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McGill, Université du Québec à Montréal, ainsi que du Fonds de
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Legal deposit – Bibliothèque et Archives nationales du Québec, 2024
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Août 2024
Les Cahiers du GERAD
G–2024–47
Copyright © 2024 Aloise, Moine, Ribeiro, Jalbert
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activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract : Local search methods start from a feasible solution and improve it by successive minor
modifications until a solution that cannot be further improved is encountered. They are a common
component of most metaheuristics. Two fundamental local search strategies exist: first-improvement
and best-improvement. In this work, we perform an in-depth computational study using consistent
performance metrics and rigorous statistical tests on several classes of test problems considering differ-
ent initialization strategies and neighborhood structures to evaluate whether one strategy is dominant
over the other. The numerical results show that computational experiments previously reported in the
literature claiming the dominance of one strategy over the other for the TSP can not be extrapolated
to other problems. Still, our results reinforce the need for extensive experimentation to decide the
most appropriate strategy for each specific problem and context since a rule of thumb does not seem
to exist for deciding which local search strategy is the best in the general case.

Keywords : Local search, heuristics, first-improvement, best-improvement, combinatorial optimiza-
tion
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1 Motivation

Combinatorial optimization involves finding optimal solutions to problems defined over a discrete set

of feasible solutions. Any combinatorial optimization problem can be formulated as the constrained

minimization (resp. maximization) of some function f(x) : x ∈ F . Here, E is a discrete ground set

formed by the elements that form the problem solutions, F ⊆ 2E is the set of feasible solutions, and

f : 2E → R is the objective function Papadimitriou and Steiglitz (1982). A subset of the elements

of the ground set defines a solution x for this problem. We seek an optimal solution (or, simply, an

optimum) x∗ ∈ F such that f(x∗) ≤ f(x) (resp. f(x∗) ≥ f(x)), for all x ∈ F . The ground set E, the

objective function f , and the feasible set F are specific to each problem instance.

Opposed to exact methods, approximate methods or heuristics provide feasible solutions that are

not necessarily optimal. Approximate methods generally run faster than exact methods and can

handle larger problem instances. Local search methods start from a feasible solution and improve it

by successive minor modifications until a solution that cannot be further improved is encountered.

Although they often provide high-quality solutions whose values are close to those of the optimal

solutions, they can become prematurely trapped in low-quality, locally optimal solutions in some

situations.

A local search can be seen as a partial traversal of the solution space in this setting. Local search

methods start from any feasible solution and visit other (feasible or infeasible) solutions until a feasible

solution is found that can not be further improved. Local improvements are evaluated concerning

neighbor solutions that can be obtained by slight modifications applied to the current solution. Local

search methods are a common component of most metaheuristics. Yagiura and Ibaraki (2002) traced

the history of local search since the work of Croes (1958). Hoos and Stützle (2005) developed a thorough

study of the foundations and applications of stochastic local search, i.e., methods based on local

search that use randomization to generate or select candidate solutions for combinatorial optimization

problems. In their seminal work, Lin and Kernighan (1973) developed a local search heuristic based

on 2-opt and 3-opt exchanges for approximately solving the symmetric traveling salesman problem

(TSP), one of the best approaches for the problem.

Two fundamental local search strategies are first-improvement and best-improvement. At any

iteration of a first-improvement local search strategy, the algorithm moves from the current solution

to any neighbor with a better (i.e., improving) value for the objective function. In the case of a best-

improvement local search strategy, at any iteration, the algorithm moves from the current solution to

its best neighbor whenever the latter improves the former. Detailed pseudo-codes for implementing

these two fundamental strategies are presented in A. Given a problem instance and an initial solution,

these two strategies will not necessarily converge to the same local optimum.

However, there is no consensus in the literature regarding which local search strategy performs

better in a general role among first-improvement or best-improvement. Authors often compare first-

improvement and best-improvement versions of an implemented local search regarding aggregated

statistical metrics, such as the average and standard deviations of the obtained local optima, computed

across several initializations and data instances of a particular optimization problem.

Hansen and Mladenović (2006) presented an empirical study comparing the performance of first-

improvement and best-improvement strategies for the TSP using the 2-opt neighborhood. They per-

formed tests on randomly generated Euclidean and non-Euclidean TSP instances and a subset of

TSPLIB Reinelt (1991) instances. The main finding of their work is a dominance claim for the TSP

summarized in its abstract and quoted below:

“When applying the 2-opt heuristic to the travelling salesman problem, selecting the best

improvement at each iteration gives worse results on average than selecting the first im-

provement, if the initial solution is chosen at random. However, starting with ‘greedy’ or

‘nearest neighbor’ constructive heuristics, the best improvement is better. . . ”
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Their paper still provides conclusions on comparing the local search versions on other metrics than

solution cost.

In this work, and based on the literature review presented in the next section, we show that this

conclusion has been abusively extended to multiple contexts, many addressing other NP-hard problems.

In addition, we revisit the computational study of Hansen and Mladenović (2006) using more

rigorous statistical tests, replicating this analysis to additional test problems to verify the above claim

thoroughly. We show that different conclusions stand for some problems and neighborhoods when

the strategy opposed to that pointed out by the claim prevails. In particular, we show that the

conclusions of Hansen and Mladenović (2006) were biased using an inappropriate metric. We apply a

more appropriate one in our computational study, leading to more consistent results.

The remainder of the paper is organized as follows. Section 2 tracks the impact of the dominance

claim of Hansen and Mladenović (2006) in the specialized literature. Section 3 discusses the metric

used in their computational experiments and proposes a more appropriate and consistent metric.

Section 4 describes the setup of our computational experiments and statistical tests. The computational

experiments performed in Section 5 show that although the dominance claim could be confirmed

for the TSP using the 2-opt neighborhood, it was not confirmed for other classes of test problems.

Consequently, it cannot be asserted that any of the best-improvement or first-improvement strategies

generally prevails over the other based solely on the nature of the initialization. Concluding remarks

are drawn in the last section.

2 Literature review

The article of Hansen and Mladenović (2006) has been very influential in the combinatorial optimization

literature, with 158 citations according to Google Scholar as of January 31, 2024. Among these, 37

directly mention the dominance claim of Hansen and Mladenović (2006), which asserts the prevalence

of one local search strategy over the other depending on initialization. Furthermore, many of these

articles have arbitrarily extended the dominance claim to other problems beyond the TSP. However,

the appropriation of this claim varies among the citing works. We classify these citations into three

groups:

Group A Manuscripts that use the dominance claim to choose a local search version (first-improvement

or best-improvement) without computational testing.

Group B Manuscripts that mention the dominance claim but perform their experiments to determine

which local search strategy is better.

Group C Manuscripts that mention the dominance claim but do not present computational experi-

ments concerning the two local search strategies.

We found 13 manuscripts in group A, 13 in group B, and 11 in group C. We discarded the

remaining 121 manuscripts since they cited Hansen and Mladenović (2006) without mentioning the

dominance claim. Nonetheless, it is noteworthy that they also refer the reader to that paper, drawing

attention to the dominance claim under closer scrutiny here.

Table 1 details the broad spectrum of application domains influenced by Hansen and Mladenović

(2006). These papers tackle varied NP-hard combinatorial optimization problems. Notably, a large

parcel of the works in this table relate to routing problems akin to the TSP: many papers in groups A

and B also use the 2-opt neighborhood to exploit the search space.

The dominance claim directly influences the manuscripts in the group A, and they do not even

perform any comparative studies to check its validity. Papers in group B perform some comparative
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Table 1: Addressed optimization problems by group.

Group Application domain
2-opt neighborhood Other neighborhoods

A TSP and routing Dawid (2008); Tang
(2008), location and distribution Lopes
et al. (2016); Turan et al. (2017)

Scheduling Abderrahim et al. (2020), data
mining Costa et al. (2017); Pereira et al.
(2018); Pereira (2017) bin packing prob-
lems Goos et al. (2020); Sánchez-Oro et al.
(2017), Portfolio optimization Akbay et al.
(2020), and queuing systems Wood (2011)

B TSP and routing Amaral et al. (2021);
Babin et al. (2007); Becker et al.
(2023); Irnich et al. (2006); Mjirda
et al. (2016); Nascimento Silva et al.
(2020)

Location Mladenović et al. (2019), data
mining Mladenović et al. (2016), bi-
nary quadratic programming Drugan and
Thierens (2012), graph theory Brimberg
et al. (2009), project management Yassine
et al. (2013), and scheduling Hackl (2018)

C TSP and routing Almoustafa (2013); Bon-
toux (2008); Erdelić and Carić (2019), lo-
cation Brimberg and Salhi (2019), pack-
ing Rajab (2012), reinforcement learning
da Costa et al. (2021), and scheduling
Bougrine et al. (2017); Tari et al. (2021)

experiments, with results that sometimes contradict the dominance claim: four out of the 13 articles

contradicted it, including two of them using the 2-opt neighborhood. Mjirda et al. (2016), in particular,

pointed out that the claim in Hansen and Mladenović (2006) possibly does not hold for other problems

or algorithms. However, a deeper investigation was never carried out, and many authors still take this

claim for granted.

Finally, although the manuscripts in group C do not involve computational experiments concerning

the dominance claim, they propagate the conclusion presented in Hansen and Mladenović (2006),

potentially influencing other authors about the best local search strategy to choose. More than 2000

articles cite the manuscripts in groups A, B, and C according to Google Scholar as of January 2024.

3 Choice of a comparison metric

In this section, we discuss the choice of an appropriate metric to compare the relative performance

of the first-improvement and best-improvement local search strategies when both use the same initial

solution. We define the following notation:

• xinit: the initial solution used by both strategies.

• xBI : a locally optimal solution found by the best-improvement strategy.

• xFI : a locally optimal solution found by the first-improvement strategy.

• f(x): the objective function value of solution x.

We first discuss the metric used by Hansen and Mladenović (2006), defined as

improv1(xBI , xFI) =
f(xBI)− f(xFI)

f(xFI)
, (1)

which measures the difference (positive or negative) between the costs of the solutions obtained by

the two strategies, normalized by the cost of the solution obtained by the first-improvement strategy.

This value is then averaged in Hansen and Mladenović (2006) over the total number of runs in each

particular experiment to claim that one strategy outperforms the other.
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However, we argue that this normalization choice is rather arbitrary. Let us suppose that the

improvement between xBI and xFI is computed instead as

improv′1(xBI , xFI) =
f(xBI)− f(xFI)

f(xBI)
, (2)

i.e., with f(xBI) replacing f(xFI) in the denominator of equation (1) as the normalization factor.

We now suppose that first-improvement and best-improvement local search strategies were applied

to five distinct initial solutions. The costs of the local minima obtained for each of the initial solutions

are 5, 3, 4, 3, and 3 by first-improvement, and 4, 3, 4, 5, and 2 by best-improvement. The average val-

ues of improv1 and improv′1 computed over the five runs are +0.027 and −0.070, respectively. Thus, a

positive value of improv1 suggests that, on average, first-improvement outperforms best-improvement,

while a negative value of improv′1 indicates the opposite – i.e., on average, best-improvement outper-

forms first-improvement.

The arbitrariness of the denominator choice and the sensitivity of the conclusion to that choice

indicate the inadequacy of this metric. Therefore, we use in our study another metric commonly used

in the literature to assess the relative performance of the solutions obtained by local search methods,

namely:

improv2(xBI , xFI) =
f(xBI)− f(xFI)

f(xinit)
. (3)

This metric gives the improvement (or deterioration) yielded by xBI over xFI concerning the cost of

the initial solution. It is not arbitrary in the sense that neither of the solution strategies biases the

normalization. Thus, the two strategies are compared on a standard basis, i.e., the cost of the same

initial solution used for both.

4 Experimental setup

To further investigate the dominance claim in Hansen and Mladenović (2006), we devised an extended

computational experiment and a deeper statistical analysis of the results obtained. These experiments

consider not only the TSP as in Hansen and Mladenović (2006) but also three distinct NP-hard

combinatorial problems: the weighted MAX-SAT (wMAX-SAT) Krentel (1988), the minimum sum

of squares clustering (MSSC) Aloise et al. (2009), and the single-machine total-weighted tardiness

(SMTWTP) Du and Leung (1990) problems. In this section, we present (i) a concise description

of these three problems, as well as the neighborhoods explored in the associated local searches; (ii)

the different tested initialization methods; (iii) the problem instances used in our study, and (iv) the

description of the experiments and statistical tests performed to evaluate the results.

4.1 Problems and neighborhoods

4.1.1 Traveling salesman problem

Let G = (V,E) be a graph with node set V = {1, . . . , n} and edge set E ⊆ V × V . A non-negative

length di,j is associated with each existing edge (i, j) ∈ E. A Hamiltonian cycle (or a tour) is a cycle

that visits all nodes of G exactly once. The traveling salesman problem (TSP) involves finding a

minimum length tour of G. The length (or cost) of a feasible TSP solution is computed simply by

summing up the lengths of its edges.

The 2-opt neighborhood for the TSP is defined by replacing any pair of nonadjacent edges of a

tour with the unique pair of edges that recreates a Hamiltonian cycle. Figure 1(a) illustrates a tour

in a graph with |V | = 8 nodes. Figure 1(b) depicts one of the solutions in its 2-opt neighborhood,

obtained by replacing the pair of edges (5,6) and (7,8) with the new edges (5,7) and (6,8). The number
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(a) TSP tour on a graph with |V | = 8.
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(b) Solution in the 2-opt neighborhood.

Figure 1: Illustration of a neighbor in the 2-opt neighborhood for the TSP.

of potential solutions in the 2-opt neighborhood amounts to O(|V |2), corresponding to the exchange

of all possible pairs of edges.

In this work, we additionally explore the 3-opt neighborhood Lin (1965) for the TSP. This neighbor-

hood is formed by all tours that can be obtained by removing any three edges from a tour, subsequently

creating a new, different tour by adding three different edges that reconnect the tour. Figure 2(a) il-

lustrates the same previously shown tour in a graph with |V | = 8 nodes. Figure 2(b) depicts one of the

solutions in its 3-opt neighborhood, obtained by replacing edges (3,4), (5,6), and (7,8) with the new

edges (3,5), (4,7), and (6,8). We note that the number of potential solutions in the 3-opt neighborhood

increases to O(|V |3), corresponding to all possible choices of triples of edges to be removed.
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(a) TSP tour on a graph with |V | = 8.
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(b) Solution in the 3-opt neighborhood.

Figure 2: Illustration of a neighbor in the 3-opt neighborhood for the TSP.

4.1.2 Weighted MAX-SAT

Given the sets X = {x1, . . . , xnSAT
} of boolean variables and C = {c1, . . . , cmSAT

} of clauses, where

each clause is a disjunction of literals (i.e., a variable or its complement), and weights wi associated

to each clause ci, i = 1, . . . ,mSAT , the weighted MAX-SAT problem (wMAX-SAT) consists in finding

an assignment of truth values to the variables in X such that the sum of the weights of the satisfied

clauses is maximized.
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In this work, the first-improvement and best-improvement local search strategies for wMAX-SAT

are assessed with regard to exploring 1-opt neighbor solutions obtained by complementing the truth

value of one single variable, either from true to false or from false to true. Figure 3(a) illustrates

an instance of wMAX-SAT. Figure 3(b) exhibits a solution with a complete truth assignment, and

Figure 3(c) shows a 1-opt neighbor solution obtained by complementing the value of x1.

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2)
w1 = 2 w2 = 3 w3 = 5 w4 = 2

(a) wMAX-SAT instance.

(x1 = 0, x2 = 0, x3 = 1) : w2 + w4 = 5

(b) wMAX-SAT solution.

(x1 = 1, x2 = 0, x3 = 1) : w1 + w2 + w4 = 7

(c) Neighbor solution obtained by complementing the truth value of x1.

Figure 3: Illustration of a neighbor in the 1-opt neighborhood of wMAX-SAT.

4.1.3 Minimum sum of squares clustering

Clustering consists of partitioning a set P of data points into k subsets called clusters. In the minimum

sum of squares clustering problem (MSSC), the objective is to find k clusters that minimize the sum

of the squared Euclidean distances between each data point and its cluster centroid.

In this work, the analysis of the first-improvement and best-improvement local search strategies

for MSSC considers the same swap neighborhood explored by the H-means heuristic (see, e.g., Pereira

et al. (2018)). From a given MSSC solution, this neighborhood comprises all solutions obtained by

changing the cluster membership of individual data points. An illustrative example of a neighbor

solution in this neighborhood is shown in Figure 4, where point 3 changes its cluster membership.

3

4

5

7

8

1
2

6

(a) MSSC clustering solution.

4

5

7

8

1
2

3
6

(b) Solution in the H-means neighborhood.

Figure 4: Illustration of a neighbor in the H-means swap neighborhood of MSSC.
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4.1.4 Single-machine total-weighted tardiness problem

The single-machine total-weighted tardiness problem (SMTWTP) considers the scheduling of a set

J = {j1, . . . , jnJ
} of nJ independent jobs on one machine. Each job ji ∈ J is characterized by its

processing time pi, due date di, and weight wi. Given a schedule ϕ of the jobs in J , the tardiness of

job ji is computed as Ti = max{0, Ci − di}, where Ci refers to the completion time of job ji in ϕ. The

total weighted tardiness of ϕ, denoted WT (ϕ), is defined as WT (ϕ) =
∑nJ

i=1 wiTi.

In this work, we evaluate first-improving and best-improvement local search strategies for SMTWTP

within the exchange neighborhood Hoos and Stützle (2005), which encompasses neighbor solutions ob-

tained by exchanging the positions of any two jobs in a given schedule. Figure 5(a) presents an instance

of SMTWTP. Figure 5(b) illustrates an SMTWTP solution given by ϕ = {j2, j3, j4, j1}, whereas Fig-
ure 5(c) illustrates one of its neighbor solutions ϕ′ = {j2, j1, j4, j3} in the exchange neighborhood,

obtained by switching the positions of jobs j1 and j3 in the schedule.

j1 j2 j3 j4

pi 3 5 2 4
di 6 8 5 7
wi 2 3 1 2

(a) SMTWTP instance.

ϕ j2 j3 j4 j1 WT (ϕ)

Ci 5 7 11 14
Ti 0 2 4 8

wiTi 0 2 8 16 26

(b) SMTWTP solution.

ϕ′ j2 j1 j4 j3 WT (ϕ′)

Ci 5 8 12 14
Ti 0 2 5 9

wiTi 0 4 10 9 23

(c) Neighbor solution obtained by exchanging the positions of jobs j1 and j3.

Figure 5: Illustration of a neighbor in the exchange neighborhood of SMTWTP.

4.2 Initialization methods

The dominance claim of Hansen and Mladenović (2006) states that one local search strategy (first-

improvement or best-improvement) outperforms the other depending on how they are initialized. As

such, our computational experiments were performed, starting the search with random and greedy

solutions and assessing if that decision impacts the performance of the evaluated local search strategies.

We summarize below these two initialization approaches for each of the four problems considered in

this work and described in Section 4.1. Detailed pseudo-codes and codes in C++ for all initialization

methods are available in Moine (2024).

4.2.1 Traveling salesman problem

The random initialization sorts the n nodes at random, and outputs the TSP tour obtained by con-

necting the nodes in that order. The greedy method is the popular nearest neighbor heuristic for

the TSP Laporte (1992); Lawler et al. (1985); Rosenkrantz et al. (1977). It begins with a randomly

selected node, and adds the closest unvisited node to it. The latter becomes the incumbent and the

previous step is repeated, until all nodes are visited. The TSP tour is completed by returning to the

initial node.



Les Cahiers du GERAD G–2024–47 8

4.2.2 Weighted MAX-SAT

Random initialization for wMAX-SAT generates a solution by assigning truth values (true or false) to

the variables at random. The greedy initialization selects a variable to assign a truth value at each

iteration. The selected variable is the one that, after its truth value assignment (to either true or

false), maximizes the total weight of the yet-unsatisfied clauses that become satisfied.

4.2.3 Minimum sum of squares clustering

The random initialization generates a solution to MSSC by randomly assigning each data point to a

cluster. The greedy initialization is derived from the k-means++ heuristic of Arthur and Vassilvitskii

(2006). In our adapted method, the initial centroid is randomly chosen from the data points in set

P , and the other k − 1 centroids are selected iteratively. The method chooses the next centroid as

the farthest data point from its closest centroid among those already selected. Once all centroids are

determined, the remaining |P | − k data points are assigned to their nearest centroids.

4.2.4 Single-machine total-weighted tardiness problem

Random initial solutions for SMTWTP are obtained by random permutations of the jobs in J . Greedy

solutions are constructed by using the Modified Due Date (MDD) heuristic Hoos and Stützle (2005);

Bauer et al. (1999). This heuristic sequences jobs in ascending order of their modified due dates,

calculated as mddj = max{C + pj , dj}, where C represents the cumulative processing time of the

previously scheduled jobs in the partial solution.

4.3 Problem instances

We conducted our experiments on random instances of the four classes of test problems.

4.3.1 Traveling salesman problem

We followed the same scheme used in Hansen and Mladenović (2006) to generate the random TSP

instances. Nodes of the graph G = (V,E) were uniformly selected from a 100×100 square, with the

number of nodes |V | ∈ {20, 30, . . . , 150} ∪ {200, 250, . . . , 500} ∪ {500, 600, . . . , 1000}. For each value of

|V |, 1000 instances were generated.

4.3.2 Weighted MAX-SAT

We generated random weighted MAX-SAT instances for nSAT ∈ {50, 60, . . . , 90}∪ {100, 150, 200} and

mSAT ∈ {1000, 1200, . . . , 2000}, with clause integer weights sampled from the uniform distribution

in the interval [1,maxw], where maxw ∈ {50, 100}. The maximum number of literals per clause

was limited to three. For each combination of nSAT , mSAT and maxw, we generated 1000 distinct

instances.

4.3.3 Minimum sum-of-squares clustering

We randomly generated MSSC instances by sampling points from a 100×100 square. For each

number of points |P | ∈ {20, 30, . . . , 150} ∪ {200, 250 . . . , 500} ∪ {500, 600, . . . , 1000}, instances with

k ∈ {2, 4, 8, 16, 32, 64, 128, 256} clusters were created. Then, for each combination of |P | and k, 1000

instances were generated. We simulated the clusters in the 100× 100 square using the bivariate Gaus-

sian distribution. Let (µi : i = 1, . . . , k) denote the k bidimensional mean vectors uniformly sampled

on the 100× 100 square. Clusters were generated using Gaussian distributions N (µi, σ
2I2), where σ2
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is chosen from the interval (100, 250). When σ2 is small, clusters are well-defined; when σ2 is large,

clusters are much more diffuse.

4.3.4 Single-machine total-weighted tardiness problem

We created random SMTWTP instances using the generation scheme proposed

in Potts and Van Wassenhove (1985) for nJ ∈ {40, 50, . . . , 100}. For every job ji, an integer pro-

cessing time pi was sampled from a uniform distribution in [1, 100], and an integer processing weight

wi was generated uniformly from [1, 10]. Then, job due dates, for i = 1, . . . , nJ , were generated using

uniform distributions defined over different parametrized ranges. For a relative range of due dates rdd ∈
{0.2, 0.4, 0.6, 0.8, 1.0} and a given average tardiness factor tf ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, an integer due

date di is sampled from the uniform distribution in the interval [z×(1−tf−rdd/2), z×(1−tf+rdd/2)],

where z =
∑nJ

i=1 pi. A total of 1000 distinct instances were generated for each combination of nJ , rdd

and tf .

4.4 Description of the experiments

The finding of Hansen and Mladenović (2006) that resulted in their dominance claim presented in

Section 1 for the TSP (with the 2-opt neighborhood used for local search) suggested that the best-

improvement strategy yields better local optima compared to first-improvement when greedy initial-

izations are employed. Conversely, they claimed that the first-improvement strategy obtained better

solutions when random initializations were used. We have shown in Section 3 that the results on which

these claims were based have been computed using the inappropriate metric improv1 (1) that could

lead to biased conclusions.

To investigate and more accurately assess the existence (or not) of a significant difference (and

to what extent) between the quality of the local optima obtained by the first-improvement and best-

improvement strategies depending on the initialization method, we decided to perform deeper and

more extended experiments, applying more rigorous statistical tests using the improv2 metric (3). We

were motivated to obtain more conclusive results and shed more light on this relevant experimental

subject.

Each experiment performed and reported in this work refers to (i) a specific test problem (TSP,

wMAX-SAT, MSSC, and SMTWTP), and (ii) a specific initialization method (random or greedy). In

the experiments with the TSP, we also considered two different neighborhoods: 2-opt and 3-opt. In

what follows, we describe the organization of the experiments.

4.4.1 Traveling salesman problem

A statistical test is performed for each |V | ∈ {20, 30, . . . , 150}∪{200, 250, . . . , 500}∪{500, 600, . . . , 1000}.
Each test considers the results of the two local search strategies to compute the improv2 metric for each

of the 1000 random instances with the same number of nodes. Therefore, each experiment encompasses

27 statistical tests, one for each |V | value.

4.4.2 Weighted MAX-SAT

A statistical test is performed for each combination of nSAT ∈ {50, 60, . . . , 90} ∪ {100, 150, 200},
mSAT ∈ {1000, 1200, . . . , 2000}, andmaxw ∈ {50, 100}. Thus, each experiment encompasses 8×6×2 =

96 statistical tests, one for each combination of the above values.
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4.4.3 Minimum sum of squares clustering

A statistical test is performed for each pair of values of |P | and k, with |P | ∈ {20, 30, . . . , 150} ∪
{200, 250, . . . , 500} ∪ {500, 600, . . . , 1000}, and k = 2p, with p = {1, 2, . . . , 8}. Here, an experiment

encompasses 27× 8 = 216 statistical tests, one for each combination of |P | and k.

4.4.4 Single-machine total-weighted tardiness problem

A statistical test is performed for each combination of values of nJ ∈ {40, 50, . . . , 100}, rdd ∈
{0.2, 0.4, 0.6, 0.8, 1.0} and tf ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. As such, an experiment encompasses 7×5×5 =

175 statistical tests.

4.4.5 Statistical tests

We have shown in the previous sections that a statistical test is performed for a sample of values of

the improv2 metric obtained from each experiment with randomly generated instances. We want to

test the two following hypotheses: {
H0 : improv2 = 0,

H1 : improv2 ̸= 0;

where the null hypothesis H0 represents that the two local search strategies are equivalent, while

the alternative hypothesis H1 represents the opposite scenario. To test these hypotheses, the non-

parametric Wilcoxon signed-rank test (Wilcoxon, 1945) is employed. A p-value smaller than 5%

indicates a significant difference between the results obtained by the two local search strategies, while

a larger p-value does not provide conclusive evidence.

In addition to the p-value, the effect size of a test statistic can be computed to indicate how large

the observed effect is compared to random noise. In very large samples, the p-values can be confounded

due to their dependence on both the sample size and the effect size, whereas the effect size remains

independent of the sample size. In the Wilcoxon signed-rank test, the effect size can be computed by

dividing the observed test statistic by the square root of the sample size. According to Cohen (2013),

the effect size r for the Wilcoxon test can be categorized as in Table 2.

Table 2: Effect size r for the Wilcoxon test.

r Effect size

r < 0.1 no effect
0.1 ≤ r < 0.3 small effect
0.3 ≤ r < 0.5 medium effect

r ≥ 0.5 large effect

5 Results

In this section, we present the results of the experiments with the first-improvement and best-

improvement local search strategies applied to the problems described in Section 4.1.

We used tailored pie charts to present the experimental results and facilitate their interpretation.

Each pie chart is associated with one of the experiments reported in Section 4.4. In these experiments,

the first-improvement and best-improvement strategies are assessed according to (i) the test problem

(TSP, wMAX-SAT, MSSC, and SMTWTP), and (ii) the initialization method: random or greedy.
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Thus, there will be pie charts associated with different combinations of the test problems and initial-

ization methods. In addition, for the TSP, we also show results for two experiments with the 3-opt

neighborhood.

Each pie chart is formed by at most three crown sectors. The green sector represents the pro-

portion of statistical tests (with p-value < 0.05) where the first-improvement strategy outperformed

the best-improvement strategy local search. Contrarily, the red sector indicates the proportion of the

statistical tests where best-improvement prevailed over first-improvement. We recall that the domi-

nance claim Hansen and Mladenović (2006) states that first-improvement performs better for random

initial solutions, while best-improvement performs better for greedy initializations. Finally, the blue

sector (denoted by NC) indicates the fraction of non-conclusive cases, when the p-value of the used

statistical test is greater than or equal to 0.05, or when both local search strategies yield the same

final local optimum value, i.e., improv2 = 0, and consequently a statistical test cannot be performed.

The first two sector types, green and red, are further divided into two parts. Capital letters FI and

BI denote strong dominance of first-improvement and best-improvement, respectively, indicating the

proportion of statistical tests with medium and large effect sizes. Conversely, lowercase letters fi and

bi represent weak dominance of first-improvement and best-improvement, respectively, corresponding

to statistical tests exhibiting small effect sizes.

5.1 Traveling salesman problem experiments

5.1.1 Experiments with the 2-opt neighborhood

We first present the results obtained for the experiments with random instances of the TSP using the 2-

opt neighborhood for local search. These were the main results used in Hansen and Mladenović (2006)

to support the dominance claim, i.e., they broadly supported the claim that the first-improvement

strategy performed better than best-improvement when the local search was initialized from a random

solution and that the best-improvement strategy was preferred when initial solutions were given by a

greedy method (i.e., nearest-neighbor).

We obtained very similar conclusions for the TSP from the experiments with random and greedy

initializations up to this point, as illustrated in Figures 6(a) and 6(b). For the case of random initializa-

tion, 92.31% of the statistical tests confirmed that first-improvement outperforms best-improvement,

in accordance to the dominance claim (80.77% with medium to large effect size), whereas, for the

greedy initialization, the claim was confirmed by 100% of the statistical tests since best-improvement

was always the prevailing strategy.

5.1.2 Experiments with the 3-opt neighborhood

This experiment aims to assess the effect of using a different, larger neighborhood for local search

exploration in the case of the TSP. We use the same random instances considered in the experiment

with the 2-opt neighborhood.

Figure 7(a) shows that the change of neighborhood from 2-opt to 3-opt makes the dominance of

the first-improvement strategy more fragile when the random initialization method is used. Although

the experiment analyzed in Figures 6(a) showed that the first-improvement strategy outperformed the

best-improvement strategy for 92.31% of the statistical tests with the 2-opt neighborhood, this number

decreased to only 53.85% when the 3-opt neighborhood was used. However, the neighborhood change

did not have any effect in the outcome of the experiments with the greedy initialization, as shown in

Figure 7(b).
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Figure 6: Pie-charts for the TSP using the 2-opt neighborhood on random instances with the random and greedy initial-
ization methods.
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Figure 7: Pie-charts for the TSP using the 3-opt neighborhood on random instances with the random and greedy initial-
ization methods.

In conclusion, we observe in this section that the dominance claim of Hansen and Mladenović (2006)

was confirmed for the experiments with the TSP, not only with the 2-opt neighborhood considered in

the original work, but also with the 3-opt neighborhood.

5.2 Weighted MAX-SAT experiments

In this section and the next two, we present results from experiments on three combinatorial optimiza-

tion problems not addressed in the original work of Hansen and Mladenović (2006). Our goal here is

to verify the dominance claim when applied to other combinatorial problems.

Figures 8(a) and 8(b) present results for the experiments on wMAX-SAT random instances. The

results in Figure 8(a) shows that according to FI = 87.50% of the statistical tests, the random

initialization yields better local minima when the first-improvement strategy is used, compared to

best-improvement. Similarly, the results shown in Figure 8(b) shows that, with greedy initialization,
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the best-improvement strategy outperforms the first-improvement strategy in 75% of the statistical

tests. These results are aligned with the dominance claim of Hansen and Mladenović (2006).
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(b) wMAXSAT/greedy

Figure 8: Pie-charts for wMAX-SAT problem on random instances with the random and greedy initialization methods.

5.3 Minimum sum of squares clustering experiments

Figures 9(a) and 9(b) present results for the experiments on MSSC random instances generated with

Gaussian distributions using the random and greedy initialization methods. The results in Figure 9(a)

for random initializations appear to confirm the dominance claim with FI + fi = 86.21%. Contrarily,

when greedy initialization is used, the dominance claim is not confirmed as observed in Figure 9(b)

where BI + bi = 35.06%, thus revealing that the first-improvement strategy prevails for greedy initial-

ization as well.
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Figure 9: Pie-charts for MSSC problem on random instances with Gaussian distributed points with the random and greedy
initialization methods.

5.4 Single-machine total weighted tardiness problem experiments

Figures 10(a) and 10(b) exhibit results for the experiments on SMTWTP random instances. The

results in Figure 10(a) for random initialization contradict the dominance claim with BI = 71.43%,
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revealing that best-improvement outperforms first-improvement in this case. For greedy initialization,

the results in Figure 10(b) confirm the dominance claim by a small margin with BI = 45.71% versus

FI + fi = 40.57%, and NC = 13.71%.
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Figure 10: Pie-charts for the SMTWTP problem with the random and greedy initialization methods.

5.5 Summary of results

Table 3 summarizes the results of our experiments. They required a total of 27+96+216+175 = 514

statistical tests, computed after the execution of 514 × 1000 × 2 = 1, 028, 000 initialization methods

(random and greedy), and 1, 028, 000 × 2 = 2, 056, 000 local searches (first-improvement and best-

improvement versions).

Table 3: Summary of the experimental results.

Problem Initialization Best local search Dominance claim

TSP random first-improvement confirmed
greedy best-improvement confirmed

wMAX-SAT random first-improvement confirmed
greedy best-improvement confirmed

MSSC random first-improvement confirmed
greedy first-improvement refuted

SMTWTP random best-improvement refuted
greedy best-improvement confirmed

At this point, a question arises: what happens in the case of initial solutions produced by greedy

randomized heuristics? Such heuristics are widely used in metaheuristics as starting points for local

search procedures (see, e.g., Resende and Ribeiro (2016)). In that case, when one local search strategy

prevails over the other for both the random and greedy initializations (as for the MSSC and SMTWTP

problems), the greedy randomized variant is not expected to change the conclusion about the prevailing

local search strategy. However, the question arises when the prevailing strategy varies depending on

the initialization (as for the TSP and wMAX-SAT problems). For such situations, we recommend that

the users perform specific experiments for the greedy randomized initialization to verify which local

search strategy is the best regarding the quality of the obtained local optima. The results presented

in B show that, for the specific cases of the TSP and wMAX-SAT problems, the first-improvement

strategy outperforms best-improvement when greedy randomized initializations are used.
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6 Concluding remarks

In this work, we have revisited the work of Hansen and Mladenović (2006) on comparing first-

improvement and best-improvement local search strategies as components of local search methods

for the TSP using the 2-opt neighborhood. In particular, we addressed the validity of a dominance

claim raised in this article that states the best strategy is determined by the type of initialization

method used. It asserts that first-improvement should be preferred when starting the local search

from random initial solutions, while a best-improvement strategy should be employed when starting

the search from solutions produced by the nearest-neighbor greedy heuristic.

The work presented in Hansen and Mladenović (2006) has been highly influential in the literature,

with the dominance claim being recklessly extrapolated to various other NP-hard combinatorial op-

timization problems beyond the TSP. Here, through an extensive computational study supported by

rigorous statistical tests, we demonstrated that extrapolating this dominance claim to other classes of

problems is not recommended, as it might lead to less effective local searches.

The primary step of our methodology consisted in showing that the metric used in Hansen and

Mladenović (2006) to compare the performance of the two local search strategies was inappropriate

due to the arbitrariness of its normalization. Nonetheless, correcting this metric did not alter the

conclusions presented in Hansen and Mladenović (2006), as the dominance claim was confirmed by our

computational experiments for the TSP under the 2-opt neighborhood.

However, our numerical experiments with three other test problems revealed that the dominance

claim leads to the wrong choice of local search strategy for the minimum sum of squares clustering

problem when the search is initiated from solutions constructed by a greedy heuristic, and for the single-

machine total-weighted tardiness problem when the local search starts from random initial solutions.

Our recommendation is that users and researchers must perform specific experiments on local search

strategies using appropriated metrics and statistical significance tests. Based on our computational

experiments and observations, we believe that a rule of thumb does not exist for deciding which local

search strategy is the best.

Besides the initialization method, we believe that the choice of neighborhood may also impact

that decision. For example, our experiments with local search strategies for the TSP using the 3-opt

neighborhood revealed that the dominance claim was more fragile in the case of random initialization

than when the 2-opt neighborhood was used.

Last but not least, it is important to note that the quality of the local optima is only one of the

criteria to consider when deciding on a local search strategy. Indeed several other criteria may co-exist

such as the total computation time, or the robustness across different problem instances. Again, we

believe there are no shortcuts when evaluating these criteria. For example, first-improvement iterations

are typically faster since the search proceeds as soon as a better solution is found, but this can result

in a large number of iterations before reaching a local optimum.

A Fundamental local search strategies

In what follows, we discuss the first-improvement and best-improvement strategies for implementing

the neighborhood search.

At any iteration of an iterative improvement or first-improvement neighborhood search strategy,

the algorithm moves from the current solution to any neighbor with a better (i.e., improving) value

for the objective function. The new solution is the first improving solution identified along the neigh-
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borhood search. The pseudo-code in Algorithm 1 describes a local search procedure based on the

first-improvement strategy for a minimization problem. The search starts from a given initial solution

xinit. A flag initialized in line 1 indicates whether or not an improving solution was found. The loop in

lines 2 to 10 executes until replacing the current solution with a better neighbor becomes impossible.

The flag is reset to .FALSE. in line 3 at the beginning of a new iteration. The loop in lines 4 to 9 visits

every neighbor x′ ∈ N(x) of the current solution x until an improving solution is found. If the test in

line 5 detects that the neighbor x′ is better than the current solution x, then the latter is updated in

line 6. Furthermore, the flag is reset to .TRUE. in line 7, indicating that a better solution was found,

and a new iteration resumes. The algorithm returns the locally optimal solution x in line 11.

Algorithm 1: First-improvement local search for minimization

Input: Initial solution xinit

Output: Locally optimal solution xFI

1 improvement ← .TRUE.;
2 while improvement = .TRUE. do
3 improvement ← .FALSE.;
4 for every x′ ∈ N(xinit) while improvement = .FALSE. do
5 if f(x′) < f(xinit) then
6 xinit ← x′;
7 improvement ← .TRUE.;

8 end

9 end

10 end
11 return solution xFI = xinit.

In the case of a best-improvement local search strategy, at any iteration, the algorithm moves

from the current solution to its best neighbor whenever the latter improves the former. The pseudo-

code in Algorithm 2 describes a local search procedure based on the best-improvement strategy for

a minimization problem. Once again, the search starts from any given initial solution xinit. A flag

initialized in line 1 indicates whether or not an improving solution was found. The loop in lines 2

to 15 executes until replacing the current solution with a better neighbor becomes impossible. The

flag is reset to .FALSE. in line 3 at the beginning of a new iteration. Variable fbest that stores the best

objective function value over all neighbors of the current solution S is set to a large value in line 4.

The loop in lines 5 to 10 visits every neighbor S′ ∈ N(S) of the current solution S. If the test in

line 6 detects that the neighbor S′ is better than the current best neighbor, then the latter is replaced

with x′ in line 7, and the best objective function value fbest in the neighborhood is updated in line 8.

In line 11, we compare the current solution x with its best neighbor xbest. If fbest is less than f(x),

then the current solution is updated in line 12, the flag is reset to .TRUE. in line 13, indicating that a

better solution was found, and a new iteration resumes. The algorithm returns the local optimum x in

line 16. We observe that, independently of the starting solution and the neighborhood search strategy,

the local search always stops at a local optimum. The complexity of each neighborhood search iteration

depends mainly on two factors. First, it depends on the number of neighbors of each visited solution.

Second, on the efficiency of the computation of the cost function value for each neighbor. Efficient

implementations of the neighborhood search usually compute the cost of each neighbor S′ by updating

the cost of the current solution S, instead of calculating it from scratch and avoiding repetitive and

unnecessary calculations.

Some ingenious implementation tricks, such as the use of candidate lists in best-improving strate-

gies (to reduce the number of moves evaluated in each neighborhood search) or circular search in

first-improving strategies (to avoid the reevaluation of non-improving moves already evaluated in the

previous neighborhood search) can further improve the efficiency and the effectiveness of local search

methods.
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Algorithm 2: Best-improvement local search for minimization

Input: Initial solution xinit

Output: Locally optimal solution xBI

1 improvement ← .TRUE.;
2 while improvement = .TRUE. do
3 improvement ← .FALSE.;
4 fbest ←∞;
5 for every x′ ∈ N(xinit) do
6 if f(x′) < fbest then
7 xbest ← x′;
8 fbest ← f(x′);

9 end

10 end
11 if fbest < f(xinit) then
12 xinit ← xbest;
13 improvement ← .TRUE.;

14 end

15 end
16 return solution xBI = xinit.

B Experiments with greedy randomized initialization

The experiments below refer to the comparison of first-improvement and best-improvement local

searches when initiated from solutions obtained by greedy randomized heuristics. These heuristics

introduce randomness into the greedy decision-making process by utilizing a weighted probability

distribution.

The experiments presented here refer to the TSP (with the 2-opt neighborhood) and the wMAX-

SAT. For these problems, the dominant local search strategy changed from first-improvement to best-

improvement when the type of initialization used changed from random to greedy (see Table 3).

The implemented greedy randomized initialization method for the TSP uses a weighted probability

distribution to select the next node. The probability of visiting an unvisited node follows the roulette

wheel rule, i.e., it is inversely proportional to the distance to the last visited node. In the case of

the wMAX-SAT, at each iteration, the greedy randomized initialization selects a variable to assign a

truth value. The probability of choosing each variable is proportional to the total weight of the yet-

unsatisfied clauses that would become satisfied after assigning it a truth value (either true or false).
Also, in this case, the selection process is performed using the roulette wheel scheme.
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Figure 11: Pie-charts for the TSP and wMAXSAT problems with the greedy randomized initialization.
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Figures 11a and 11b show results for the experiments on TSP and wMAX-SAT random instances,

respectively, using the greedy randomized initialization. In both cases, the first-improvement strategy

outperforms the best-improvement one regarding the quality of the local optima obtained. However,

we observe that the prevalence of the first-improvement strategy over the best-improvement strategy

becomes less pronounced when compared to that observed in Figures 6(a) and 8(b) regarding the pure

random initialization, where FI + fi = 92.31% and FI + fi = 87.50%, respectively.
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Brimberg, J., Mladenović, N., Urošević, D., Ngai, E., 2009. Variable neighborhood search for the heaviest
k-subgraph. Computers & Operations Research 36, 2885–2891.

Brimberg, J., Salhi, S., 2019. A general framework for local search applied to the continuous p-median problem,
in: Eiselt, H., Marianov, V. (Eds.), Contributions to Location Analysis: In Honor of Zvi Drezner’s 75th
Birthday. Springer, Cham. volume 281 of International Series in Operations Research &Management Science,
pp. 89–108.

Cohen, J., 2013. Statistical power analysis for the behavioral sciences. Academic Press.
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Pereira, T., Aloise, D., Brimberg, J., Mladenović, N., 2018. Review of basic local searches for solving the
minimum sum-of-squares clustering problem, in: Pardalos, P., Migdalas, A. (Eds.), Open Problems in
Optimization and Data Analysis. Springer, Cham, pp. 249–270.
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