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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: L. Monteiro, H. Tremblay, S. Séguin (August
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University, Université du Québec à Montréal, as well as the Fonds de
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l’accès au travail et enquêterons sur votre demande.
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Abstract : Over the past years, Robotic Process Automation (RPA) has emerged as a significant
tool to enhance productivity across various industries by automating repetitive tasks performed on
computer user interfaces, thereby reducing error rates. In this paper, the RPA problem is addressed
as an unbounded assignment problem. Specifically, the objective of the problem is to assign robots
to transactions that must be completed at specific time periods, while minimizing the total number
of robots required. The problem is solved using a bipartite graph representation and a random walk
approximation, which defines an ordering of the transactions and periods in order to determine a valid
assignment. The heuristic is evaluated on a real data set from a financial institution and compared to
previous results obtained on generated data. The results obtained with the random walk approximation
heuristics on the real data set is optimal in terms of number of robots.

Keywords: Random walks, graph theory, effective resistance distance, robotic process automation,
unbounded assignment problem

Acknowledgements: The authors would like to thank Guillaume Routhier from CGI for providing
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Notation

The following notation is used throughout the paper:

T set of transactions types
P set of periods (including added periods)
PI set of initial periods of the problem
NP number of initial periods of the problem
Rp set of robots assigned to period p ∈ P
vt volume of a transaction of type t ∈ T
dt processing time of a transaction of type t ∈ T
lp duration of period p ∈ P
wpt boolean variable denoting whether transaction type t ∈ T can be processed at period p ∈ P
np number of robots required at period p ∈ P
xpt number of transactions of type t ∈ T treated at period p ∈ P
yrpt number of transactions of type t ∈ T treated at period p ∈ P by robot r ∈ Rp

N upper bound for the number of robots
αi parameters for the random walk approximation bounds, for i ∈ [1, 2]

1 Introduction

Robotic Process Automation (RPA) is an advanced technology tool developed to mimic human inter-
actions on user interface computer systems to automate repetitive task with a lower rate of errors [16].
The RPA tools are software licences, where each licence is called ”robots” in this context. The RPA
is focused on tasks completed on a user interface and completes actions such as identifying applica-
tions, copy and paste data, opening e-mails, filling and sending forms [10]. Moreover, not only the
RPA process is faster than humans, but the risk of error is also lower [13]. Over half of European
companies aimed to implement RPA to automate a minimum of 10 processes by 2020 [5]. In [16] the
authors mention that commercial vendors are noticing an increase in the need for RPA tools as it is
considered a quick way to have a high return on investment. However, the cost of each robot license
is expensive. The RPA problem studied in this paper is an unbounded assignment problem. The goal
of the problem is to model a transactions set that can only be achieved at specific periods in time.
The goal of the problem is to minimize the number of robots required to complete all the transaction
types while respecting their periods constraints. Each transaction type have a volume and a processing
time, and each period a length. Minimizing the number of robots on such a problem have been studied
before, using Integer Linear Programming (ILP) [11], computing upper bounds using heuristics [12],
using network flows [1] and using graph properties with the effective resistance of a graph [15]. More
details are presented in Section 2.

Our contribution with this paper is twofold : First, we use a random walk approximation ap-
proach [3] to compute the effective resistance of the graph. Then, the ordering heuristic presented
in [15] is applied to solve the RPA problem. Second, we compare the approximation method, obtained
with random walk, and the effective resistance method on 50 randomly generated test cases similar to
a real-life case problem. Using the random walk approximation to solve the RPA problem returns the
optimal number of robots for a specific real case problem.

This paper is organized as follows : Section 2 presents the previous work done on the RPA problem,
the effective resistance and random walk approximation concepts. Section 3 presents the model and
the algorithm used to solve the RPA problem using graph theory and the random walk approximation.
Section 4 is divided in two parts. We first present the real-life case problem and its solution with the ILP
formulation, the effective resistance heuristics and our method using the random walk approximation.
We then introduce 50 randomly generated problem and compare the results between effective resistance
and the random walk approximation. Section 5 opens a discussion on how to improve the complexity
of the algorithms presented in the paper and, finally, Section 6 concludes the paper.
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2 Previous work

An optimal solution to the RPA problem presented in Section 4 is obtained with a linear integer
programming formulation. Nevertheless, in [12] the problem has been proven to be NP-Hard. The
NP-hardness of the problem justifies the need for faster heuristics. In this paper, we use a random
walk approximation method [3] in order to obtain an ordering of the edges of a bipartite graph. The
random walk approximation of the effective resistance converges to the exact effective resistance value
as the number of iterations grows. Remark that the effective resistance was used previously in [15] to
solve the RPA problem, but was computed exactly using a different method as the one presented in
this paper.

As its name suggests, the effective resistance is derived from the resistance in electrical circuits.
Studying electrical circuits under the spectrum of graph theory was first introduced by Kirchhoff’s
analysis in the 19th century [7]. In 1993, D.J. Klein defined a new measure of distance between
two nodes in a graph, the effective resistance [8]. Usually the distance between two nodes is defined
as the shortest path between them, meaning counting the edges, or taking the sum of their weight.
Now, consider a graph as an electrical network where each edge is a resistor and two nodes a and b
are connected by an electrical source (e.g. a battery). Then, the effective resistance Rab between a
and b is simply the resistance of the associated circuit. Figure 1 shows an example of a graph and its
associated circuit. Recall from Kirchhoff’s current laws that two edges (resistors), r1 and r2, connected
in series can be replaced with one edge by adding the resistance of two resistors such that the new
edge is equal to r1 + r2 [3]. Similarly, two edges (resistors), r1 and r2, connected in parallel can be

replaced with one edge with the new resistance
(
r−1
1 + r−1

2

)−1
[3]. Often in graphs, the measure of

distance refers to the shortest path. For example, in Figure 1a the shortest is distance δab = 1 taking
the existing edge (a, b) as the shortest path. In Figure 1b the effective resistance Rab = 2

3 using the
parallel calculation defined above with r1 = 1 (resistance of edge Ωab = 1) and r2 = 2 (resistance of
edges Ωac+Ωca = 1+1 = 2). The effective resistance of a graph is equal to the sum of the resistance of
each distinct pair of vertices in that graph [8]. In an undirected graph that is RG = 1

2

∑
i∈V

∑
j∈V Rij .

If the graph is not connected, some pairs of vertices do not have an effective resistance defined, just
like they do not have a shortest path defined.

a b

c

(a) Usual view of a graph. Each edge has a weight of 1.

a b

c

(b) Graph viewed as a circuit. Each resistor has a resistance
of Ω = 1

Figure 1: Comparison of distance and effective resistance between two nodes under an usual graph view and a circuit
view.

It is possible to compute the effective resistance using the adjacency matrix of the graph. Specifi-
cally, given an undirected graph G, let A be its adjacency matrix, ∆ its degree matrix and Q = ∆−A
its Laplacian matrix [17]. In section 3 and in Section 4.2 we use Theorem 2.1 of [3] to compute the
effective resistance Rab between two nodes a and b. Let a and b represent both their nodes and their
indexes in V , such that 1 ≤ a ≤ |V | with a ∈ V and 1 ≤ b ≤ |V | with b ∈ V , the authors give the
following equation :

Rab = (ea − eb)
TQ−1(ea − eb) (1)

where Q−1 is the pseudo inverse of the Laplacian matrix, ea and eb are vectors of size |V | with each
entry equal to 0 except at index a and b, both respectively equal to 1 [3]. Remark that Equation (1)
computes the effective resistance differently from the methodology used in [15], which uses the reduced
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Laplacian matrix and Lyapunov equations. In this paper, we develop a modified version of the heuristics
presented in [15] based on an approximation of the effective resistance based on random walks [3]. Based
on Chandra & al. work [2], the authors of [3] have rewritten the following equation for defining the
effective resistance using random walk algorithm properties:

Rab =
1

2|E|
(E(Tab) +E(Tba)) (2)

where Tab represents the number of edges to get to vertex b starting in vertex a using a random walk
algorithm on the graph and E is the expected value. From Equation (2), the authors deduce the
following formula to compute Rab, for all a ̸= b, using Markov chain properties :

Rab =

∞∑
t=0

ap
(t)
bb

1

δb
(3)

Let us break down Equation (3) : p
(t)
ab denotes t-th power of the transition matrix p, where the

element at the b-th row and b-th column is extracted. The prefix a preceding the transition matrix
element represents a set of indices, indicating that the a-th column of the transaction matrix P is
entirely set to zeroes. Note that in Equations (4) and (5) below, one of the prefix set is a,b meaning
that both the a-th and the b-th column are replaced with zeroes. Finally, δb denotes the degree of the
node b. For the details on how the Equation (4) works, we refer to Section 2.3 of [3]. However, since
infinite sums are not computable in practice, the authors also provide the following bounds for the
effective resistance:

Lab =
1

δb

α1∑
t=0

ap
(t)
bb ≤ Rab ≤

1

δa
α2∑
t=0

|V |∑
k=1

a,bp
(t)
akpkb

= Uab (4)

where Lab is the lower bound and Uab is the upper bound. From these bounds, the authors obtain the
following approximation for the effective resistance :

Rab ≈
1

2

 1

δb

α1∑
t=0

ap
(t)
bb +

1

δa
α2∑
t=0

|V |∑
k=1

a,bp
(t)
akpkb

 = Wab (5)

The exact approximation of the effective resistance is Rab = Wab ± ϵ, with Wab being the random
walk approximation and ϵ = 1

2 (Uab − Lab), where Uab and Lab are, respectively, the upper bound and
lower bound of Equation (4).

3 Mathematical model and algorithm

It is important to note that the model and algorithm defined in this Section is not our direct contribu-
tion, and both the model and algorithm are taken from [15]. However, as mentioned in the introduction
(Section 1), the contribution of this paper is to compute an approximation of the effective resistance
using random walk properties. Instead of effective resistance itself, the random walk approximation
is computed for the assignment problem Algorithm (Figure 3). A comparison of the results between
the two methods, along with an ILP formulation to have optimal solution as reference, is presented in
Section 4.

3.1 Mathematical model

Let G be a weighted bipartite graph, where G = (T ∪ P,E,w). The set of nodes T represents the
transaction types, the set of nodes P represents the periods, and an edge (t, p) ∈ E if and only if a
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transaction t can be processed at a period p. The weight w of an edge defines how many transactions
t are done at a period p and which robot is doing it. To determine how many robots are required to
solve the RPA assignment problem or to know which robot is doing a transaction, the set of periods P
is used. The operation of adding a robot to G, as defined in [15], is to create a disjoint copy P ′ from
the initial set of periods PI and adding the edge (ti, p

′
j) if (ti, pj) ∈ E to G, for all ti ∈ T , p′j ∈ P ′ and

pj ∈ PI . After creating a copy of the set PI and adding the edges, the set of periods is updated such
that P = P ∪ P ′. Let NP be the number of initial periods defined by the problem, we can now define

R as the set of robots, and the total number of robots |R| = |P |
NP

. More specifically, a task ti ∈ T

done at a period pj ∈ P defined by the edge (ti, pj) is done by the robot rl =
⌈

j
NP

⌉
, where rl ∈ R

and 1 ≤ j ≤ |P |. This graph formulation contains all the relevant information for the problem and its
solution: the assignment structure of the problem, the total number of robots required, the details of
the assignment to the robots with the volumes completed for a transaction type and the period during
which it was completed. Figure 2 gives an example of a RPA assignment problem, the processing time
of a transaction type dt, the volume needed for a transaction type vt, the length of a period lp.

t1

t2

t3

p1

p2

p3

p4

dt vt lp

220

770

509

120

30

20

4500

3600

23400

9000

Figure 2: Graph example of the assignment RPA problem.

3.2 Algorithm

In order to solve the RPA problem, each period is filled with the maximum volume of transaction
types it can hold. When no more transactions can be assigned to periods, a copy of the initial period
set is made (i.e. adding a new robot) if necessary and this process continues until all the volume of
transactions is completed [15]. To choose which transaction type and period to match first, we use the
following algorithm, which is a modified version of the algorithm presented in [15] where the effective
resistance is approximated using Equation (5):

1. Compute the random walk approximation Wtp, as defined in Equation (5), for all edges
(t, p) where t ∈ T and p ∈ P ;

2. Sorts edges by decreasing approximation values;

3. Successively load each edge with the maximum possible volume of a transaction type;

4. If the assignment is valid, finish the algorithm. Otherwise, create a copy of P (add a
new robot) and loop back to Step 1;

Figure 3: Algorithm to solve the RPA assignment problem through bipartite graph, using the random walk approximation,
based on [15]

The program is implemented in Python language [18], using the Rustworkx library [14] for efficient
graph implementation and computation, NumPy library [4] for matrix manipulation, Pandas library [9]
and Matplotlib library [6] for exporting and showing the data in graphs presented in Section 4. It is
important to highlight that both the effective resistance and the random walk approximation are not
defined between nodes not connected by a path. It would mean dividing by 0 in the computation of the
upper bound in Equation (4). For example, in Figure 2 the approximation Wt1p1

is not defined. It is
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however not an issue since the algorithm only requires computing the random walk approximation on
edges of the graph, meaning that the path always exists between the two incident nodes of that edge.
Figure 4 shows a solution to the small problem presented above using the random walk approximation,
with parameters α1 = α2 = 5. Table 1 presents the state of the graph at the very first loop of the
algorithm presented in Figure 3, where one robot is available. It shows a comparison between the
effective resistance values, computed with Equation (1), and the random walk approximation with
three different cases of parameters : α1 = α2 = 2, α1 = α2 = 5, and α1 = α2 = 10. On that
small example, one can see the values of the approximation converges towards the effective resistance
as the parameters α1 and α2 grow. The only exception is for the edges (t2, p3) and (t2, p4), where
the approximation α1 = α2 = 2 gives closer result to the effective resistance result than the other
approximation. This is a lucky coincidence, since the error ϵ for those specific edges is 0.25, meaning
that the value for the effective resistance could be anything within the range [0.5, 1].

t1

t2

t3

p1

p2

p3

p4

30

77

0

470

300

225
t1

t2

t3

p
′

1

p
′

2

p
′

3

p
′

4

30

8

75

0

0

225 t1

t2

t3

p
′′

1

p
′′

2

p
′′

3

p
′′

4

0

0

0

0

0

59

dt vt lp

220

770

509

120

30

20

4500

3600

23400

9000

Robot 1 Robot 2 Robot 3

Figure 4: Valid assignment for the RPA problem. Three graphs are represented for readability, however the nodes t1, t2, t3
are the same ones for each robot. To highlight which periods were added, we are using the notation p1′, p2′, · · · , p3′′, p4′′,
but in reality for the algorithm p1′ = p5, p2′ = p6, · · · , p3′′ = p11, p4′′ = p12. For example, the node t3 has a degree

of 3 and is connected to the nodes {p1, p5 = p1′, p9 = p
′′
1 }. The solution is using the random walk approximation, with

α1 = α2 = 5 as parameters, to sort the edges.

Table 1: Comparing effective resistance value and random walk approximation, while increasing α1 and α2 parameters,
for each edges in Figure 4

Edges Effective Resistance Approx. α1 = α2 = 2 Approx. α1 = α2 = 5 Approx. α1 = α2 = 10

(t1, p2) 1 0.666667 0.768519 0.839249
(t1, p3) 0.75 0, 666667 0.679563 0.721576
(t1, p4) 0.75 0, 666667 0.679563 0.721576
(t2, p3) 0, 75 0, 75 0.738542 0.742389
(t2, p4) 0, 75 0, 75 0.738542 0.742389
(t3, p1) 1 1 1 1

4 Results

Section 4.1 presents comparisons between the ILP formulation, the effective resistance heuristics and
the random walk approximation heuristics. In subsection 4.2 the effective resistance heuristics and the
random walk approximation heuristics are compared on 50 randomly generated problems.

4.1 Real data set

In this Section, the study is based on real data provided by a financial institution. The results are
compared between the effective resistance of [15] and the random walk approximation. The optimal
result of the problem, computed with an ILP model, is presented in 4.1.1. The data used in this paper
are the same one as in [15]. The data, provided by a financial institution, are defined with 12 different
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transactions type, each having a different volume and processing time (Table 2). Table 3 presents the
8 periods of the problem, their length and their associated transactions types.

Table 2: Real life data case defining transaction types with their processing time, volume.

Type 1 2 3 4 5 6 7 8 9 10 11 12

Processing time 120 30 20 15 90 360 60 50 1320 150 480 52
Volume 220 770 509 13750 450 210 110 375 95 150 235 76

Table 3: Real life data case defining the period duration and allowed type of transactions. On the last row, the notation
[a, b], for a, b ∈ [1, 12] means that all the transaction types between a and b are included in the period.

Periods 1 2 3 4 5 6 7 8

Period length (in seconds) 900 3600 3600 32400 7200 3600 3600 7200
Associated transaction type 3 3, 5 1, [4, 6], [8, 12] 1, 2, [4, 12] 1, [4, 12] 1, 4, 5, 7, 10, 11 1, 4, 5, 10, 11 4, 5, 10

The results obtained with the effective resistance heuristic proposed in [15] are compared with the
random walk approximation algorithm (Figure 3). For the effective resistance, the results are shown in
Table 4. The solution requires 12 robots over 8 periods. In Table 5 the solution, using the random walk
approximation algorithm, gives a solution using 11 robots over 8 periods. The parameters α1 = α2 = 5
are set to compute the random walk approximation. The result is optimal for the number of robots to
solve the problem but not over the periods, since the ILP model described in the Section 4.1.1 found
a solution using only 7 periods. For this specific case, the random walk approximation gives a better
result than the exact effective resistance.

Table 4: Effective resistance heuristic results for each robot. Each entry in the table lists the transaction type and the
volume in parentheses.

Periods Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6

1 3(45) 3(45) 3(45) 3(14) × ×
2 5(40) 3(180) 3(180) 5(40) 5(40) 5(40)
3 8(72) 6(10) 6(10) 12(69) 9(2),11(2) 1(8),9(2)
4 2(772),4(2),8(184) 6(90) 6(79),9(3) 1(2),9(24),11(1) 1(2),9(24),11(1) 1(39),9(21)
5 7(50),8(84) 6(20) 4(2),6(1),8(4),9(5) 8(31),9(4),12(7) 1(1),9(5),11(1) 1(5),9(5)
6 7(60) 1(2),11(7) 1(30) 1(2),11(7) 1(2),11(7) 1(30)
7 1(2),11(7) 1(2),11(7) 1(30) 1(2),11(7) 1(2),11(7) 1(30)
8 4(480) 10(48) 10(48) 4(480) 5(80) 5(80)

Periods Robot 7 Robot 8 Robot 9 Robot 10 Robot 11 Robot 12

1 × × × × × ×
2 5(40) 5(40) × × × ×
3 1(2),11(7) 4(16),11(7) 4(240) 4(240) 4(240) ×
4 1(2),11(67) 4(656),11(47) 4(2160) 4(2160) 4(2160) ×
5 11(15) 11(15) 4(480) 4(480) 4(480) ×
6 1(2),11(7) 1(19),4(24),11(2) 4(240) 4(240) 4(240) ×
7 1(2),11(7) 1(2),11(7) 4(240) 4(240) 4(240) ×
8 10(48) 4(120),5(50),10(6) 4(480) 4(480) 4(480) 4(480)

4.1.1 Validation with a linear integer program

Since the data used in [11] is slightly different, two linear integer problems are defined in this Section
in order to determine the transaction assignment to the robots. The first model minimizes the total
number of robots and the second assigns the transactions to the robots.
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Table 5: Random walk approximation results for each robot. Each entry in the table lists the transaction type and the
volume in parentheses. Parameters α1 = α2 = 5 are set to compute the random walk approximation.

Periods Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6

1 3(45) 3(45) 3(45) × × ×
2 3(180) 3(180) 3(14),5(36),9(2) 5(40) 5(40) 5(40)
3 12(69) 8(19),9(2) 8(19),9(24) 8(19),9(2) 1(2),6(5),8(31) 6(10)
4 2(770),8(1),9(7) 4(1),8(14),9(24) 4(1),8(14) 8(199),9(17) 6(90) 1(3),6(65),11(18)

5 4(3),7(50),8(23),
9(2),12(7)

8(12),9(5) 8(12),9(5) 8(12),9(5) 6(20) 6(20)

6 7(60) 1(2),11(7) 1(2),11(7) 1(2),11(7) 1(2),11(7) 1(2),11(7)
7 1(2),11(7) 1(2),11(7) 1(2),11(7) 1(2),11(7) 1(2),11(7) 1(2),11(7)
8 10(48) 10(48) 10(48) 4(420),10(6) 4(480) 4(480)

Periods Robot 7 Robot 8 Robot 9 Robot 10 Robot 11 Robot 12

1 × × × × × ×
2 5(40) 5(40) 5(40) 5(40) 5(40) ×
3 1(2),11(7) 1(2), 11(7) 4(240) 4(240) 4(240) ×
4 1(2),11(67) 1(179), 4(496),11(1) 4(2160) 4(2160) 4(1349),5(94) ×
5 11(15) 11(15) 4(480) 4(480) 4(480) ×
6 1(2),11(7) 1(2), 11(7) 4(240) 4(240) 4(240) ×
7 1(2),11(7) 1(2), 11(7) 4(240) 4(240) 4(240) ×
8 4(480) 4(480) 4(480) 4(480) 4(480) ×

min
np,xpt

∑
p∈P

np (6)

s.t.∑
p∈P

xptwpt = vt, ∀t ∈ T, (7)

∑
t∈T

xpttp ≤ lpnp, ∀p ∈ P, (8)

np ≤ N, ∀p ∈ P, (9)

xpt ∈ N+
0 , ∀p ∈ P, t ∈ T (10)

max
yrpt

∑
p∈P

∑
r∈Rp

∑
t∈T

yrpt (11)

s.t.∑
r∈Rp

yrpt = xpt, ∀p ∈ P, t ∈ T, (12)

∑
t∈T

yrpttp ≤ lp, ∀p ∈ P, r ∈ Rp, (13)

yrpt ∈ N+
0 , ∀p ∈ P, t ∈ T, r ∈ Rp (14)

The objective function shown in Equation (6) minimizes the total number of robots required.
Constraints (7) ensure that the volume of transactions is treated. Constraints (8) guarantee that the
length of the periods are respected, multiplying the duration of the period by the number of robots
used. The upper bound on the number of robots is given by (9). Finally, variables’ domain is given by
Equation (10). The result from this model is given as an input to the second model. More precisely,
the number of transactions of each type treated at each period, as well as the number of robots required
at each period are given as parameters. The objective function shown in Equation (11) maximizes the
assignment, guaranteeing that all the transactions are treated. Constraints (12) assign the transactions
types to the robots. Constraints (13) ensures that each robot completes the transactions given the
length of the period. Finally, variables’ domain is given in (14). Without adding a bound on the
number of robots, the optimal solution requires 21 robots, which is not realistic unless we have an
unlimited budget. By specifying bounds on the number of robots, we can find the actual optimal
solution. Bounding by using a maximum of 11 robots gives the solution presented in Table 6, where
the problem is infeasible using only 10 robots. For the problem defined in this Section, the optimal
solution minimizing the number of robot required is 11 for 7 periods of work.

4.2 Experimental results on generated problems

In this Section, we compare the effective resistance algorithm [15] with the random walk approximation
algorithm (Figure 3). We do not have the optimal result in consideration for those problems. The
problems are randomly generated. Some constraints are defined to generate the parameters of the
problem : the number of periods and transaction types are between 3 and 5, each transaction has 30%
chances to be associated to a period, the period length is between 100 and 25000, the type processing
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Table 6: Solution of the RPA problem using ILP formulation. Each entry in the table lists the transaction type and the
volume in parentheses.

Periods Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6

1 × × × × × ×
2 5(40) 5(40) 5(40) 3(180) 5(40) 5(40)
3 6(10) 6(10) 6(10) 6(10) 6(10) 6(10)
4 2(6),4(2148) 2(8),11(67) 4(16),6(5),9(23) 4(8),9(24),10(4) 4(4),10(142),11(23) 2(4),9(24),10(4)
5 1(60) 8(144) 4(480) 5(80) 8(144) 1(60)
6 4(240) 4(240) 4(240) 4(240) 4(240) 4(240)
7 4(240) 4(240) 4(240) 4(240) 4(240) 4(240)
8 4(480) 4(480) 4(480) 4(480) 4(480) 4(480)

Periods Robot 7 Robot 8 Robot 9 Robot 10 Robot 11 Robot 12

1 × × × × × ×
2 5(40) 3(149), 5(6) 3(180) 5(28) 5(40) ×
3 6(10) 6(10) 6(10) 6(10) 6(10) ×
4 2(8),11(67) 6(2),9(24) 6(3),11(57),12(76) 6(90) 2(744),11(21) ×
5 1(60) 1(35),8(60) 1(5),7(110) 4(390),8(27) 4(144),5(56) ×
6 4(240) 4(240) 4(240) 4(240) 4(240) ×
7 4(240) 4(240) 4(240) 4(240) 4(240) ×
8 4(480) 4(480) 4(480) 4(480) 4(480) ×

time is between 10 and 150, and finally the volume of transaction is between 10 and 500. The method
to compute the effective resistance for the problem is Equation (1). In Figure 5 and in Figure 6 both
algorithms are compared on 50 generated problems. The random walk approximation parameters for
the bounds are set to α1 = α2 = 2. Figure 5 compare the number of robots needed for a problem. We
can see that in 8 problems out of 50 the random walk approximation is better, and in 2 cases out of
the 50 the effective resistance is better. Figure 6a and Figure 6b are the time needed for a problem
to be solver for the effective resistance and the random walk approximation, respectively. We observe
that the random walk approximation takes much more times when the graph gets bigger because of
the number of robots. In Section 5, we make a hypothesis on the possibility to reduce the time needed,
closer to the effective resistance, for the random walk approximation to find its solution.

Figure 5: Comparing the random walk approximation and the effective resistance on 50 randomly generated problems. If
only one element is observable given an x-axis position, it means that both methods give the same number of robots.
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(a) Time required for each problem using the effective resistance (b) Time required for each problem using the random walk approx-
imation

Figure 6: Comparing the time required to compute random walk approximation and the effective resistance on 50 randomly
generated problems.

5 Discussion

The results presented are very preliminary. On the real data case, the random walk approximation
is optimal on the number of robots, so it would be interesting to compare the algorithm on bigger
problems with more transaction types and more periods. Unfortunately, the approximation method is
not faster to compute than the effective resistance due to the large number of matrix multiplications
required. However, it might be possible to accelerate the computation by not recomputing the random
walk approximation each loop. Indeed, after adding a robot, the initial periods are copied and added
to the graph before computing a new approximation. By adding a copy of the set of periods, the
structure of the graph is only slightly changed, since it has the same number of added nodes and a
similar structure regarding the added edges. In the algorithm, it could be possible to keep the order of
the sorted edges computed at Step 2 when the graph had no robot added, and keeping that order for
the new edges coming with the new periods. On very small empirical sets this seems to be working,
though it would require further exploration. Another interesting exploration would be to ignore the
edges of previous iterations. By doing so, adding a new robot and making the graph bigger would only
change the complexity of the algorithm by a constant, since we would not be redoing any calculation
over the graph after the first sorting of the edges. The method would work on effective resistance and
potentially speed up our implementation as well.

6 Conclusion

This paper offers new results on solving the RPA problem using heuristics. We are using the same
methodology used in [15], but changing the method to sort the edges on their algorithm, using the
random walk approximation instead of the effective resistances. The solution computed in this paper is
optimal for the number of robot required using the random walk approximation. A comparison between
the random walk approximation and the effective resistance on 50 randomly generated problems gives
better results for the random walk approximation. However, it is important to note that, on a single
real data case, the random walk approximation takes longer to compute. It would be interesting to
further test both methods on larger problems. Other improvements could be made to the algorithm
by taking into considerations weights on edges before computing either the effective resistance or the
random walk approximation.
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