) on [t+ ϵ, T ].

A.1 The control perturbation of Ai

Note that V ϕ(t, xi, µ) is defined on [0, T ] × Rn × PN−1
em (Rn), where PN−1

em (Rn) is only a subset of

P2(Rn). We still formally denote the derivative δµV
ϕ(t, xi, µ; y), which is interpreted in the following

sense: for any ν ∈ PN−1
em (Rn),

V ϕ(t, xi, ν)− V ϕ(t, xi, µ) =

∫
y

δµV
ϕ(t, xi, µ; y)(ν − µ)(dy) + o(W2(ν, µ)).

We give an example to illustrate.

Example A.1. Suppose h(t, xi, µ−i) = xiTΠ1(t)x
i+ x̄(−i)TΠ2(t)x̄

(−i)+2xiTΠ12(t)x̄
(−i), where x̄(−i) :=

⟨y⟩µ−i = 1
N−1

∑N
j=1,j ̸=i x

j and Π1(t) and Π2(t) are symmetric. Then

δµh(t, x
i, µ−i; y) = 2yTΠ2(t)⟨y⟩µ−i + 2xiTΠ12(t)y + χ(t, xi, µ−i),

where χ(t, xi, µ−i) is a normalizing term.

We further formally denote the second order derivative δµµV
ϕ(t, xi, µ; y, z). We make formal usage

of partial derivatives ∂tV
ϕ, ∂xiV ϕ, ∂2xiV ϕ, ∂xiδµV

ϕ(t, xi, µ; y), ∂xiyδµV
ϕ(t, xi, µ; y), ∂2yδµV

ϕ(t, xi, µ; y),

∂yzδµµV
ϕ(t, xi, µ; y, z).

A.2 Cost estimate of Ai

Under (A.1)–(A.2), let Ji be given by (2.3). Taking a fixed constant control ui (given the initial

condition (t, xi, µ−i)) on the small interval [t, t+ ϵ], we have the approximation

Ji =L(x
i, ui, µ−i)ϵ+ V ϕ(t, xi, µ−i) (A.3)

+ ∂tV
ϕ(t, xi, µ−i)ϵ+ ∂xiV ϕ(t, xi, µ−i)f(xi, ui, µ−i)ϵ

+
1

2
Tr[∂2xiV ϕ(t, xi, µ−i)Σ(xi, ui, µ−i)]ϵ
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+
1

2
Tr[∂2xiV ϕ(t, xi, µ−i)Σ0(x

i, ui, µ−i)]ϵ

+ E⟨∆µ−i(dy), δµV
ϕ(t, xi, µ−i; y)⟩

+ E⟨∆µ−i(dy), ∂xiδµV
ϕ(t, xi, µ−i; y)ξit⟩

+
1

2
E
∫
z

∫
y

δµµV
ϕ(t, xi, µ−i; y, z)∆µ−i(dy)∆µ−i(dz)

+ o(ϵ),

where ∆µ−i := µ−i
t+ϵ − µ−i and

ξit := σ(xi, ui, µ−i)(W i
t+ϵ −W i

t ) + σ0(x
i, ui, µ−i)(W 0

t+ϵ −W 0
t ).

The three expectations in (A.3) are needed since the empirical distribution µ−i
t+ϵ is random. Within Ji,

denote

K1(t, x
i, µ−i, ui) := L(xi, ui, µ−i) + ∂xi

V ϕ(t, xi, µ−i)f(xi, ui, µ−i)

+
1

2
Tr[∂2xiV ϕ(t, xi, µ−i)Σ(xi, ui, µ−i)]

+
1

2
Tr[∂2xiV ϕ(t, xi, µ−i)Σ0(x

i, ui, µ−i)].

The sum K1 explicitly depends on ui. The remaining components in Ji receive either no or negligible

impact from ui. The optimal choice of ui, however, is not to simply minimize K1. Instead, one should

take into account the impact of ui on all other agents, which we call the social impact.

We check the double integral term in Ji. As N → ∞, we obtain the approximation

1

2
E
∫
z

∫
y

δµµV
ϕ(t, xi, µ−i; y, z)∆µ−i(dy)∆µ−i(dz)

≈ ϵ

2

∫
z

∫
y

Tr
[
∂yzδµµV

ϕ(t, xi, µ; y, z)

· σ0(z, ϕ(t, z, µ), µ)σT
0 (y, ϕ(t, y, µ), µ)

]
µ(dy)µ(dz),

where µ−i has been approximated by µ.

A.3 Cost estimate for all other agents

We check how uit ≡ ui on [t, t + ϵ] affects the cost of agent Aj , j ̸= i. By symmetry of the dynamics

of the N agents on [t+ ϵ, T ], the cost of Aj on [t, T ] may be written as

Jj(t, x
j , µ−j ,u(·)) = E

[ ∫ t+ϵ

t

L(Xj
s , u

j
s, µ

−j
s )ds+ V ϕ(t+ ϵ,Xj

t+ϵ, µ
−j
t+ϵ)

]
, (A.4)

where ujs = ϕ(s,Xj
s , µ

−j
s ) on the whole interval [t, T ]. In general Jj(t, x

j , µ−j ,u(·)) ̸= V ϕ(t, xj , µ−j)

since uis may differ from ϕ(s,Xi
s, µ

−i
s ) on [t, t + ϵ]. Then we take the expansion of (A.4) to formally

obtain

Jj =L(x
j , ϕ(t, xj , µ−j), µ−j)ϵ+ V ϕ(t, xj , µ−j)

+ ∂tV
ϕ(t, xj , µ−j)ϵ+ ∂xjV ϕ(t, xj , µ−j)f(xj , ϕ(t, xj , µ−j), µ−j)ϵ

+
1

2
Tr[∂2xjV ϕ(t, xj , µ−j)Σ(xj , ϕ(t, xj , µ−j), µ−j)]ϵ

+
1

2
Tr[∂2xjV ϕ(t, xj , µ−j)Σ0(x

j , ϕ(t, xj , µ−j), µ−j)]ϵ
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+ E⟨∆µ−j(dy), δµV
ϕ(t, xj , µ−j ; y)⟩

+ E⟨∆µ−j(dy), ∂xjδµV
ϕ(t, xj , µ−j ; y)ξjt ⟩

+
1

2
E
∫
z

∫
y

δµµV
ϕ(t, xj , µ−j ; y, z)∆µ−j(dy)∆µ−j(dz) + o(ϵ)

=:Jj,1 + · · ·+ Jj,9 + o(ϵ),

where ξjt := σ(xj , uj , µ−j)(W j
t+ϵ−W

j
t )+σ0(x

j , uj , µ−j)(W 0
t+ϵ−W 0

t ) with u
j = ϕ(t, xj , µ−j). The nine

terms Jj,k are identified by their order of appearance. Note that the first six terms in the sum are not

affected by ui ∈ U.

In the following we use the notation δµV
ϕ(t, x, µ; y) and δµµV

ϕ(t, x, µ; y, z). Thus ∂yzδµµV
ϕ

(t, xj , µ;xk, xi) stands for ∂yzδµµV
ϕ(t, xj , µ; y, z)|y=xk,z=xi . We have

Jj,7 := E⟨(µ−j
t+ϵ − µj)(dy), δµV

ϕ(t, xj , µ−j ; y)⟩

=
1

N − 1

∑
k∈N−{i,j}

E[δµV ϕ(t, xj , µ−j ;Xk
t+ϵ)− δµV

ϕ(t, xj , µ−j ;xk)]

+
1

N − 1
E[δµV ϕ(t, xj , µ−j ;Xi

t+ϵ)− δµV
ϕ(t, xj , µ−j ;xi)],

where the second to last line has a much smaller dependence on ui than the last line has. Specifically,

when ui has a change of magnitude O(1), it results in an O(ϵ) change of Xi
t+ϵ, which in turn causes

an O(ϵ2/N) change of Xj
t+ϵ. For Jj,7, we estimate the second component in the above sum and have

Jj,7,i :=
1

N − 1
E[δµV ϕ(t, xj , µ−j ;Xi

t+ϵ)− δµV
ϕ(t, xj , µ−j ;xi)]

=
1

N − 1

{
∂xiδµV

ϕ(t, xj , µ−j ;xi)f(xi, ui, µ−i)ϵ

+
1

2
Tr[∂2xiδµV

ϕ(t, xj , µ−j ;xi)Σ(xi, ui, µ−i)]ϵ

+
1

2
Tr[∂2xiδµV

ϕ(t, xj , µ−j ;xi)Σ0(x
i, ui, µ−i)]ϵ+ o(ϵ)

}
.

Next we have

Jj,8 := E⟨∆µ−j(dy), ∂xjδµV
ϕ(t, xj , µ−j ; y)ξjt ⟩

=
1

N − 1
E

∑
k∈N−j

[∂xjδµV
ϕ(t, xj , µ−j ;Xk

t+ϵ)− ∂xjδµV
ϕ(t, xj , µ−j ;xk)]ξjt

=
1

N − 1

∑
k∈N−j

Tr
[
∂xjxkδµV

ϕ(t, xj , µ−j ;xk)

· σ0(xk, uk, µ−k)σT
0 (x

j , uj , µ−j)
]
ϵ+ o(ϵ).

In the last summation ul = ϕ(t, xl, µ−l) for all l ∈ N−i. Within the above sum for Jj,8, denote its

component with k = i, which depends on ui:

Jj,8,i :=
ϵ

N − 1
Tr[∂xjxiδµV

ϕ(t, xj , µ−j ;xi) · σ0(xi, ui, µ−i)σT
0 (x

j , uj , µ−j)].

To analyze Jj,9, denote

ξkl := δµµV
ϕ(t, xj , µ−j ;Xk

t+ϵ, X
l
t+ϵ)− δµµV

ϕ(t, xj , µ−j ;xk, X l
t+ϵ)

− δµµV
ϕ(t, xj , µ−j ;Xk

t+ϵ, x
l) + δµµV

ϕ(t, xj , µ−j ;xk, xl).
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We have

Jj,9 :=
1

2
E
∫
z

∫
y

δµµV
ϕ(t, xj , µ−j ; y, z)∆µ−j(dy)∆µ−j(dz)

=
1

2(N − 1)2

∑
k,l∈N−j

Eξkl

=
1

2(N − 1)2

∑
k ̸=l;k,l∈N−j

{
Tr

[
∂yzδµµV

ϕ(t, xj , µ−j ;xk, xl)

· σ0(xl, ul, µ−l)σT
0 (x

k, uk, µ−k)
]
ϵ+ o(ϵ)

}
+

1

2(N − 1)2

N∑
k∈N−j

{
Tr

[
∂yzδµµV

ϕ(t, xj , µ−j ;xk, xk)

· (Σ + Σ0)(x
k, uk, µ−k)

]
ϵ+ o(ϵ)

}
,

where ul = ϕ(t, xl, µ−l) for each l ∈ N−j . Subsequently, within the expression of Jj,9, we have the

following ui dependent components:

Jj,9,i :=
ϵ

2(N − 1)2

∑
k∈N−{i,j}

Tr
[
∂yzδµµV

ϕ(t, xj , µ−j ;xk, xi)

· σ0(xi, ui, µ−i)σT
0 (x

k, ϕ(t, xk, µ−k), µ−k)
]

+
ϵ

2(N − 1)2

∑
l∈N−{i,j}

Tr
[
∂yzδµµV

ϕ(t, xj , µ−j ;xi, xl)

· σ0(xl, ϕ(t, xl, µ−l), µ−l)σT
0 (x

i, ui, µ−i)
]

+
ϵ

2(N − 1)2
Tr[∂yzδµµV

ϕ(t, xj , µ−j ;xi, xi) · (Σ0 +Σ)(xi, ui, µ−i)].

A.4 Approximation

For large N , all the empirical distributions µ−j , 1 ≤ j ≤ N , may be approximated by a common

µ ∈ PN−1
em . For Jj,7,i, denote

Γj,7(t, y, µ, x
i, ui) := ∂xiδµV

ϕ(t, y, µ;xi)f(xi, ui, µ)

+
1

2
Tr[∂2xiδµV

ϕ(t, y, µ;xi)Σ(xi, ui, µ)]

+
1

2
Tr[∂2xiδµV

ϕ(t, y, µ;xi)Σ0(x
i, ui, µ)].

We take the approximation∑
j∈N−i

Jj,7,i ≈ ϵ

∫
Rn

Γj,7(t, y, µ, x
i, ui)µ(dy) =: K2(t, x

i, ui, µ)ϵ,

∑
j∈N−i

Jj,8,i ≈ ϵ

∫
Rn

Tr[∂yxiδµV
ϕ(t, y, µ;xi)σ0(x

i, ui, µ)σT
0 (y, ϕ(t, y, µ), µ)]µ(dy)

=: K3(t, x
i, ui, µ)ϵ.

Next, ∑
j∈N−i

Jj,9,i
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≈ ϵ

2N

∑
j ̸=i

∫
y

Tr[∂yxiδµµV
ϕ(t, xj , µ; y, xi) · σ0(xi, ui, µ)σT

0 (y, ϕ(t, y, µ), µ)]µ(dy)

+
ϵ

2N

∑
j ̸=i

∫
z

Tr[∂xizδµµV
ϕ(t, xj , µ;xi, z) · σ0(z, ϕ(t, z, µ), µ)σT

0 (x
i, ui, µ)]µ(dz)

≈ ϵ

2

∫
w

∫
y

Tr[∂yxiδµµV
ϕ(t, w, µ; y, xi) · σ0(xi, ui, µ)σT

0 (y, ϕ(t, y, µ), µ)]µ(dy)µ(dw)

+
ϵ

2

∫
w

∫
z

Tr[∂xizδµµV
ϕ(t, w, µ;xi, z) · σ0(z, ϕ(t, z, µ), µ)σT

0 (x
i, ui, µ)]µ(dz)µ(dw)

=:K4(t, x
i, ui, µ)ϵ.

A.5 Cooperative optimizer selection

Within the mean field limit, we consider µ ∈ P2(Rn), and the control law ϕ(t, x, µ). The function

V ϕ(t, x, µ) is defined on [0, T ] × Rn × P2(Rn) and does not depend on N . By adding up K1,K2,K3,

and K4, we define

Φϕ(t, x, ui, µ, V ϕ(·))
:=L(x, ui, µ) + ∂xV

ϕ(t, x, µ)f(x, ui, µ)

+
1

2
Tr[∂2xV

ϕ(t, x, µ)Σ(x, ui, µ)] +
1

2
Tr[∂2xV

ϕ(t, x, µ)Σ0(x, u
i, µ)]

+
〈
µ(dy),

{
∂xδµV

ϕ(t, y, µ;x)f(x, ui, µ)

+ Tr[∂xyδµV
ϕ(t, y, µ;x)σ0(y, ϕ(t, y, µ), µ)σ

T
0 (x, u

i, µ)]

+
1

2
Tr[∂2xδµV

ϕ(t, y, µ;x)Σ(x, ui, µ)]

+
1

2
Tr[∂2xδµV

ϕ(t, y, µ;x)Σ0(x, u
i, µ)]

}
µ(dy)

〉
+

1

2
⟨µ⊗2(dydw),Tr[∂yxδµµV

ϕ(t, w, µ; y, x) · σ0(x, ui, µ)σT
0 (y, ϕ(t, y, µ), µ)]⟩

+
1

2

〈
µ⊗2(dzdw),Tr

[
∂xzδµµV

ϕ(t, w, µ;x, z)

· σ0(z, ϕ(t, z, µ), µ)σT
0 (x, u

i, µ)
]〉
, (A.5)

where the control law ϕ has been used by other agents. We take ûi as a minimizer of Φϕ to obtain

Φϕ(t, x, ûi(t, x, µ), µ, V ϕ(·)) =min
ui

Φϕ(t, x, ui, µ, V ϕ(·)). (A.6)

The selection of ui takes into account its impact on both Ji and all other agents’ costs. The remaining

step is to specify ϕ by a consistency condition to be introduced below.

A.6 The master equation

Combining (2.3), (A.3) and the optimizer selection rule (A.6), we introduce the master equation (as a

special HJB equation):

− ∂tV (t, x, µ)

= Vx(t, x, µ)f(x, û
i, µ) +

1

2
Tr[∂2xV (t, x, µ)Σ(x, ûi, µ)]

+
1

2
Tr[∂2xV (t, x, µ)Σ0(x, û

i, µ)] + L(x, ûi, µ)

+ ⟨µ(dy), ∂yδµV (t, x, µ; y)f(y, ϕ(t, y, µ), µ)⟩
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+
1

2
⟨µ(dy),Tr[∂2yδµV (t, x, µ; y)Σ(y, ϕ(t, y, µ), µ)]⟩

+
1

2
⟨µ(dy),Tr[∂2yδµV (t, x, µ; y)Σ0(y, ϕ(t, y, µ), µ)]⟩

+ ⟨µ(dy),Tr[∂xyδµV (t, x, µ; y) · σ0(y, ϕ(t, y, µ), µ)σT
0 (x, û

i, µ)]⟩

+
1

2

〈
µ⊗2(dydz),Tr

[
∂yzδµµV (t, x, µ; y, z)

· σ0(z, ϕ(t, z, µ), µ)σT
0 (y, ϕ(t, y, µ), µ)

]〉
,

where (t, x, µ) ∈ [0, T ]× Rn × P2(Rn) and the terminal condition is

V (T, x, µ) = g(x, µ).

Moreover, the control law ϕ is required to be equal to the optimizer ûi, i.e.,

ûi(t, x, µ) = arg min
ui∈U

Φϕ(t, x, ui, µ, V (·)), (A.7)

ϕ(t, x, µ) =ûi(t, x, µ), (A.8)

where (A.8) is called the consistency condition and

Φϕ(t, x, ui, µ, V (·))
:= L(x, ui, µ) + Vx(t, x, µ)f(x

i, ui, µ)

+
1

2
Tr[∂2xV (t, x, µ)Σ(x, ui, µ)] +

1

2
Tr[∂2xV (t, x, µ)Σ0(x, u

i, µ)]

+
〈
µ(dy),

{
∂xδµV (t, y, µ;x)f(x, ui, µ)

+ Tr[∂xyδµV (t, y, µ;x)σ0(y, ϕ(t, y, µ), µ)σ
T
0 (x, u

i, µ)]

+
1

2
Tr[∂2xδµV (t, y, µ;x)Σ(x, ui, µ)]

+
1

2
Tr[∂2xδµV (t, y, µ;x)Σ0(x, u

i, µ)]
}〉

+
1

2
⟨µ⊗2(dydw),Tr[∂yxδµµV (t, w, µ; y, x) · σ0(x, ui, µ)σT

0 (y, ϕ(t, y, µ), µ)]⟩

+
1

2
⟨µ⊗2(dzdw),Tr[∂xzδµµV (t, w, µ;x, z) · σ0(z, ϕ(t, z, µ), µ)σT

0 (x, u
i, µ)]⟩, (A.9)

where the control law ϕ in Φϕ has been used by other agents.

Remark A.2. The value function V corresponds to a representative agent Ai interacting with an infinite

population.

Remark A.3. When σ and σ0 are constant matrices, Φϕ in (A.9) reduces to the simpler form Φ in

Section 2.

Appendix B: Preliminary lemmas and semi-symmetry property

Lemma B.1. Suppose the function ψ(x, y) from Rn × Rn to R has continuous partial derivatives

∂xyψ(x, y) and ∂yxψ(x, y), and denote h(x, y) = ∂xyψ(x, y). Then

∂yxψ(x, y) = (h(x, y))T , (B.1)

∂xyψ(y, x) = (h(y, x))T . (B.2)

Proof. The (i, j)-th entry in ∂xyψ(x, y) is ∂xiyjψ(x, y) and the (j, i)-th entry in ∂yxψ(x, y) is ∂yjxiψ(x, y).

Now (B.1) follows from Schwarz’s theorem [22]. Next (B.1) yields (B.2) by switching x and y.
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Lemma B.2. Let Σ̄ ∈ Rn×n be symmetric. Suppose ∂zyδµV (t, y, µ; z) and ∂yzδµV (t, y, µ; z) are con-

tinuous in (y, z). Then

Tr[∂zyδµV (t, y, µ; z)Σ̄] = Tr[∂yzδµV (t, y, µ; z)Σ̄], (B.3)

Tr[∂yzδµV (t, y, µ; z)Σ̄]|z=y = Tr[∂yzδµV (t, z, µ; y)Σ̄]|z=y. (B.4)

Proof. If D and Σ̄ are n× n matrices and Σ̄ is symmetric, then we have

Tr(DΣ̄) = Tr(Σ̄D) = Tr[(Σ̄D)T ] = Tr(DT Σ̄), (B.5)

which together with Lemma B.1 yields (B.3). Denote h(y, z) := ∂yzδµV (t, y, µ; z). By Lemma B.1,

∂yzδµV (t, z, µ; y) = (h(z, y))T , which combined with (B.5) implies (B.4).

Consider a continuous function ψ(t, s): Rc = [0, T ] × [0, c) → R, where c > 0. Define the partial

derivatives ∂tψ(t, s), ∂sψ(t, s) and ∂t∂sψ(t, s) on Rc, where each partial derivative is interpreted as a

one-sided derivative when we take ∂t (∂s, resp.) at t = 0 or t = T (at s = 0, resp.). For instance, for

0 ≤ t ≤ T , we have

∂sψ(t, 0) := lim
ϵ→0+

ψ(t, ϵ)− ψ(t, 0)

ϵ
.

The next lemma extends the symmetry property of second order partial derivatives in Schwarz’s

theorem [22] to the case of boundary points of a region. The proof uses essentially the same argument

as in [22, p.317] and is omitted here.

Lemma B.3. Suppose ψ satisfies the following conditions:

(i) The partial derivatives ∂tψ(t, s), ∂sψ(t, s), and ∂t∂sψ(t, s) exist on Rc.

(ii) ∂t∂sψ(t, s) is continuous at the point (t0, 0) for t0 ∈ [0, T ].

Then ∂s∂tψ(t0, 0) exists and ∂s∂tψ(t0, 0) = ∂t∂sψ(t0, 0).

Lemma B.4. Suppose V̂ (t, x, µ) is a function from [0, T ]×Rn ×P2(Rn) to R, satisfying the following

conditions:

(i) ∂tV̂ (t, x, µ), δµV̂ (t, x, µ; y) and ∂tδµV̂ (t, x, µ; y) exist and are jointly continuous in (t, x, µ) ∈
[0, T ]× Rn × P2(Rn) and (t, x, y, µ) ∈ [0, T ]× R2n × P2(Rn), respectively;

(ii) for each constant K > 0,

|δµV̂ (t, x, µ; y)|, |∂tδµV̂ (t, x, µ; y)| ≤ CK(1 + |y|2)

holds for all t ∈ [0, T ], x, y ∈ Rn, µ ∈ P2(Rn) whenever |x| ≤ K and W2(µ, δ0) ≤ K (equivalently,

⟨µ, |y|2⟩ ≤ K2), where CK is a constant depending on K.

Then the derivative δµ(∂tV̂ (t, x, µ))(y) exists, and moreover,

δµ(∂tV̂ (t, x, µ))(y) = ∂tδµV̂ (t, x, µ; y) (B.6)

for all t ∈ [0, T ], x, y ∈ Rn, µ ∈ P2(Rn).

Proof.

Step 1. We show the normalization property of ∂tδµV̂ (t, x, µ; y). By the normalization property of

δµV̂ , we have ⟨µ(dy), δµV̂ (t, x, µ; y)⟩ = 0, which implies

0 = ∂t⟨µ(dy), δµV̂ (t, x, µ; y)⟩ = ⟨µ(dy), ∂tδµV̂ (t, x, µ; y)⟩,

due to condition (ii) and an application of the dominated convergence theorem.
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Step 2. Let µ1 and µ2 both from P2(Rn) be fixed. For t ∈ [0, T ] and s ∈ [0, 1], set

ψ(t, s) := V̂ (t, x, µ1 + sν),

where ν = µ2 − µ1. We have

∂tψ(t, s) = ∂tV̂ (t, x, µ1 + sν) (B.7)

for (t, s) ∈ [0, T ]× [0, 1]. We proceed to check ∂sψ(t, s). Suppose s ∈ (0, 1). Then δµV̂ evaluated

at µ1 + sν gives

lim
ϵ↓0

ψ(t, s+ ϵ)− ψ(t, s)

ϵ
= ⟨ν(dy), δµV̂ (t, x, µ1 + sν; y)⟩.

Next, we have

lim
ϵ↓0

ψ(t, s− ϵ)− ψ(t, s)

−ϵ
=− lim

ϵ↓0

V̂ (t, x, µ1 + sν + ϵ(µ1 − µ2))− V̂ (t, x, µ1 + sν)

ϵ

=− ⟨(µ1 − µ2)(dy), δµV̂ (t, x, µ1 + sν; y)⟩
=⟨ν(dy), δµV̂ (t, x, µ1 + sν; y)⟩.

The second equality results from the definition of δµV̂ . We similarly obtain the one-sided deriva-

tive of ψ(t, ·) as ⟨ν(dy), δµV̂ (t, x µ1 + sν; y)⟩ at s = 0 and s = T . Therefore for all s ∈ [0, T ],

∂sψ(t, s) exists and

∂sψ(t, s) = ⟨ν(dy), δµV̂ (t, x, µ1 + sν; y)⟩. (B.8)

Subsequently, by (B.8), for each fixed t ∈ (0, T ), we have

∂t∂sψ(t, s) = ∂t⟨ν(dy), δµV̂ (t, x, µ1 + sν; y)⟩
= ⟨ν(dy), ∂tδµV̂ (t, x, µ1 + sν; y)⟩, s ∈ [0, T ], (B.9)

where the second equality results from condition (ii). We similarly obtain (B.9) for t = 0 and

t = T .

Step 3. As (t′, s′) → (t, s) ∈ [0, T ] × [0, 1], we may show W2(µ1 + s′ν, µ1 + sν) → 0 using [38,

Theorem 6.9], and therefore ∂tδµV̂ (t′, x, µ1 + s′ν; y) → ∂tδµV̂ (t, x, µ1 + sν; y) by condition (i).

Subsequently, ∂t∂sψ(t
′, s′) → ∂t∂sψ(t, s) by (B.9) and the dominated convergence theorem under

condition (ii). Hence ∂t∂sψ(t, s) is continuous in (t, s) ∈ [0, T ]× [0, 1]. Therefore by Lemma B.3,

∂s∂tψ(t, s) exists at each point (t, 0), t ∈ [0, T ], and moreover,

∂s∂tψ(t, 0) = ∂t∂sψ(t, 0) = ⟨ν(dy), ∂tδµV̂ (t, x µ1; y)⟩, (B.10)

where the second equality follows from (B.9). By (B.7) and (B.10), we have

lim
ϵ↓0

1

ϵ
[∂tV̂ (t, x, µ1 + ϵν)− ∂tV̂ (t, x, µ1)] = ∂s∂tψ(t, 0)

= ⟨ν(dy), ∂tδµV̂ (t, x µ1; y)⟩

for all µ1 ∈ P2(Rn). So δµ(∂tV̂ (t, x, µ1))(y) exists. Recalling Step 1, we obtain (B.6).

Proposition B.5. ([9]) Suppose that both δµψ(µ; y) and ψµµ(µ; y, z) exist and are jointly continuous

in their arguments and that for each K > 0, |δµψ(µ; y)|, |δµµψ(µ; y, z)| ≤ CK(1 + |y|2 + |z|2) holds for
all y, z ∈ Rn whenever µ satisfies W2(µ, δ0) ≤ K. Then

δµµψ(µ; y, z) = δµµψ(µ; z, y) + δµψ(µ; y)− δµψ(µ; z). (B.11)

The equality (B.11) will be called the semi-symmetry property of δµµψ and has been proved in [9]

for bounded derivatives. But the proof there can be easily adapted to the quadratic growth case.
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Appendix C: Proof of Theorem 3.6

It is clear that (3.21) satisfies the terminal condition (3.11). We will next differentiate both sides of

Equation (2.4) of V , and use further transformations to generate several equations. By adding up

these equations, we can verify the solution (3.21) for U .

C.1 The equation of V

We redisplay the master equation of V :

0 = ∂tV (t, x, µ) + Vx(t, x, µ)f
∗(t, x, µ)

+
1

2
Tr[Vxx(t, x, µ)(Σ + Σ0)] + L∗(t, x, µ)

+ ⟨µ(dz), ∂zδµV (t, x, µ; z)f∗(t, z, µ)⟩

+
1

2
⟨µ(dz),Tr[∂2zδµV (t, x, µ; z)(Σ + Σ0)]⟩

+ ⟨µ(dz),Tr[∂xzδµV (t, x, µ; z)Σ0]⟩

+
1

2
⟨µ⊗2(dzdw),Tr[∂zwδµµV (t, x, µ; z, w)Σ0]⟩,

where (t, x, µ) ∈ [0, T ]× Rn × P2(Rn).

C.2 The equation of ∂tδµV

Using xi within x = (x1, · · · , xn)T in place of t in Lemma B.4 and recalling the growth conditions of

CV , we can show

∂xδµV (t, x, µ; y) = (δµ∂xV (t, x, µ))(y), ∂2xδµV (t, x, µ; y) = (δµ∂
2
xV (t, x, µ))(y).

Taking measure differentiation of the master equation of V above and using y as the newly generated

variable, in view of Lemma B.4, we have

0 =∂tδµV (t, x, µ; y) (C.1)

+ ∂xδµV (t, x, µ; y)f∗(t, x, µ) + Vx(t, x, µ)δµf
∗(t, x, µ; y)

+
1

2
Tr[∂2xδµV (t, x, µ; y)(Σ + Σ0)] + δµL

∗(t, x, µ; y)

+ ⟨µ(dz), ∂zδµµV (t, x, µ; z, y)f∗(t, z, µ)⟩
+ ⟨µ(dz), ∂zδµV (t, x, µ; z)δµf

∗(t, z, µ; y)⟩

+
1

2
⟨µ(dz),Tr[∂2zδµµV (t, x, µ; z, y)(Σ + Σ0)]⟩

+ ⟨µ(dz),Tr[∂xzδµµV (t, x, µ; z, y)Σ0]⟩

+
1

2
⟨µ⊗2(dzdw),Tr[∂zwδµµµV (t, x, µ; z, w, y)Σ0]⟩,

+ ∂yδµV (t, x, µ; y)f∗(t, y, µ) + χ1(t, x, µ)

+
1

2
Tr[∂2yδµV (t, x, µ; y)(Σ + Σ0)] + χ2(t, x, µ)

+ Tr[∂xyδµV (t, x, µ; y)Σ0] + χ3(t, x, µ)

+
1

2
⟨µ(dw),Tr[∂ywδµµV (t, x, µ; y, w)Σ0]⟩+ χ4(t, x, µ)

+
1

2
⟨µ(dz),Tr[∂zyδµµV (t, x, µ; z, y)Σ0]⟩+ χ5(t, x, µ).

In the above, the measure differentiation can get inside integration by dominated convergence.
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C.3 The summed equation

By switching variables in (C.1) and integration, we obtain two more equations for ∂t⟨µ(dy),
δµV (t, y, µ;x)⟩ and ∂t⟨µ(dy), δµV (t, y, µ; y)⟩, respectively. We have

0 =∂tV (t, x, µ) + ∂tM(t, µ) + ∂t⟨µ(dy), δµV (t, y, µ;x)⟩ − ∂t⟨µ(dy), δµV (t, y, µ; y)⟩
+ΨV ,

where

ΨV := Vx(t, x, µ)f
∗(t, x, µ)

+
1

2
Tr[Vxx(t, x, µ)(Σ + Σ0)] + L∗(t, x, µ)

+ ⟨µ(dz), ∂zδµV (t, x, µ; z)f∗(t, z, µ)⟩

+
1

2
⟨µ(dz),Tr[∂2zδµV (t, x, µ; z)(Σ + Σ0)]⟩

+ ⟨µ(dz),Tr[∂xzδµV (t, x, µ; z)Σ0]⟩

+
1

2
⟨µ⊗2(dzdw),Tr[∂zwδµµV (t, x, µ; z, w)Σ0]⟩

+ ⟨µ(dy), ∂yδµM(t, µ; y)f∗(t, y, µ)⟩

+
1

2
⟨µ(dy),Tr[∂2yδµM(t, µ; y)(Σ + Σ0)]⟩

+
1

2
⟨µ⊗2(dydz),Tr[∂yzδµµM(t, µ; y, z)Σ0]⟩

+ ⟨µ⊗2(dydz), ∂yδµV (t, z, µ; y)[δµf
∗(t, y, µ; z)− δµf

∗(t, y, µ; y)]⟩

+
1

2
⟨µ⊗2(dydw),Tr{[∂yzδµµV (t, w, µ; y, z)]|z=yΣ}⟩,

+ ⟨µ(dy), ∂yδµV (t, y, µ;x)f∗(t, y, µ) + ∂yV (t, y, µ)δµf
∗(t, y, µ;x)⟩

+
1

2
⟨µ(dy),Tr[∂2yδµV (t, y, µ;x)(Σ + Σ0)]⟩

+ ⟨µ(dy), δµL∗(t, y, µ;x)⟩
+ ⟨µ⊗2(dydz), ∂zδµµV (t, y, µ; z, x)f∗(t, z, µ)⟩
+ ⟨µ⊗2(dydz), ∂zδµV (t, y, µ; z)δµf

∗(t, z, µ;x)⟩

+
1

2
⟨µ⊗2(dydz),Tr[∂2zδµµV (t, y, µ; z, x)(Σ + Σ0)]⟩

+ ⟨µ⊗2(dydz),Tr[∂yzδµµV (t, y, µ; z, x)Σ0]⟩

+
1

2
⟨µ⊗3(dydzdw),Tr[∂zwδµµµV (t, y, µ; z, w, x)Σ0]⟩,

+ ⟨µ(dy), ∂xδµV (t, y, µ;x)f∗(t, x, µ)⟩

+
1

2
⟨µ(dy),Tr[∂2xδµV (t, y, µ;x)(Σ + Σ0)]⟩

+ ⟨µ(dy),Tr[∂yxδµV (t, y, µ;x)Σ0]⟩

+
1

2
⟨µ⊗2(dwdy),Tr[∂xwδµµV (t, y, µ;x,w)Σ0]⟩

+
1

2
⟨µ⊗2(dzdy),Tr[∂zxδµµV (t, y, µ; z, x)Σ0]⟩

− ⟨µ(dy), [∂yδµV (t, y, µ;x)]|x=yf
∗(t, y, µ) + Vy(t, y, µ)δµf

∗(t, y, µ; y)⟩
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− 1

2
⟨µ(dy),Tr{[∂2yδµV (t, y, µ;x)]|x=y(Σ + Σ0)}⟩

− ⟨µ(dy), δµL∗(t, y, µ; y)⟩
− ⟨µ⊗2(dydz), ∂zδµµV (t, y, µ; z, y)f∗(t, z, µ)⟩
− ⟨µ⊗2(dydz), ∂zδµV (t, y, µ; z)δµf

∗(t, z, µ; y)⟩

− 1

2
⟨µ⊗2(dydz),Tr[∂2zδµµV (t, y, µ; z, y)(Σ + Σ0)]⟩

− ⟨µ⊗2(dydz),Tr{[∂yzδµµV (t, y, µ; z, x)]|x=yΣ0}⟩

− 1

2
⟨µ⊗3(dydzdw),Tr[∂zwδµµµV (t, y, µ; z, w, y)Σ0]⟩,

− ⟨µ(dy), [∂xδµV (t, y, µ;x)]|x=yf
∗(t, y, µ)⟩

− 1

2
⟨µ(dy),Tr{[∂2xδµV (t, y, µ;x)]|x=y(Σ + Σ0)}⟩

− ⟨µ(dy),Tr{[∂yxδµV (t, y, µ;x)]|x=yΣ0}⟩

− 1

2
⟨µ⊗2(dwdy),Tr{[∂xwδµµV (t, y, µ;x,w)]|x=yΣ0}⟩

− 1

2
⟨µ⊗2(dzdy),Tr{[∂zxδµµV (t, y, µ; z, x)]|x=yΣ0}⟩.

We have split the above sum into several groups for ease of reading.

On the other hand, using the expressions (3.9) and (3.21) for U and U , we evaluate the right hand

side of (3.10), excluding ∂tU , to get the sum

ΨU :=

9∑
k=1

Gk,

with the components:

G1 := Vx(t, x, µ)f
∗(t, x, µ) + ⟨µ(dy), ∂xδµV (t, y, µ;x)⟩f∗(t, x, µ),

G2 :=
1

2
Tr{[Vxx(t, x, µ) + ⟨µ(dy), ∂2xδµV (t, y, µ;x)⟩](Σ + Σ0)}+ L∗(t, x, µ),

G3 := ⟨µ(dy), [∂yδµV (t, x, µ; y) + ∂yδµM(t, µ; y)]f∗(t, y, µ)⟩
+ ⟨µ⊗2(dwdy), [∂yδµµV (t, w, µ;x, y)− ∂yδµµV (t, w, µ;w, y)]f∗(t, y, µ)⟩
+ ⟨µ(dy), ∂y[δµV (t, y, µ;x)− δµV (t, y, µ; y)]f∗(t, y, µ)⟩,

G4 :=
1

2
⟨µ(dy),Tr{[∂2yδµV (t, x, µ; y) + ∂2yδµM(t, µ; y)](Σ + Σ0)}⟩

+
1

2
⟨µ⊗2(dwdy),Tr{[∂2yδµµV (t, w, µ;x, y)− ∂2yδµµV (t, w, µ;w, y)](Σ + Σ0)}⟩

+
1

2
⟨µ(dy),Tr{∂2y [δµV (t, y, µ;x)− δµV (t, y, µ; y)](Σ + Σ0)}⟩,

G5 := ⟨µ(dy),Tr[∂xyδµV (t, x, µ; y)Σ0]⟩+ ⟨µ⊗2(dwdy),Tr[∂xyδµµV (t, w, µ;x, y)Σ0]⟩
+ ⟨µ(dy),Tr[∂xyδµV (t, y, µ;x)Σ0]⟩,

G6 :=
1

2

〈
µ⊗2(dydz),Tr

{
∂yz

[
δµµV (t, x, µ; y, z) + δµµM(t, µ; y, z)

+ ⟨µ(dw), δµµµV (t, w, µ;x, y, z)− δµµµV (t, w, µ;w, y, z)⟩
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+ δµµV (t, z, µ;x, y)− δµµV (t, z, µ; z, y)

+ δµµV (t, y, µ;x, z)− δµµV (t, y, µ; y, z)
]
Σ0

}〉
,

G7 := ⟨µ(dy), δµL∗(t, y, µ;x)− δµL
∗(t, y, µ; y)⟩,

G8 := ⟨µ(dy), ∂y[V (t, y, µ) + ⟨µ(dw), δµV (t, w, µ; y)⟩]
· [δµf∗(t, y, µ;x)− δµf

∗(t, y, µ; y)]⟩,

G9 :=
1

2

〈
µ(dy),Tr

{[
∂yzδµV (t, y, µ; z) + ∂yzδµV (t, z, µ; y)

+ ⟨µ(dw), ∂yzδµµV (t, w, µ; y, z)⟩
]∣∣

z=y
Σ
}〉
.

We have followed Section 1.2 for the notation of partial derivatives. For instance, in the last line of

G3, ∂y acts on two places of δµV (t, y, µ; y).

C.4 Reduction to simpler equations

It suffices to show

ΨV = ΨU . (C.2)

Both sides of (C.2) share many common components. We can cancel out G1, G2, G7 and G8 from both

sides. We further cancel out G5 from both sides after rewriting G5 using (B.3) and the semi-symmetry

property (B.11). Subsequently, we further cancel out several terms in G3, G4, G6 and G9 that are

shared by ΨV . Now to show (C.2), it suffices to show

Ψ1
V = Ψ1

U , (C.3)

where

Ψ1
V :=⟨µ⊗2(dydz), ∂zδµµV (t, y, µ; z, x)f∗(t, z, µ)⟩

+
1

2
⟨µ⊗2(dydz),Tr[∂2zδµµV (t, y, µ; z, x)(Σ + Σ0)]⟩

+ ⟨µ⊗2(dydz),Tr[∂yzδµµV (t, y, µ; z, x)Σ0]⟩

+
1

2
⟨µ⊗3(dydzdw),Tr[∂zwδµµµV (t, y, µ; z, w, x)Σ0]⟩

− ⟨µ(dy), [∂yδµV (t, y, µ;x)]|x=yf
∗(t, y, µ)⟩

− 1

2
⟨µ(dy),Tr{[∂2yδµV (t, y, µ;x)]|x=y(Σ + Σ0)}⟩

− ⟨µ⊗2(dydz), ∂zδµµV (t, y, µ; z, y)f∗(t, z, µ)⟩

− 1

2
⟨µ⊗2(dydz),Tr{∂2zδµµV (t, y, µ; z, y)(Σ + Σ0)}⟩

− ⟨µ⊗2(dydz),Tr{[∂yzδµµV (t, y, µ; z, x)]|x=yΣ0}⟩

− 1

2
⟨µ⊗3(dydzdw),Tr[∂zwδµµµV (t, y, µ; z, w, y)Σ0]⟩,

− ⟨µ(dy), [∂xδµV (t, y, µ;x)]|x=yf
∗(t, y, µ)⟩

− 1

2
⟨µ(dy),Tr{[∂2xδµV (t, y, µ;x)]|x=y(Σ + Σ0)}⟩

− ⟨µ(dy),Tr{[∂yxδµV (t, y, µ;x)]|x=yΣ0}⟩
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− 1

2
⟨µ⊗2(dwdy),Tr{[∂xwδµµV (t, y, µ;x,w)]|x=yΣ0}⟩

− 1

2
⟨µ⊗2(dzdy),Tr{[∂zxδµµV (t, y, µ; z, x)]|x=yΣ0}⟩

and

Ψ1
U := G1

3 +G1
4 +G1

6 +G1
9,

with the components:

G1
3 := ⟨µ⊗2(dwdy), [∂yδµµV (t, w, µ;x, y)− ∂yδµµV (t, w, µ;w, y)]f∗(t, y, µ)⟩

− ⟨µ(dy), ∂y[δµV (t, y, µ; y)]f∗(t, y, µ)⟩,

G1
4 :=

1

2
⟨µ⊗2(dwdy),Tr{[∂2yδµµV (t, w, µ;x, y)− ∂2yδµµV (t, w, µ;w, y)](Σ + Σ0)}⟩

− 1

2
⟨µ(dy),Tr{∂2y [δµV (t, y, µ; y)](Σ + Σ0)}⟩,

G1
6 :=

1

2

〈
µ⊗2(dydz),Tr

{
∂yz

[
⟨µ(dw), δµµµV (t, w, µ;x, y, z)− δµµµV (t, w, µ;w, y, z)⟩

+ δµµV (t, z, µ;x, y)− δµµV (t, z, µ; z, y)

+ δµµV (t, y, µ;x, z)− δµµV (t, y, µ; y, z)
]
Σ0

}〉
,

G1
9 :=

1

2

〈
µ(dy),Tr

{[
∂yzδµV (t, y, µ; z) + ∂yzδµV (t, z, µ; y)

]∣∣∣
z=y

Σ
}〉
.

We use the relation

∂y[δµV (t, y, µ; y)] = ∂y[δµV (t, y, µ;x)]x=y + ∂x[δµV (t, y, µ;x)]x=y

and next the semi-symmetry property (B.11) of δµµV to rewrite G1
3. This eliminates G1

3 as a common

part of both sides of (C.3). Now we only need to show

Ψ2
V = Ψ2

U , (C.4)

where

Ψ2
V :=

1

2
⟨µ⊗2(dydz),Tr[∂2zδµµV (t, y, µ; z, x)(Σ + Σ0)]⟩

+ ⟨µ⊗2(dydz),Tr[∂yzδµµV (t, y, µ; z, x)Σ0]⟩

+
1

2
⟨µ⊗3(dydzdw),Tr[∂zwδµµµV (t, y, µ; z, w, x)Σ0]⟩

− 1

2
⟨µ(dy),Tr{[∂2yδµV (t, y, µ;x)]|x=y(Σ + Σ0)}⟩

− 1

2
⟨µ⊗2(dydz),Tr{∂2zδµµV (t, y, µ; z, y)(Σ + Σ0)}⟩

− ⟨µ⊗2(dydz),Tr{[∂yzδµµV (t, y, µ; z, x)]|x=yΣ0}⟩

− 1

2
⟨µ⊗3(dydzdw),Tr[∂zwδµµµV (t, y, µ; z, w, y)Σ0]⟩

− 1

2
⟨µ(dy),Tr{[∂2xδµV (t, y, µ;x)]|x=y(Σ + Σ0)}⟩

− ⟨µ(dy),Tr{[∂yxδµV (t, y, µ;x)]|x=yΣ0}⟩



Les Cahiers du GERAD G–2024–45 36

− 1

2
⟨µ⊗2(dwdy),Tr{[∂xwδµµV (t, y, µ;x,w)]|x=yΣ0}⟩

− 1

2
⟨µ⊗2(dzdy),Tr{[∂zxδµµV (t, y, µ; z, x)]|x=yΣ0}⟩

and

Ψ2
U := G1

4 +G1
6 +G1

9

with the components G1
4, G

1
6 and G1

9 taking the same form as in Ψ1
U .

We rewrite G1
4 using the semi-symmetry property (B.11) of δµµV and next the relation

∂2y [ψ(y, y)] = [∂xxψ(x, y) + ∂yyψ(x, y) + ∂xyψ(x, y) + ∂yxψ(x, y)]x=y.

Subsequently, we cancel out G1
4+G

1
9 as a common part of Ψ2

V and Ψ2
U . Then to show (C.4), it suffices

to show

Ψ3
V = G1

6, (C.5)

where G1
6 is the same as in Ψ1

U and

Ψ3
V :=⟨µ⊗2(dydz),Tr[∂yzδµµV (t, y, µ; z, x)Σ0]⟩

+
1

2
⟨µ⊗3(dydzdw),Tr[∂zwδµµµV (t, y, µ; z, w, x)Σ0]⟩

− ⟨µ⊗2(dydz),Tr{[∂yzδµµV (t, y, µ; z, x)]|x=yΣ0}⟩

− 1

2
⟨µ⊗3(dydzdw),Tr[∂zwδµµµV (t, y, µ; z, w, y)Σ0]⟩

− 1

2
⟨µ⊗2(dwdy),Tr{[∂xwδµµV (t, y, µ;x,w)]|x=yΣ0}⟩

− 1

2
⟨µ⊗2(dzdy),Tr{[∂zxδµµV (t, y, µ; z, x)]|x=yΣ0}⟩.

Using the semi-symmetry property (B.11) twice, we obtain

δµµµV (t, w, µ;x, y, z) =δµµµV (t, w, µ; y, z, x) + δµµV (t, w, µ; y, x)

− 2δµµV (t, w, µ; y, z) + δµµV (t, w, µ;x, z),

and subsequently,

∂yz[δµµµV (t, w, µ;x, y, z)− δµµµV (t, w, µ;w, y, z)]

= ∂yz[δµµµV (t, w, µ; y, z, x)− δµµµV (t, w, µ; y, z, w)].

Now to show (C.5), we only need to show

Ψ4
V = G2

6,

where

Ψ4
V :=⟨µ⊗2(dydz),Tr[∂yzδµµV (t, y, µ; z, x)Σ0]⟩

− ⟨µ⊗2(dydz),Tr{[∂yzδµµV (t, y, µ; z, x)]|x=yΣ0}⟩

− 1

2
⟨µ⊗2(dwdy),Tr{[∂xwδµµV (t, y, µ;x,w)]|x=yΣ0}⟩

− 1

2
⟨µ⊗2(dzdy),Tr{[∂zxδµµV (t, y, µ; z, x)]|x=yΣ0}⟩

and

G2
6 :=

1

2

〈
µ⊗2(dydz),Tr

{
∂yz

[
δµµV (t, z, µ;x, y)− δµµV (t, z, µ; z, y)

+ δµµV (t, y, µ;x, z)− δµµV (t, y, µ; y, z)
]
Σ0

}〉
.
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After transforming the x-dependent terms of G2
6 using the semi-symmetry property (B.11) and

comparing with Ψ4
V to get rid of shared terms, to show (C.5), we only need to show

⟨µ⊗2(dydz),Tr{[∂yzδµµV (t, y, µ; z, x)]|x=yΣ0}⟩ (C.6)

+
1

2
⟨µ⊗2(dwdy),Tr{[∂xwδµµV (t, y, µ;x,w)]|x=yΣ0}⟩

+
1

2
⟨µ⊗2(dzdy),Tr{[∂zxδµµV (t, y, µ; z, x)]|x=yΣ0}⟩

=
1

2

〈
µ⊗2(dydz),Tr{∂yz[δµµV (t, z, µ; z, y) + δµµV (t, y, µ; y, z)]Σ0}

〉
+ ⟨µ⊗2(dydz), Tr[∂yzδµV (t, y, µ; z)Σ0]⟩.

After changing the notation on the LHS and expanding the partial differentiation on the RHS, (C.6)

is equivalently written as

⟨µ⊗2(dydz),Tr{[∂yzδµµV (t, y, µ; z, x)]|x=yΣ0}⟩

+
1

2
⟨µ⊗2(dydz),Tr{[∂yzδµµV (t, w, µ; y, z)]|w=yΣ0}⟩

+
1

2
⟨µ⊗2(dydz),Tr{[∂zyδµµV (t, w, µ; z, y)]|w=yΣ0}⟩

=
1

2

〈
µ⊗2(dydz),Tr

{(
[∂yzδµµV (t, x, µ; z, y)]|x=z + [∂yzδµµV (t, z, µ;x, y)]|x=z

+ [∂yzδµµV (t, x, µ; y, z)]|x=y + [∂yzδµµV (t, y, µ;x, z)]|x=y

)
Σ0

}〉
+ ⟨µ⊗2(dydz), Tr[∂yzδµV (t, y, µ; z)Σ0]⟩,

which, after cancellation of the last two terms of LHS and next rewriting the first term of LHS by the

semi-symmetry property (B.11), reduces to

⟨µ⊗2(dydz),Tr{∂yz[δµµV (t, y, µ;x, z) + δµV (t, y, µ; z)− δµV (t, y, µ;x)]Σ0}|x=y⟩

=
1

2

〈
µ⊗2(dydz),Tr

{(
[∂yzδµµV (t, z, µ;x, y)]|x=z + [∂yzδµµV (t, y, µ;x, z)]|x=y

)
Σ0

}〉
+ ⟨µ⊗2(dydz), Tr[∂yzδµV (t, y, µ; z)Σ0]⟩.

The above equality is equivalent to

⟨µ⊗2(dydz),Tr[∂yzδµµV (t, y, µ;x, z)Σ0]|x=y⟩

=
1

2

〈
µ⊗2(dydz),Tr

{(
[∂yzδµµV (t, z, µ;x, y)]|x=z + [∂yzδµµV (t, y, µ;x, z)]|x=y

)
Σ0

}〉
.

The last equality indeed holds in view of Lemma B.1 and equality (B.5). We conclude that (C.2)

holds, which completes the proof.

Appendix D: Derivation of Equations (3.10) and (3.14) for U and U

Let UN
soc(t, x

1, µ−1) be the social cost in (3.7) and (3.8). In the formal derivation below, we suppose

the functions behave well so that the small error terms o(ϵ) holds uniformly with respect to all N . We

have

UN
soc(t, x

1, µ−1) = E
{∫ t+ϵ

t

[
L∗(s,X1

s , µ
−1
s ) +

N∑
k=2

L∗(s,Xk
s , µ

−k
s )

]
ds (D.1)

+ UN (t+ ϵ,X1
t+ϵ, µ

−1
t+ϵ) + (N − 1)U(t+ ϵ, µ−1

t+ϵ)
}
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= L∗(t, x1, µ−1)ϵ+

N∑
k=2

L∗(t, xk, µ−k)ϵ+No(ϵ)

+ EUN (t+ ϵ,X1
t+ϵ, µ

−1
t+ϵ) + (N − 1)EU(t+ ϵ, µ−1

t+ϵ).

We make the expansion

N∑
k=2

L∗(s, xk, µ−k) =

N∑
k=2

L∗(s, xk, µ−1)

+

N∑
k=2

[⟨(µ−k − µ−1)(dy), δµL
∗(t, xk, µ−1; y)⟩+ o(1/N)]

=(N − 1)⟨µ−1(dy), L∗(t, y, µ−1)⟩

+

N∑
k=2

⟨(µ−k − µ−1)(dy), δµL
∗(t, xk, µ−1; y)⟩ (=: ξ1)

+ o(1),

where o(1) → 0 as N → ∞. We have

ξ1 =
1

N − 1

N∑
k=2

[δµL
∗(t, xk, µ−1;x1)− δµL

∗(t, xk, µ−1;xk)]

= ⟨µ−1(dy), δµL
∗(t, y, µ−1;x1)− δµL

∗(t, y, µ−1; y)⟩.

In the following we have such designated variables x, y, z as in the functions UN (t, x, µ),

∂µU
N (t, x, µ; y), ∂µµU

N (t, x, µ; y, z), δµU(t, µ; y) and δµµU(t, µ; y, z). Denote ∆µ−k := µ−k
t+ϵ − µ−k

for all 1 ≤ k ≤ N . Now we formally make the expansion

UN (t+ ϵ,X1
t+ϵ, µ

−1
t+ϵ)

=UN (t, x1, µ−1) + ∂tU
N (t, x1, µ−1)ϵ

+ ∂xU
N (t, x1, µ−1)f∗(t, x1, µ−1)ϵ+

1

2
Tr[∂2xU

N (t, x1, µ−1)(Σ + Σ0)]ϵ

+ ⟨∆µ−1(dy), δµU
N (t, x1, µ−1; y)⟩ (=: ξ2)

+ ⟨∆µ−1(dy), ∂xδµU
N (t, x1, µ−1; y)

· [σ0(W 0
t+ϵ −W 0

t ) + σ(W 1
t+ϵ −W 1

t )]⟩ (=: ξ3)

+
1

2
⟨∆µ−1(dy)∆µ−1(dz), δµµU

N (t, x1, µ−1; y, z)⟩ (=: ξ4)

+ o(ϵ).

We similarly have

U(t+ ϵ, µ−1
t+ϵ) = U(t, µ−1) + ∂tU(t, µ−1))ϵ

+ ⟨∆µ−1(dy), δµU(t, µ−1; y)⟩ (=: ξ5)

+
1

2
⟨∆µ−1(dy)∆µ−1(dz), δµµU(t, µ−1; y, z)⟩ (=: ξ6)

+ o(ϵ).

We have

Eξ2 =
1

N − 1
E

N∑
k=2

[δµU
N (t, x1, µ−1;Xk

t+ϵ)− δµU
N (t, x1, µ−1;xk)]
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=
1

N − 1

N∑
k=2

{
∂yδµU

N (t, x1, µ−1;xk)f∗(t, xk, µ−k)ϵ

+
1

2
Tr[∂2yδµU

N (t, x1, µ−1;xk)(Σ + Σ0)]ϵ+ o(ϵ)
}

= ϵ⟨µ−1(dy), ∂yδµU
N (t, x1, µ−1; y)f∗(t, y, µ−1)⟩

+ ϵ⟨µ−1(dy),
1

2
Tr[∂2yδµU

N (t, x1, µ−1; y)(Σ + Σ0)]⟩+ o(ϵ),

and

Eξ3 =
1

N − 1

N∑
k=2

{
[∂xδµU

N (t, x1, µ−1;Xk
t+ϵ)− ∂xδµU

N (t, x1, µ−1;xk)]

· [σ0(W 0
t+ϵ −W 0

t ) + σ(W 1
t+ϵ −W 1

t )]
}

= ⟨µ−1(dy), Tr[∂xyδµU
N (t, x1, µ; y)Σ0]⟩ϵ+ o(ϵ).

Next we have

ξ4 =
1

2(N − 1)2

∑
j,k≥2

[
δµµU

N (t, x1, µ−1, Xj
t+ϵ, X

k
t+ϵ)− δµµU

N (t, x1, µ−1, Xj
t , X

k
t+ϵ)

− δµµU
N (t, x1, µ−1, Xj

t+ϵ, X
k
t ) + δµµU

N (t, x1, µ−1, Xj
t , X

k
t )
]
,

and

Eξ4 =
1

2(N − 1)2
E

∑
j,k≥2

{
Tr

[
∂yzδµµU

N (t, x1, µ−1;xj , xk)

· (Xk
t+ϵ −Xk

t )(X
j
t+ϵ −Xj

t )
T
]
+ o(ϵ)

}
=

1

2(N − 1)2
E

∑
j,k≥2

{
Tr[∂yzδµµU

N (t, x1, µ−1;xj , xk)Σ0]ϵ+ o(ϵ)
}

+
1

2(N − 1)2
E
∑
k≥2

{
Tr[∂yzδµµU

N (t, x1, µ−1;xk, xk)Σ]ϵ+ o(ϵ)
}

=
1

2
⟨µ−1(dy)µ−1(dz), Tr[∂yzδµµU

N (t, x1, µ−1; y, z)Σ0]⟩ϵ

+
1

2(N − 1)
⟨µ−1(dy), Tr{[∂yzδµµUN (t, x1, µ−1; y, z)]|z=yΣ}⟩ϵ+ o(ϵ).

We have

Eξ5 =
1

N − 1
E

N∑
k=2

[δµU(t, µ−1;Xk
t+ϵ)− δµU(t, µ−1;xk)]

=
1

N − 1

N∑
k=2

{
∂yδµU(t, µ−1;xk)f∗(t, xk, µ−k)

+
1

2
Tr[∂2yδµU(t, µ−1;xk)(Σ + Σ0)]

}
ϵ+ o(ϵ)

=
1

N − 1

N∑
k=2

{
∂yδµU(t, µ−1;xk)f∗(t, xk, µ−1)

+
1

2
Tr[∂2yδµU(t, µ−1;xk)(Σ + Σ0)]

}
ϵ+ o(ϵ)
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+
1

N − 1

N∑
k=2

∂yδµU(t, µ−1;xk)

· [⟨(µ−k − µ−1)(dy), δµf
∗(t, xk, µ−1; y)⟩+ o(1/N)]ϵ

=
1

N − 1

N∑
k=2

{
∂yδµU(t, µ−1;xk)f∗(t, xk, µ−1)

+
1

2
Tr[∂2yδµU(t, µ−1;xk)(Σ + Σ0)]

}
ϵ

+
1

(N − 1)2

N∑
k=2

{
∂yδµU(t, µ−1;xk)

· [δµf∗(t, xk, µ−1;x1)− δµf
∗(t, xk, µ−1;xk)]ϵ

}
+ o(1/N)ϵ+ o(ϵ).

So we have

(N − 1)Eξ5 =ϵ(N − 1)
〈
µ−1(dy), ∂yδµU(t, µ−1; y)f∗(t, y, µ−1)

+
1

2
Tr[∂2yδµU(t, µ−1; y)(Σ + Σ0)]

〉
+ ϵ⟨µ−1(dy), ∂yδµU(t, µ−1; y)[δµf

∗(t, y, µ−1;x1)− δµf
∗(t, y, µ−1; y)]⟩

+ o(1)ϵ+No(ϵ),

where o(1) → 0 as N → ∞.

Similarly, we have

Eξ6 =
1

2(N − 1)2
E

∑
j,k≥2

{
Tr

[
∂yzδµµU(t, µ−1;xj , xk)

· (Xk
t+ϵ −Xk

t )(X
j
t+ϵ −Xj

t )
T
]
+ o(ϵ)

}
=

1

2(N − 1)2
E

∑
j,k≥2

{
Tr[∂yzδµµU(t, µ−1;xj , xk)Σ0]ϵ+ o(ϵ)

}
+

1

2(N − 1)2
E
∑
k≥2

{
Tr[∂yzδµµU(t, µ−1;xk, xk)Σ]ϵ+ o(ϵ)

}
=

1

2
⟨µ−1(dy)µ−1(dz), Tr[∂yzδµµU(t, µ−1; y, z)Σ0]⟩ϵ

+
1

2(N − 1)
⟨µ−1(dy), Tr{[∂yzδµµU(t, µ−1; y, z)]|z=yΣ}⟩ϵ+ o(ϵ).

Therefore, we have

(N − 1)Eξ6 =
1

2
(N − 1)⟨µ−1(dy)µ−1(dz), Tr[∂yzδµµU(t, µ−1; y, z)Σ0]⟩ϵ

+
1

2
⟨µ−1(dy), Tr{[∂yzδµµU(t, µ−1; y, z)]|z=yΣ}⟩ϵ+No(ϵ).

Using the local expansion of the right hand side of (D.1) and next letting ϵ → 0, we obtain the

following equation

0 =L∗(t, x1, µ−1) + (N − 1)⟨µ−1(dy), L∗(t, y, µ−1)⟩
+ ⟨µ−1(dy), δµL

∗(t, y, µ−1;x1)− δµL
∗(t, y, µ−1; y)⟩
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+ ∂tU
N (t, x1, µ−1) + ∂xU

N (t, x1, µ−1)f∗(t, x1, µ−1)

+
1

2
Tr[∂2xU

N (t, x1, µ−1)(Σ + Σ0)]

+ ⟨µ−1(dy), ∂yδµU
N (t, x1, µ−1; y)f∗(t, y, µ−1)⟩

+
1

2
⟨µ−1(dy), Tr[∂2yδµU

N (t, x1, µ−1; y)(Σ + Σ0)]⟩

+ ⟨µ−1(dy), Tr[∂xyδµU
N (t, x1, µ; y)Σ0]⟩

+
1

2
⟨µ−1(dy)µ−1(dz), Tr[∂yzδµµU

N (t, x1, µ−1; y, z)Σ0]⟩

+
1

2(N − 1)
⟨µ−1(dy), Tr{[∂yzδµµUN (t, x1, µ−1; y, z)]|z=yΣ}⟩

+ (N − 1)∂tU(t, µ−1)

+ (N − 1)⟨µ−1(dy), ∂yδµU(t, µ−1; y)f∗(t, y, µ−1)⟩

+
1

2
(N − 1)⟨µ−1(dy), Tr[∂2yδµU(t, µ−1; y)(Σ + Σ0)]⟩

+ ⟨µ−1(dy), ∂yδµU(t, µ−1; y)[δµf
∗(t, y, µ−1;x1)− δµf

∗(t, y, µ−1; y)]⟩

+
1

2
(N − 1)⟨µ−1(dy)µ−1(dz), Tr[∂yzδµµU(t, µ−1; y, z)Σ0]⟩

+
1

2
⟨µ−1(dy), Tr{[∂yzδµµU(t, µ−1; y, z)]|z=yΣ}⟩+ o(1),

where o(1) → 0 as N → ∞.

Collecting all components with coefficient N − 1 together, we rewrite the above equation in the

form

0 =(N − 1)
{
∂tU(t, µ−1)) + ⟨µ−1(dy), L∗(t, y, µ−1)⟩

+ ⟨µ−1(dy), ∂yδµU(t, µ−1; y)f∗(t, y, µ−1)⟩

+
1

2
⟨µ−1(dy), Tr[∂2yδµU(t, µ−1; y)(Σ + Σ0)]⟩

+
1

2
⟨µ−1(dy)µ−1(dz), Tr[∂yzδµµU(t, µ−1; y, z)Σ0]⟩

}
+ ∂tU

N (t, x1, µ−1) + ∂xU
N (t, x1, µ−1)f∗(t, x1, µ−1)

+
1

2
Tr[∂2xU

N (t, x1, µ−1)(Σ + Σ0)] + L∗(t, x1, µ−1)

+ ⟨µ−1(dy), ∂yδµU
N (t, x1, µ−1; y)f∗(t, y, µ−1)⟩

+
1

2
⟨µ−1(dy), Tr[∂2yδµU

N (t, x1, µ−1; y)(Σ + Σ0)]⟩

+ ⟨µ(dy), Tr[∂xyδµUN (t, x1, µ; y)Σ0]⟩

+
1

2
⟨µ−1(dy)µ−1(dz), Tr[∂yzδµµU

N (t, x1, µ−1; y, z)Σ0]⟩

+
1

2(N − 1)
⟨µ−1(dy), Tr{[∂yzδµµUN (t, x1, µ−1; y, z)]|z=yΣ}⟩

+ ⟨µ−1(dy), δµL
∗(t, y, µ−1;x1)− δµL

∗(t, y, µ−1; y)⟩
+ ⟨µ−1(dy), ∂yδµU(t, µ−1; y)[δµf

∗(t, y, µ−1;x1)− δµf
∗(t, y, µ−1; y)]⟩

+
1

2
⟨µ−1(dy), Tr{[∂yzδµµU(t, µ−1; y, z)]|z=yΣ}⟩+ o(1).
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Provided that we have chosen the function U(t, µ) to satisfy (3.14), then the above equation further

implies

0 =∂tU
N (t, x1, µ−1) + ∂xU

N (t, x1, µ−1)f∗(t, x1, µ−1) (D.2)

+
1

2
Tr[∂2xU

N (t, x1, µ−1)(Σ + Σ0)] + L∗(t, x1, µ−1)

+ ⟨µ−1(dy), ∂yδµU
N (t, x1, µ−1; y)f∗(t, y, µ−1)⟩

+
1

2
⟨µ−1(dy), Tr[∂2yδµU

N (t, x1, µ−1; y)(Σ + Σ0)]⟩

+ ⟨µ(dy), Tr[∂xyδµUN (t, x1, µ; y)Σ0]⟩

+
1

2
⟨µ−1(dy)µ−1(dz), Tr[∂yzδµµU

N (t, x1, µ−1; y, z)Σ0]⟩

+
1

2(N − 1)
⟨µ−1(dy), Tr{[∂yzδµµUN (t, x1, µ−1; y, z)]|z=yΣ}⟩

+ ⟨µ−1(dy), δµL
∗(t, y, µ−1;x1)− δµL

∗(t, y, µ−1; y)⟩
+ ⟨µ−1(dy), ∂yδµU(t, µ−1; y)[δµf

∗(t, y, µ−1;x1)− δµf
∗(t, y, µ−1; y)]⟩

+
1

2
⟨µ−1(dy), Tr{[∂yzδµµU(t, µ−1; y, z)]|z=yΣ}⟩+ o(1).

Taking N → ∞, we obtain (3.10) as the limiting form of (D.2).
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