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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2024
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Montréal (Qc), Canada

dan dije.ibrahim@courrier.uqam.ca

djeumou fomeni.franklin@uqam.ca

leandro.coelho@fsa.ulaval.ca
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Abstract : The cubic knapsack problem (CKP) is a combinatorial optimization problem, which can
be seen both as a generalization of the quadratic knapsack problem (QKP) and of the linear Knapsack
Problem (KP). This problem consists of maximizing a cubic function of binary decision variables
subject to one linear knapsack constraint. It has many applications in biology, project selection,
capital budgeting problem, and in logistics. The QKP is known to be strongly NP-hard, which implies
that the CKP is also NP-hard in the strong sense. Unlike its linear and quadratic counterparts,
the CKP has not received much of attention in the literature. Thus the few exact solution methods
known for this problem can only handle problems with up to 60 decision variables. In this paper, we
propose a deterministic dynamic programming-based heuristic algorithm for finding a good quality
solution for the CKP. The novelty of this algorithm is that it operates in three different space variables
and can produce up to three different solutions with different levels of computational efforts. The
computational results show that our algorithm can find optimal solutions for nearly 98% of the test
instances that could be solved to optimality. It also has the merit of finding, in less than five minutes,
feasible solutions that cannot be outperformed by commercial solvers in 5 hours. The algorithm also
empirically dominates the other existing heuristic algorithm for CKP.

Keywords : Knapsack Problem, integer programming, dynamic programming, Cubic Knapsack Prob-
lem
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1 Introduction

The 0-1 cubic knapsack problem (CKP) is a nonlinear binary optimization problem which is a general

form of the binary quadratic knapsack problem (QKP) as well as of the linear knapsack problem (KP).

The problem consists of maximizing a cubic objective function of binary decision variables subject to

a single linear knapsack constraint. In the formulation of the CKP, we have three classes of profits in

the objective function, namely, the individual profit of selecting a single item, the pairwise profit for

pairs of items, and the cubic profit for a triplet of items selected simultaneously. Considering the set

N = {1, . . . , n} of n items, each item i has a weight ai, an individual profit pi for being selected alone,

as well as two extra profits Pij if selected with another item j, and Dijl if selected with another pair of

items j and l. Given a knapsack with a limited integer capacity c, the objective of the CKP is to find

a subset of the items in N such that the total weight does not exceed the capacity c of the knapsack,

while maximizing the overall profit. A mathematical formulation of CKP is therefore given by:

max
n∑

i=1

pixi +
n∑

i=1

n∑
j=1
j ̸=i

Pijxixj +
n∑

i=1

n∑
j=1
j ̸=i

n∑
l=1

l ̸=i, l ̸=j

Dijlxixjxl

s.t.

n∑
i=1

aixi ≤ c,

x ∈ {0, 1}n.

(1)

The CKP model presented in (1) has a standard linearization due to Glover and Woolsey (1974),

which consists of replacing each product xixj with a binary variable yij , and each product xixjxl with

another binary variable zijl. Then, we have the following model:

max
n∑

i=1

pixi +
n∑

i=1

n∑
j=1
j ̸=i

Pijyij +
n∑

i=1

n∑
j=1
j ̸=i

n∑
l=1

l ̸=i, l ̸=j

Dijlzijl

s.t.

n∑
i=1

aixi ≤ c,

yij ≤ xi, ∀(i, j) i < j,

yij ≤ xj , ∀(i, j) i < j,

yij ≥ xi + xj − 1, ∀(i, j) i < j,

yij ≥ 0, ∀(i, j) i < j,

zijl ≤ xi, ∀(i, j, l) i < j < l,

zijl ≤ xj , ∀(i, j, l) i < j < l,

zijl ≤ xl, ∀(i, j, l) i < j < l,

zijl ≥ xi + xj + xl − 2, ∀(i, j, l) i < j < l,

zijl ≥ 0, ∀(i, j, l) i < j < l,

x ∈ {0, 1}n.

(2)

Unlike the linear KP (Kellerer et al., 2004; Martello and Toth, 1990) and the QKP (Pisinger et al.,

2007; Cacchiani et al., 2022; Fennich et al., 2024) that have been studied quite significantly, the CKP
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has not received much attention in the literature. Studies related to this problem can be traced to

the work of Forrester (2016), wherein they presented a tight relaxation of the linearization of the gen-

eral form of 0-1 cubic program. Forrester and Waddell (2022) explicitly solved an exact model for the

CKP given by (2) without the auxiliary constraints given by (3), handling problems with up to 60 items.

yij ≥ xi + xj − 1, ∀(i, j) i < j,

yij ≥ 0, ∀(i, j) i < j,

zijl ≥ xi + xj + xl − 2, ∀(i, j, l) i < j < l,

zijl ≥ 0, ∀(i, j, l) i < j < l.

(3)

It should be noted that applications of the family of knapsack problems have so far been limited

to the linear KP (Salkin and De Kluyver, 1975) and to the QKP (Gallo et al., 1980). This is probably

because considering a practical problem from a CKP point of view brings a much bigger challenge

in terms of solution methodology. However, the addition of the cubic terms could add value to the

problem itself as well as to the quality of the solution. For example, in the mean-variance portfolio

selection (Faaland, 1974; Peterson and Laughhunn, 1971; Weingartner, 1966), while the quadratic

terms represent the covariance between projects, cubic terms could be used to provide information

about the skewness and the asymmetry between the projects. Some other applications can also be

found in biology (Mohammadi et al., 2016). Elsewhere, the area of combinatorial auction (Cramton

et al., 2010) can also provide an interesting application of CKP. Indeed, in combinatorial auctions

participants can bid on combinations of items or packages. In preparing their bids, each participant

aims to maximize their utility by selecting a subset of items to bid for. A CKP formulation can be

suitable for representing the additional profit of simultaneously having pairs and triplets of items in

a single bid, especially in areas such as logistics (Hammami et al., 2019, 2022), where the knapsack

constraints may represent the capacity of a truck or container, as well as in cloud computing (Marinescu,

2018) wherein the quadratic and cubic profits may represent the benefit of having two or three jobs

running simultaneously with a restricted server capacity.

The aim of this paper is to present a dynamic programming (DP) based deterministic heuristic

solution method for the CKP. While DP algorithms have been extensively used in solving the KP and

the QKP, we are the first to extend this methodology to the CKP. The novelty of our DP approach is

that it operates in three different space variables to produce three good feasible solutions to the CKP

with different levels of computational efforts. Additionally, we introduce an adaptation of the upper

planes concept defined by Caprara et al. (1999) for a cubic objective function, which helps us to define
some sorting criteria in order to enhance our algorithm. We conduct a vast array of computational

experiments with a total of 680 test instances randomly generated following a well-known scheme from

the literature. We evaluate a large number of capabilities of our proposed algorithm as well as a

comparison with a MIP solver and the only heuristic algorithm for the CKP that can be found in the

literature (Forrester and Waddell, 2022). The computational results show that our proposed algorithm

can find optimal solutions for nearly 98% of the instances, while for the instances for which it cannot

find optimal solutions, the optimality gaps are consistently below 0.05%. Furthermore, the results also

show that a basic faster version of our algorithm matches the performance of the existing heuristic

algorithm from the literature, both in terms of optimality gap and computational time, while a more

advanced version of our algorithm dominates this existing heuristic.

In the remainder of this paper, we briefly review the literature related to our work in Section 2,

then present some background necessary to understand the development of our algorithm in Section 3.

The details of the technical components of our algorithm are discussed in Section 4. We show how

the algorithm can be improved in Section 5 and present and analyze the different computational

experiments in Section 6. Finally, some concluding remarks are presented in Section 7.
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2 Literature review

The development of solution methodologies for the CKP that can be found in the literature is limited

to the work of Forrester and Waddell (2022) where they presented a strong linear reformulation of

the problem, which is then solved using commercial solvers. In addition, they developed a greedy-like

heuristic method for obtaining feasible CKP solutions that are used to warm-start the solver. This

greedy heuristic solution is an adaptation of the constructive heuristic solution developed by Billionnet

and Calmels (1996) for the QKP. The heuristic starts with a greedy weight-to-benefit ratio to find an

initial feasible solution, which is later improved with the well-known “fill-up and exchange” local search

(Gallo et al., 1980). They reported computational results for CKP instances with up to 60 items. In

this paper, we will use the heuristic of Forrester and Waddell (2022) as a benchmark for comparing

our proposed algorithm, especially for large scale instances. More generally, the CKP can be tackled

like more general cubic programs using linearization approaches and commercial solvers (Adams and

Forrester, 2005; Forrester, 2016). However, the study of cubic programs is still rather limited in the

literature and existing exact methods can only solve very small problem instances.

On the other hand, DP is known to be an efficient exact solution method for the linear KP (Bell-

man, 1957). However, considering the non-linear counterparts of the KP, the Bellman’s principle of

optimality no longer holds as shown by Fomeni and Letchford (2014). They also showed that one

can, however, use the classical DP algorithm to yield a deterministic heuristic methodology for the

QKP. Since then, two DP-inspired heuristic algorithms have been proposed for the QKP. The first

consists of extending the original DP of Fomeni and Letchford (2014) to consider a potential selection

of future items at each stage of the algorithm (Fennich et al., 2024), while the second one implements

the DP on the lifted space of the quadratic variables (Fomeni, 2023). Both algorithms have shown to

be particularly effective for difficult classes of the QKP.

The core of the algorithm presented in this paper is inspired by the latter DP algorithm, with the

particularly that the algorithm travels through three spaces of variables, namely the space of linear

variables, the space of quadratic variables, and the space of cubic variables. Each of the three spaces

produces a feasible solution, which is fundamentally an improved version of the lower space variables

since the solution of a higher space builds on the solution of lower spaces.

3 Background of the 3-space lifted DP

One very well-known approach for linearizing a 0-1 cubic program consists of introducing two new

families of binary decision variables that will, respectively, replace the quadratic and the cubic terms

in the objective function (Glover and Woolsey, 1974; Rader, 1997; Helmberg et al., 2000; Rader and

Woeginger, 2002). Thus, considering the cubic objective function given in (1) with binary decision

variables x1, . . . , xn, the standard linearization technique will require the introduction of new binary

variables yij = xixj (with i < j) and zijl = xixjxl (with i < j < l) to replace the quadratic and

the cubic terms in the objective function. This could also be seen from a hyper-graph point of view.

Given a complete hyper-graph GH = (N, (E, E)), with N being the set of nodes, while E and E are

the set of hyper-edges consisting of respectively, two and three nodes. For each node i ∈ N , there is

an associated node profit pi ∈ Q+; for each pairwise edge e ∈ E with e = (i, j), i < j, and i, j ∈ N ,

there is an associated edge profit pe ∈ Q+; and for each hyper-edge g ∈ E with g = (i, j, l) i < j < l,

and i, j, l ∈ N , there is also an associated hyper-edge profit dg ∈ Q+.

The objective function of the CKP given in (1) can be written as:

n∑
i=1

pixi + 2
∑
e∈E

peye + 6
∑
g∈E

dgzg, (4)

where ye = xixj , zg = xixjxl, and the different profits defined by pe = Pij = Pji for e = (i, j) and

dg = Dijl = Dilj = Djil = Djli = Dlij = Dlji for g = (i, j, l). These newly introduced variables are
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often referred to as lifted space variables (Glover and Woolsey, 1974). More precisely, ye is known as

the quadratic space variable, while zg is known as the cubic space variable.

In this paper, we present a deterministic DP heuristic algorithm that navigates through the three

spaces of variables in order to produce three feasible solutions for the CKP. To the best of our knowl-

edge, this algorithm is the second deterministic algorithm for this problem, with the first one being

the greedy-like algorithm of Forrester and Waddell (2022). The first space through which our algo-

rithm travels is defined by the linear variables x1, . . . , xn. The second space will be the lifted space of

the quadratic variables ye1 , . . . , yem , with m = |E| =
(
n
2

)
and {e1, . . . , em} = {(1, 2), . . . , (n − 1, n)}.

Thirdly, it will traverse the space of cubic variables defined by zg1 , . . . , zgt , with t = |E| =
(
n
3

)
and

{g1, . . . , gt}={(1, 2, 3), . . . , (n− 2, n− 1, n)}.

The DP approach for solving the linear KP is based on the Bellman’s principle of optimality

(Bellman, 1957), which uses the state function f(k, r) to get the maximum profit that can be obtained

by packing a selection of the k first items for a total weight of r. For the cubic CKP, one could define

the function f(k, r) as follows:

f(k, r) =max

{
k∑

i=1

pixi +

k∑
i=1

k∑
j=1
j ̸=i

Pijxixj

+

k∑
i=1

k∑
j=1
j ̸=i

k∑
l=1

l ̸=i,l̸=j

Dijlxixjxl :

k∑
i=1

aixi = r, x ∈ {0, 1}k
}
.

(5)

Unfortunately, the Bellman’s principle of optimality does not hold for nonlinear objective functions

as shown by Fomeni and Letchford (2014) for the quadratic case. However, exploring the idea of

Fomeni and Letchford (2014), Fomeni (2023), and Fennich et al. (2024), we will use a DP to find

feasible solutions for the CKP. This is achieved by defining the state function f(k, r) as the profit of

the best packing found by the heuristic that uses a selection of the first k elements and whose total

weights is equal to r. This state function will then be explored in the three different space variables

presented above in order to increase the number of stages and states explored, thus giving a higher

chance to the heuristic algorithm to find a good feasible solution. The exploration through the spaces

of the quadratic and the cubic variables allows to better capture the interaction between pairs and

triplets of items that can be selected simultaneously.

Note that from now onwards, f(k, r) represents the profit of the best packing found by the heuristic

that uses a selection of the first k elements and whose total weights is equal to r. In this definition,

we use elements instead of items, since k will traverse the space of the linear variables where it will

represent items, as well as the lifted space of the quadratic and cubic variables where it will represent

pairs and triplets of items respectively. In other words, the index k will go from 1 to n + |E| + |E|.
Analogously, we will define the set S(k, r) to encode the set of items producing such a best packing.

Throughout the run of the index k between 1 and n+ |E|+ |E|, one should remark that at each stage

k, the algorithm considers the inclusion of:

• the item k when 1 ≤ k ≤ n;

• the edge k represented by two items i and j when n+ 1 ≤ k ≤ n+ |E|;
• the hyper-edge represented by three items i, j, and l when n+ |E|+ 1 ≤ k ≤ n+ |E|+ |E|.

The DP in this heuristic algorithm starts in the space of the linear variables, wherein the calcu-

lation of the profit contribution of the items and the weight utilization of the knapsack capacity is

straightforward. However, when the algorithm gets into the two lifted spaces, one needs to pay careful

attention to the calculation of the profit contribution and the weight utilization of edges and hyper-

edges, since some of the items defining the edge or hyper-edge could have already been selected when

travelling in the previous spaces.
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4 3-space DP algorithm

Each stage of our DP algorithm is characterized by a value function f(k, r), which represents the best

profit found by the heuristic for a subset of the first k elements and for a total weight of r, as well as

a set S(k, r), which encodes the partial solution whose profit is equal to f(k, r). In this section, we

show how the calculation of the profit and the weight contribution for each element k is carried out in

the DP algorithm in each of the three spaces.

4.1 Profit and weight in the linear space

The space of linear variables corresponds to 1 ≤ k ≤ n. Hence, in this space the consideration of an

element k corresponds to making the decision of whether to add the k-th item to the existing partial

solution. In order to make this decision the profit and the weight contribution of these items are

calculated as follows.

qk = pk + 2
∑

i∈S(k−1,r−ak)

Pik + 3
∑

m∈S(k−1,r−ak)

∑
m′∈S(k−1,r−ak),

m̸=m′

Dmm′k (6)

wk = ak. (7)

The selection of the k-th item in the linear space variables brings, in terms of profit contribution,

its individual profit as well as its pairwise and triplet-wise profit contributions with respect to the

items already packed, i.e., the items in the set S(k − 1, r − wk). The weight contribution of this item

is simply its individual weight.

4.2 Profit and weight in the quadratic space

The space of the quadratic variables corresponds to n + 1 ≤ k ≤ n + |E|, and the consideration

of an element k in this space corresponds to making the decision of whether to add the k-th edge,

formed by two nodes (items), or not. Since each of the two items forming the edge would have already

been considered in the space of linear variables, it could happen that none of the items is part of the

partially built solution, only one of them is already included in the partial solution, or that both items

are already part of the partial solution. Thus, the profit and weight contributions of the edge will be

calculated accordingly. More precisely, if k = (i, j) then we can distinguish the following four cases (in

Table 1) for which we show how the profit and weight contributions are calculated.

Table 1: Calculation of the profit and weight contributions of an element k = (i, j) in the space of quadratic variables.

Cases Description Profit qk Weight wk

E1 i and j are unpacked

pi + pj + 2
∑

i′∈S(k−1,r−ai−aj)

(Pi′i + Pi′j) + 2Pij

+3
∑

m,m′∈S(k−1,r−ai−aj),

m̸=m′

(Dimm′ +Djmm′ )

+6
∑

m∈S(k−1,r−ai−aj)

Dijm

ai + aj

E2 i is unpacked and j is packed pi + 2
∑

i′∈S(k−1,r−ai)

Pi′i + 3
∑

m,m′∈S(k−1,r−ai),

m̸=m′

Dmm′i ai

E3 i is packed and j is unpacked pj + 2
∑

i′∈S(k−1,r−aj)

Pi′j + 3
∑

m∈S(k−1,r−aj),

m ̸=m′

Dmm′j aj

E4 i and j are packed 0 0
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4.3 Profit and weight in the cubic space

The space of cubic variables is characterized by n+ |E|+1 ≤ k ≤ n+ |E|+ |E|. Thus the consideration
of the k-th element in the DP algorithm corresponds to deciding whether to add the k-th hyper-edge,

formed by three nodes (items), or not. Similarly to the case of the quadratic space, such an hyper-edge

may have some of its nodes already included in the partial solution. This results into eight different

cases to be distinguished when one computes the profit and weight contribution of the hyper-edge. If

the hyper-edge is given by k = (i, j, l) then we can distinguish the following eight cases (in Table 2)

for the profit and weight contributions.

Table 2: Calculation of the profit and weight contributions of an element k = (i, j, l) in the space of cubic variables.

Cases Description Profit qk Weight wk

H1 i, j, and l are unpacked

pi + pj + pl + 2(Pij + Pjl + Pil)

+2
∑

i′∈S(k−1,r−ai−aj−al)

(Pi′i + Pi′j + Pi′l)

+6Dijl + 3
∑

m,m′∈S(k−1,r−ai−aj−al),

m̸=m′

(Dimm′ +Djmm′ +Dlmm′ )

+6
∑

m∈S(k−1,r−ai−aj−al)

(Dijm +Dilm +Djlm)

ai + aj + al

H2 i is packed, j and l are unpacked

pj + pl + 2Pjl + 2
∑

i′∈S(k−1,r−aj−al)

(Pi′j + Pi′l)

+3
∑

m,m′∈S(k−1,r−aj−al),

m̸=m′

(Djmm′ +Dlmm′ )

+6
∑

m∈S(k−1,r−aj−al)

Djlm

aj + al

H3 j is packed, i and l are unpacked

pi + pl + 2Pil + 2
∑

i′∈S(k−1,r−ai−al)

(Pi′i + Pi′l)

+3
∑

m,m′∈S(k−1,r−ai−al),

m̸=m′

(Dimm′ +Dlmm′ )

+6
∑

m∈S(k−1,r−ai−al)

Dilm

ai + al

H4 l is packed, i and j are unpacked

pi + pj + 2Pij + 2
∑

i′∈S(k−1,r−ai−aj)

(Pi′i + Pi′j)

+3
∑

m,m′∈S(k−1,r−ai−aj),

m ̸=m′

(Dimm′ +Djmm′ )

+6
∑

m∈S(k−1,r−ai−aj)

Dijm

ai + aj

H5 i and j are packed, l is unpacked
pl + 2

∑
i′∈S(k−1,r−al)

Pi′l + 3
∑

m,m′∈S(k−1,r−al),

m̸=m′

Dlmm′
al

H6 j and l are packed, i is unpacked pi + 2
∑

i′∈S(k−1,r−ai)

Pi′i + 3
∑

m,m′∈S(k−1,r−ai),

m ̸=m′

Dimm′ ai

H7 i and l are packed, j is unpacked pj + 2
∑

i′∈S(k−1,r−aj)

Pi′j + 3
∑

m,m′∈S(k−1,r−aj),

m̸=m′

Djmm′ aj

H8 i, j, and l are all packed 0 0
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4.4 The 3-space DP algorithm

We now show the pseudocode of our proposed DP heuristic for the CKP in Algorithm 1. It should be

noted that although the main body of the algorithm may look similar to that of other DP algorithms,

there are significant differences in the implementation as our DP algorithm travels through three

different space variables with the particularities highlighted above. At the end of the exploration in

each of the space variables, it is possible to extract a complete solution. This results into three different

solutions for the CKP when our DP algorithm comes to an end.

Algorithm 1: The 3-Space Dynamic programming for the CKP.

Initialize: f(0, 0) to 0, and f(k, r) to −∞ for k = 1, . . . , n+ |E|+ |E| and r = 0, . . . , c.
Initialize: S(k, r) = ∅, for all k = 1, . . . , n+ |E|+ |E| and r = 0, . . . , c.

1 for k = 1 . . . n+ |E|+ |E| do
2 for r = 0, . . . , c do
3 if f(k − 1, r) > f(k, r) then
4 Set f(k, r) = f(k − 1, r) and S(k, r) = S(k − 1, r)
5 end
6 if r + wk ≤ c then
7 Let β be the profit of S(k − 1, r) ∪ {k}
8 if β > f(k, r + wk) then
9 f(k, r + wk) = β

10 S(k, r + wk) = S(k − 1, r) ∪ {k}
11 end

12 end

13 end
14 if k = n (Exit from the linear space) then
15

Let (k∗L, r
∗
L) = arg max

0≤r≤c
1≤k≤n

f(k, r)

16 end
17 if k = n+ |E| (Exit from the quadratic space) then
18

Let (k∗Q, r∗Q) = arg max
0≤r≤c

n+1≤k≤n+|E|

f(k, r)

19 end
20 if k = n+ |E|+ |E| (Exit from the cubic space) then
21

Let (k∗C , r∗C) = arg max
0≤r≤c

n+|E|+1≤k≤n+|E|+|E|

f(k, r)

22 end

23 end
24 Return: S(k∗L, r

∗
L), S(k

∗
Q, r∗Q), and S(k∗C , r∗C)

At each stage of Algorithm 1, the parameter β represents the profit of the existing partial packing to

which the k-th element is added. This parameter is therefore calculated as the state value of the given

stage to which we add the profit contribution of element k, which itself is calculated using the formula

corresponding to one of the cases discussed above. Note that for every stage (k, r) of the DP algorithm,

the state value of the existing partial packing is already stored in f(k−1, r−wk). Hence, we only need

to compute the value of qk, which is the profit contribution of the k-th element. The calculation of qk
can be done in O(n2) in all three space variables. This results in a time complexity of O(n3c) for the

heuristic solution S(k∗L, r
∗
L) of the linear space variables, O(n4c) for the heuristic solution S(k∗Q, r

∗
Q) of

the quadratic space variables, as well as O(n5c) for the heuristic solution S(k∗C , r
∗
C) of the cubic space

variables.
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5 Improving the heuristic

In this section, we present two procedures for improving the performance of our proposed DP algorithm.

The first procedure, which is implemented at the end of Algorithm 1, is the well known “fill-up and

exchange” local search search procedure, which has been used in the QKP (Fomeni and Letchford, 2014;

Billionnet and Calmels, 1996) as well as in the CKP (Forrester and Waddell, 2022). Given a solution,

this procedure works in two phases. First, it attempts to fill up the residual space in the knapsack, if

possible, then it tries to improve the solution by swapping one packed item with an unpacked one. In

our approach, we independently apply the “fill-up and exchange” local search method to the solution

of each of the three spaces.

The second enhancement procedure for our algorithm uses the idea of upper planes with an adap-

tation to the CKP to define sorting criteria that will be used to order the items before entering the

linear space variables for the DP. Indeed, Caprara et al. (1999) defined improved upper planes to find

upper bounds for the QKP. Later on these upper planes were used by Fomeni and Letchford (2014) in

order to define sorting criteria for the items in their DP heuristic algorithm for the QKP. We define

an adaptation of the latter idea to the case of CKP.

In the case of CKP, given a vector α ∈ Qn
+, an upper plane for the objective function of the CKP

is defined by a linear function αTx, which satisfies the following inequality:

αTx ≥
n∑

i=1

pixi +

n∑
i=1

n∑
j=1
j ̸=i

Pijxixj +

n∑
i=1

n∑
j=1
j ̸=i

n∑
l=1

l ̸=i, l ̸=j

Dijlxixjxl, ∀x ∈ {0, 1}n. (8)

In our computational experiments, we have used four sets of upper planes (α1, α2, α3, and α4), defined

as follows.

α1
i =


pi + 2

n∑
j=1
j ̸=i

Pij + 3

n∑
j=1
j ̸=i

n∑
l=1

l ̸=i, l ̸=j

Dijl


 , ∀i = 1, . . . , n. (9)

By defining the parameter

πij = 2Pij + 6

n∑
l=1

l ̸=i, l ̸=j

Dijl, (10)

we also define

α2
i = pi +max


n∑

j=1
j ̸=i

πijxj :

n∑
j=1
j ̸=i

ajxj ≤ c− ai, x ∈ {0, 1}

 , ∀i = 1, . . . , n, (11)

α3
i = pi +max


n∑

j=1
j ̸=i

πijxj :

n∑
j=1
j ̸=i

ajxj ≤ c− ai, x ∈ [0, 1]

 , ∀i = 1, . . . , n, (12)

α4
i =pi +max

2
n∑

j=1
j ̸=i

Pijxj + 3
n∑

j=1
j ̸=i

n∑
l=1

l ̸=i, l ̸=j

Dijlxjxl :
n∑

j=1
j ̸=i

ajxj ≤ c− ai, x ∈ {0, 1}

 , ∀i = 1, . . . , n. (13)
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For any item i, the value of α1
i can be computed in the O(n2). For α2

i and α3
i , they represent a

binary and fractional KP, we can obtain their values respectively in O(n2c) and O(n2) time by using

Bellman’s principal of optimality for α2
i (Bellman, 1957) and advanced median-finding techniques of

Balas and Zemel (1980) for α3
i . It should be noted also that obtaining the value of α4

i in the latter

equation amounts to solving a QKP instance. Since an optimal solution is not necessarily required for

our purpose, we use the QKP greedy algorithm of Billionnet and Calmels (1996), which offers a linear

time complexity.

For each given upper plane, the items are sorted in non-decreasing order of the ratio αi/ai. The

DP algorithm will therefore use this order when considering the items in the space of linear variables.

6 Computational experiments

In this section, we present and discuss the results of the computational experiments carried out to

assess the quality of our proposed heuristic algorithm. We conducted three sets of experiments, the

first of which is aimed at assessing the impact of the different components of the algorithm. The second

set of experiments is aimed at evaluating the quality of the solution obtained by our algorithm, while

the third set of experiments solves larger CKP instances and compares the results with the other CKP

heuristic that can be found in the literature (Forrester and Waddell, 2022).

Throughout these computational experiments, the optimal solutions, where possible, have been

obtained by solving the linearized CKP formulation of Forrester and Waddell (2022) using Gurobi

version 10.0 for Python. Our heuristic algorithm was coded in the C programming language and run

on a single node of a computer equipped with a processor running at 2.65 GHz and 200 GB of RAM.

The data used for the computational experiments have been generated randomly using the same

generation scheme from Forrester and Waddell (2022). It should be noted though that this CKP

instance generation scheme is an adaptation of the standard instance generation scheme used in the

QKP literature (Gallo et al., 1980; Caprara et al., 1999; Fomeni et al., 2022). For each of the instances,

the weight ai of each item is an integer number drawn from a uniform distribution in the interval

[10, 50], while the knapsack capacity c is an integer from a uniform distribution between 70 and
n∑

i=1

ai.

The non-zero objective coefficients pi for all i, Pij for (i, j), and Dijl for (i, j, l) are integers from

a uniform distribution in the interval [1, 100]. We also considered varying the density of the profit

matrix, which represents the percentage of non-zero elements in the 3-dimensional profit matrix. We

have thus generated instances with density ∆ ∈ {25%, 50%, 75%, 100%}.

6.1 Preliminary experiments

In this first set of computational experiments, we aim to assess the impact of the various components of

our algorithm to identify which combination offers a better trade-off between the solution quality and

the computational time. We should recall that the first component of our algorithm consists of sorting

the items in the non-decreasing order of the ratio of the adapted upper planes with the items weights.

The second component of the algorithm is the 3-space DP run, which is able to produce a feasible CKP

solution after leaving each of the space variables. The third component is the “fill-up and exchange”

local search procedure. Therefore, this preliminary study consists of determining which adapted upper

plane sorting as well as which space variable of the DP provides a better quality solution. For this

experiment, we generated 10 instances for each combination of size n ∈ {20, 25, 30, 40, 50} and profit

hyper-matrix density ∆ ∈ {25%, 50%, 75%, 100%}, for a total of 200 instances.

The results for these experiments are presented in Tables 3 and 4. More precisely, Table 3 presents

the results of our algorithm when the items are not sorted in the first phase. Then, the results of the

algorithm with the different orderings are shown in Table 4 for the four adapted upper planes described

in Section 5. In these tables we report, for each combination of size and density, the average (out of
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Table 3: Average percentage gaps of the three spaces when items are not sorted.

Linear Quadratic Cubic

Density Size n Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

25

20 1.365 0.00 0.000 0.09 0.000 0.87
25 0.803 0.01 0.000 0.19 0.000 2.18
30 0.254 0.02 0.000 0.50 0.000 7.10
40 1.224 0.04 0.000 1.18 0.000 21.98
50 1.312 0.12 0.005 4.18 0.000 97.70

50

20 0.000 0.00 0.000 0.06 0.000 0.58
25 0.195 0.01 0.000 0.22 0.000 2.54
30 0.373 0.01 0.000 0.33 0.000 4.67
40 0.120 0.04 0.007 1.55 0.007 28.97
50 0.184 0.09 0.000 3.40 0.000 77.63

75

20 0.000 0.00 0.000 0.06 0.000 0.60
25 0.111 0.01 0.000 0.18 0.000 2.11
30 1.027 0.01 0.059 0.32 0.059 4.54
40 0.030 0.03 0.000 1.13 0.000 21.05
50 0.000 0.09 0.000 3.64 0.000 81.03

100

20 0.172 0.00 0.000 0.10 0.000 0.92
25 0.676 0.01 0.000 0.13 0.000 1.57
30 0.003 0.01 0.000 0.43 0.000 6.06
40 0.515 0.03 0.008 0.91 0.008 16.92
50 0.009 0.10 0.000 4.33 0.000 97.28

Avg 0.419 0.03 0.004 1.15 0.004 23.82

10) optimality gap given by the heuristic solutions, as well as the average computational time needed

to achieve these gaps. More precisely, the columns “Gap”, refer to the optimality gap of the solution

of the DP algorithm in the linear, quadratic, and cubic spaces, respectively, while the columns “Time”

refer to the computational time spent before obtaining the solution for each of the three spaces. Note

that the optimality gaps here are computed as(
Optimal value− Lower Bound

Optimal value

)
× 100.

Starting with the DP solution in the space of linear variables, one can observe that when the items

are not sorted (Table 3), the solutions obtained are within 1.3% of optimality, with few cases where

the optimal solution is found. From the results in Table 4, one can notice that this gap drops below

0.5% for the DP solution in the space of linear variables. This suggests that ordering the items before

implementing the DP algorithm may significantly improve the quality of the solution obtained in the

linear space variables when sorted based on α3
i /ai and α4

i /ai. Out of the four adapted upper planes

used for sorting the items, the ratio α4
i /ai appears to dominate the other three sorting criteria overall

in terms of the optimality gap.

When the DP moves into the space of quadratic variables, one can see that the quality of the

solution is much more improved, with the algorithm obtaining an optimal solution for nearly all the

instances. In fact, in this space, the optimality gaps are consistently below 0.05%. However, looking

at Tables 3 and 4, there does not seem to be any impact of ordering the items on the quality of the

solution of the DP in the quadratic space. On the contrary, there are some instances for which ordering

the items before the DP algorithm deteriorates the quality of the solution in the quadratic space. In

some rare cases, the solution of the linear space is better than those of the quadratic and cubic ones,

as the local search applied at the end of each of the spaces was able to perform better when applied

to the linear space solution. Finally, for these instances, the cubic space does not seem to offer much

of an improvement with respect to the solution obtained in the quadratic space. The only difference

observed is when n = 50 for ∆ = 25% in both tables.
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Table 4: Average percentage gaps of the three spaces of the three spaces with different sorting strategies.

Sorting α1
i /ai α2

i /ai

Linear Quadratic Cubic Linear Quadratic Cubic

Size n Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

25

20 0.000 0.00 0.000 0.17 0.000 0.99 0.000 0.00 0.000 0.18 0.000 0.97
25 0.609 0.01 0.013 0.20 0.000 2.28 1.431 0.01 0.000 0.24 0.000 2.24
30 0.289 0.02 0.000 0.52 0.000 7.20 0.403 0.02 0.000 0.58 0.000 7.27
40 0.223 0.04 0.000 1.25 0.000 23.07 0.742 0.04 0.000 1.21 0.000 23.00
50 0.348 0.11 0.005 4.49 0.000 99.17 0.766 0.11 0.000 4.33 0.000 100.73

50

20 0.000 0.00 0.000 0.07 0.000 0.61 0.000 0.00 0.000 0.12 0.000 0.62
25 0.375 0.01 0.179 0.23 0.179 2.65 0.195 0.01 0.000 0.23 0.000 2.62
30 0.187 0.01 0.000 0.34 0.000 4.72 0.388 0.01 0.000 0.34 0.000 4.76
40 0.007 0.05 0.007 1.67 0.007 30.31 0.188 0.04 0.008 1.60 0.007 30.53
50 0.184 0.10 0.000 3.64 0.000 79.70 0.000 0.10 0.000 3.51 0.000 80.89

75

20 0.063 0.00 0.000 0.07 0.000 0.63 0.063 0.00 0.000 0.12 0.000 0.63
25 0.116 0.01 0.000 0.19 0.000 2.19 1.221 0.01 0.000 0.19 0.000 2.18
30 0.093 0.01 0.000 0.34 0.000 4.60 0.940 0.01 0.000 0.35 0.000 4.69
40 0.214 0.04 0.000 1.22 0.000 21.61 0.466 0.03 0.000 1.17 0.000 22.07
50 0.066 0.09 0.000 3.81 0.000 82.77 0.000 0.09 0.000 3.65 0.000 84.02

100

20 0.000 0.00 0.000 0.10 0.000 0.96 0.000 0.00 0.000 0.17 0.000 0.97
25 0.794 0.01 0.000 0.14 0.000 1.63 0.000 0.01 0.000 0.17 0.000 1.62
30 0.000 0.01 0.000 0.45 0.000 6.17 0.031 0.01 0.000 0.45 0.000 6.30
40 0.000 0.03 0.008 0.97 0.008 17.33 0.222 0.03 0.000 0.94 0.000 17.65
50 0.000 0.12 0.000 4.53 0.000 98.94 0.000 0.11 0.000 4.38 0.000 100.25

Avg 0.175 0.03 0.011 1.22 0.010 24.38 0.366 0.03 0.000 1.20 0.000 24.70

Sorting α3
i /ai α4

i /ai

25

20 0.000 0.00 0.000 0.17 0.000 0.97 0.000 0.00 0.000 0.10 0.000 0.95
25 0.205 0.01 0.000 0.18 0.000 2.25 0.263 0.01 0.000 0.20 0.000 2.39
30 0.404 0.02 0.000 0.48 0.000 7.09 0.413 0.02 0.000 0.53 0.000 7.62
40 0.217 0.04 0.009 1.16 0.000 21.70 0.217 0.04 0.009 1.24 0.000 23.88
50 0.347 0.11 0.005 4.11 0.000 96.61 0.347 0.12 0.005 4.38 0.000 104.07

50

20 0.000 0.00 0.000 0.07 0.000 0.60 0.000 0.00 0.000 0.07 0.000 0.64
25 0.179 0.01 0.179 0.21 0.179 2.60 0.179 0.01 0.179 0.23 0.179 2.78
30 0.193 0.01 0.000 0.32 0.000 4.62 0.193 0.01 0.000 0.35 0.000 4.99
40 0.014 0.05 0.007 1.53 0.007 28.73 0.033 0.05 0.007 1.64 0.007 31.17
50 0.000 0.10 0.000 3.32 0.000 77.18 0.184 0.10 0.000 3.56 0.000 83.50

75

20 0.229 0.00 0.000 0.06 0.000 0.62 0.229 0.00 0.000 0.07 0.000 0.66
25 0.132 0.01 0.000 0.18 0.000 2.15 0.104 0.01 0.000 0.19 0.000 2.31
30 0.093 0.01 0.000 0.31 0.000 4.55 0.093 0.01 0.000 0.34 0.000 4.91
40 0.246 0.03 0.000 1.12 0.000 20.71 0.246 0.04 0.000 1.20 0.000 22.35
50 0.000 0.10 0.000 3.47 0.000 80.02 0.000 0.10 0.000 3.71 0.000 86.08

100

20 0.000 0.00 0.000 0.09 0.000 0.94 0.000 0.00 0.000 0.10 0.000 1.02
25 0.670 0.01 0.000 0.13 0.000 1.61 0.670 0.01 0.000 0.15 0.000 1.71
30 0.000 0.01 0.000 0.42 0.000 6.13 0.000 0.01 0.000 0.46 0.000 6.60
40 0.004 0.03 0.008 0.89 0.008 16.66 0.004 0.03 0.008 0.96 0.008 17.97
50 0.000 0.12 0.000 4.14 0.000 95.84 0.000 0.13 0.000 4.43 0.000 101.47

Average 0.147 0.03 0.010 1.12 0.010 23.58 0.116 0.03 0.001 1.19 0.001 25.35

In terms of computational times, it is expected that the algorithm will require more time as the

DP algorithm progresses into higher spaces. In fact, the computational time for the DP solution in the

linear space for the largest instances is obtained in about 0.1 seconds, which grows to about 4.3 seconds

for the quadratic space, and around 100 seconds for the cubic space. An interesting fact about these

results is that the quadratic space DP solution offers near-optimal solutions for most of the instances,

while its computational times are still low. For these instances, it offers a better trade-off between the

quality of the solution obtained and the computational time among the three solutions.

6.2 Efficiency of the DP solution

This second set of experiments is aimed at showcasing the efficiency of our heuristic solutions compared

to the heuristic algorithm proposed by Forrester and Waddell (2022). For these experiments, we

use instances of small to medium size by generating 10 instances for each combination of size n ∈
{20, 25, 30, 40, 50, 60, 70, 80} and profit hyper-matrix density ∆ ∈ {25%, 50%, 75%, 100%}, for a total

of 320 instances.

In these experiments, we solve each instance to optimality twice with a time limit of 5 hours

using the MIP solver. In the first run, we provide a starting solution to the solver, while in the

second attempt, we do not provide our DP heuristic solution to the solver as a warmstart. Each of

the instances is also solved using both our DP heuristic and the heuristic algorithm of Forrester and
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Waddell (2022). The experiment results are shown in Tables 5 and 6, wherein the first and second

columns describe the characteristic (size and density) of the instances. The columns “Gap (Opt)”

of the Table 5, give the optimality gap of the solutions of the DP heuristic algorithm at each space

(linear, quadratic, and cubic) and of the Forrester and Waddell (2022) heuristic, for the instances that

are solved to optimality within the time limit of 5 hours with warmstart. Additionally, the numbers in

brackets for this column, in the format (A/B) report B as the number of instances out of 10 that have

been solved to optimality within the time limit, and A the number of times (out of B instances) that

the DP heuristic solution has the same value as the optimal objective function value. The columns

“#Better” give the number of times that the lower bound found by our DP heuristic for each space

and that of Forrester and Waddell (2022) is better than the best lower bound found by the MIP solver

for the instances where an optimal solution could not be found within the 5 hours time limit. Finally,

the columns “Time” of Tables 5 and 6 report the computational times of our DP heuristic algorithm

for each space, of the heuristic algorithm of Forrester and Waddell (2022), and of the exact solutions

with and without initial solution, respectively.

Table 5: Comparison of solution approaches for solving CKP with warmstart.

Linear Quadratic Cubic Forrester and Waddell (2022) Exact

Density Size n Gap(%) (Opt) #Better Time(s) Gap(%) (Opt) #Better Time (s) Gap (%) (Opt) #Better Time(s) Gap (%) (Opt) #Better Time (s) Time (s)

25

20 1.365(5/10) * 0.00 0.000(10/10) * 0.09 0.000(10/10) * 0.87 1.088(8/10) * 0.01 0.57
25 0.803(8/10) * 0.01 0.000(10/10) * 0.19 0.000(10/10) * 2.18 0.499(7/10) * 0.01 2.29
30 0.254(8/10) * 0.02 0.000(10/10) * 0.50 0.000(10/10) * 7.10 0.795(8/10) * 0.02 8.93
40 1.224(6/10) * 0.04 0.000(10/10) * 1.18 0.000(10/10) * 21.98 0.149(8/10) * 0.04 399.27
50 1.312(3/10) * 0.12 0.005(9/10) * 4.18 0.000(10/10) * 97.70 0.054(6/10) * 0.12 2197.25
60 0.304(2/4) 3/6 0.21 0.000(4/4) 6/6 8.42 0.000(4/4) 6/6 229.46 0.667(2/3) 3/7 0.25 12 597.50
70 0.000(1/1) 3/9 0.43 0.000(1/1) 9/9 19.46 0.000(1/1) 9/9 620.47 0.000(1/1) 3/9 0.34 16 204.67
80 * 4/10 0.34 * 10/10 12.37 * 10/10 432.37 * 8/10 0.40 18 009.25

50

20 0.000(10/10) * 0.00 0.000(10/10) * 0.06 0.000(10/10) * 0.58 0.398(9/10) * 0.01 1.53
25 0.195(9/10) * 0.01 0.000(10/10) * 0.22 0.000(10/10) * 2.54 1.015(9/10) * 0.01 3.62
30 0.373(7/10) * 0.01 0.000(10/10) * 0.33 0.000(10/10) * 4.67 0.302(7/10) * 0.02 38.69
40 0.120(7/10) * 0.04 0.007(9/10) * 1.55 0.007(9/10) * 28.97 0.569(6/10) * 0.06 436.23
50 0.000(4/4) 3/6 0.09 0.000(4/4) 6/6 3.40 0.000(4/4) 6/6 77.63 0.000(5/5) 3/5 0.12 11 590.56
60 0.000(1/1) 5/9 0.19 0.000(1/1) 9/9 7.10 0.000(1/1) 9/9 192.47 0.000(1/1) 4/9 0.25 16 606.82
70 0.308(2/3) 3/7 0.42 0.000(3/3) 7/7 19.67 0.000(3/3) 7/7 637.47 0.000(2/2) 6/8 0.32 14 601.87
80 * 3/10 0.55 * 10/10 27.68 * 10/10 986.73 * 9/10 0.53 18 008.37

75

20 0.000(10/10) * 0.00 0.000(10/10) * 0.06 0.000 10 0.60 1.324(9/10) * 0.01 1.76
25 0.111(8/10) * 0.01 0.000(10/10) * 0.18 0.000(10/10) * 2.11 0.508(8/10) * 0.01 8.34
30 1.027(7/10) * 0.01 0.059(9/10) * 0.32 0.059(9/10) * 4.54 0.553(6/10) * 0.02 67.93
40 0.030(8/10) * 0.03 0.000(10/10) * 1.13 0.000(10/10) * 21.05 0.272(7/10) * 0.06 2458.40
50 0.000(3/3) 4/7 0.09 0.000(3/3) 7/7 3.64 0.000(3/3) 7/7 81.03 0.171(1/3) 7/7 0.10 15 403.74
60 0.000(2/2) 3/8 0.11 0.000(2/2) 8/8 4.12 0.124(0/2) 1/8 111.97 0.000(2/2) 5/8 0.19 16 886.62
70 * 3/10 0.28 * 10/10 12.67 * 10/10 412.72 * 8/10 0.33 18 004.22
80 * 6/10 0.56 * 10/10 28.73 * 10/10 1038.15 * 10/10 0.42 18 008.05

100

20 0.172(7/10) * 0.00 0.000(10/10) * 0.10 0.000(10/10) * 0.92 0.157(7/10) * 0.01 3.44
25 0.676(7/10) * 0.01 0.000(10/10) * 0.13 0.000(10/10) * 1.57 0.155(8/10) * 0.01 12.61
30 0.003(9/10) * 0.01 0.000(10/10) * 0.43 0.000(10/10) * 6.06 0.017(8/10) * 0.02 70.07
40 0.515(6/10) * 0.03 0.008(9/10) * 0.91 0.008(9/10) * 16.92 0.318(6/10) * 0.06 1880.59
50 0.009(3/3) 4/7 0.10 0.000(4/4) 6/6 4.33 0.000(4/4) 6/6 97.28 0.000(3/3) 4/7 0.13 11 484.60
60 * 6/10 0.11 * 10/10 4.60 0.000(1/1) 9/10 122.38 0.000(1/1) 9/10 0.19 18 002.81
70 * 5/10 0.20 * 10/10 8.30 * 10/10 269.33 * 7/10 0.27 18 004.12
80 * 2/10 0.34 * 10/10 16.71 * 10/10 601.94 * 10/10 0.42 18 010.32

(Opt): (A/B) where A is the number of solutions that this method finds optimal among the B instances proved
optimal by the exact solver.

#Better: number of times this algorithm is better than the exact solver.

The results in Tables 5 and 6 reveal that out of the 320 instances used for this experiment and

with a time limit of 5 hours, the MIP solver could obtain optimal solutions for 192 instances when a

heuristic solution was given as a warmstart and for 190 instances when no initial solution was given

(see gaps columns). This suggests that, at this stage, there is no significant evidence that an initial

solution makes an impact in the performance of the solver. This is also revealed in the computational

times by comparing the last column of the Tables 5 and 6, where there is no significant difference in the

computation time of the solver with or without the initial solution. However, out of the 192 instances

that were solved to optimality by the solver, our DP heuristic can match the optimal solution value

for up to 142 instances for the linear space, 188 for the quadratic space, and 189 for the cubic space.

Moreover, the results in columns “#Better” show that for all the instances that could not be solved to

optimality by the MIP solver, the best solutions found by the solver after 5 hours are all worse than

or equal to our DP heuristic solution values in the case of the quadratic and the cubic spaces, which

only requires less than 30 seconds and 20 minutes in average as shown in columns “Time”.
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Table 6: Comparison of solution approaches for solving CKP without warmstart.

Linear Quadratic Cubic Forrester and Waddell (2022) Exact

Density Size n Gap(%) (Opt) #Better Time (s) Gap(%) (Opt) #Better Time (s) Gap (%) (Opt) #Better Time(s) Gap (%) (Opt) #Better Time (s) Time (s)

25

20 1.365 (5/10) * 0.00 0.000 (10/10) * 0.09 0.000 (10/10) * 0.87 1.088 (8/10) * 0.01 0.57
25 0.803 (8/10) * 0.01 0.000 (10/10) * 0.19 0.000 (10/10) * 2.18 0.499 (7/10) * 0.01 2.50
30 0.254 (8/10) * 0.02 0.000 (10/10) * 0.50 0.000 (10/10) * 7.10 0.795 (8/10) * 0.02 8.97
40 1.224 (6/10) * 0.04 0.000 (10/10) * 1.18 0.000 (10/10) * 21.98 0.149 (8/10) * 0.04 341.65
50 1.312 (3/10) * 0.12 0.005 (9/10) * 4.18 0.000 (10/10) * 97.70 0.054 (6/10) * 0.12 2402.07
60 0.026 (2/3) 4/7 0.21 0.000 (3/3) 7/7 8.42 0.000 (3/3) 7/7 229.46 0.667 (2/3) 3/7 0.25 13 065.14
70 0.000 (1/1) 4/9 0.43 0.000 (1/1) 9/9 19.46 0.000 (1/1) 9/9 620.47 0.000 (1/1) 3/9 0.34 16 205.28
80 * 5/10 0.34 * 10/10 12.37 * 10/10 432.37 * 8/10 0.40 18 009.25

50

20 0.000 (10/10) * 0.00 0.000 (10/10) * 0.06 0.000 (10/10) * 0.58 0.398 (9/10) * 0.01 1.50
25 0.195 (9/10) * 0.01 0.000 (10/10) * 0.22 0.000 (10/10) * 2.54 1.015 (9/10) * 0.01 3.90
30 0.373 (7/10) * 0.01 0.000 (10/10) * 0.33 0.000 (10/10) * 4.67 0.302 (7/10) * 0.02 41.50
40 0.120 (7/10) * 0.04 0.007 (9/10) * 1.55 0.007 (9/10) * 28.97 0.569 (6/10) * 0.06 472.78
50 0.184 (3/5) 3/5 0.09 0.000 (4/4) 5/5 3.40 0.000 (5/5) 5/5 77.63 0.000 (5/5) 3/5 0.12 11 127.68
60 0.000 (1/1) 5/9 0.19 0.000 (1/1) 9/9 7.10 0.000 (1/1) 9/9 192.47 0.000 (1/1) 4/9 0.25 16 560.95
70 0.462 (1/2) 6/8 0.42 0.000 (2/2) 8/8 19.67 0.000 (2/2) 8/8 637.47 0.000 (2/2) 6/8 0.32 14 953.95
80 * 10/10 0.55 * 10/10 27.68 * 10/10 986.73 * 6/10 0.53 18 008.37

75

20 0.000 (10/10) * 0.00 0.000 (10/10) * 0.06 0.000 (10/10) * 0.60 1.324 (9/10) * 0.01 1.95
25 0.111 (8/10) * 0.01 0.000 (10/10) * 0.18 0.000 (10/10) * 2.11 0.508 (8/10) * 0.01 9.51
30 1.027 (7/10) * 0.01 0.059 (9/10) * 0.32 0.059 (9/10) * 4.54 0.553 (6/10) * 0.02 77.17
40 0.030 (8/10) * 0.03 0.000 (10/10) * 1.13 0.000 (10/10) * 21.05 0.272 (7/10) * 0.06 2667.80
50 0.000 (3/3) 4/7 0.09 0.000 (3/3) 7/7 3.64 0.000 (3/3) 6/6 81.03 0.171 (1/3) 5/7 0.10 15 679.34
60 0.000 (2/2) 3/8 0.11 0.000 (2/2) 8/8 4.12 0.000 (2/2) 8/8 111.02 0.000 (2/2) 2/8 0.14 19 738.57
70 0.000 (2/2) 7/8 0.18 0.000 (2/2) 8/8 10.31 0.000 (2/2) 8/8 472.85 0.000 (2/2) 7/8 0.23 18 946.83
80 * 9/10 0.24 * 9/10 19.12 * 10/10 546.73 * 9/10 0.37 13 646.26

100

20 0.172 (7/10) * 0.00 0.000 (10/10) * 0.10 0.000 (10/10) * 0.92 0.157 (7/10) * 0.01 3.46
25 0.676 (7/10) * 0.01 0.000 (10/10) * 0.13 0.000 (10/10) * 1.57 0.155 (8/10) * 0.01 15.16
30 0.003 (9/10) * 0.01 0.000 (10/10) * 0.43 0.000 (10/10) * 6.06 0.017 (8/10) * 0.02 89.07
40 0.515 (6/10) * 0.03 0.008 (9/10) * 0.91 0.008 (9/10) * 16.92 0.318 (6/10) * 0.06 1574.51
50 0.009 (3/3) 4/7 0.10 0.000 (3/3) 7/7 4.33 0.000 (3/3) 6/6 97.28 0.000 (3/3) 4/7 0.13 11 579.05
60 * 10/10 0.11 * 10/10 4.60 * 10/10 122.38 * 9/10 0.19 18 002.82
70 * 9/10 0.20 * 10/10 8.30 * 10/10 269.33 * 7/10 0.27 18 004.07
80 * 10/10 0.34 * 10/10 16.71 * 10/10 601.94 * 10/10 0.42 18 008.10

(Opt): (A/B) where A is the number of solutions that this method finds optimal among the B instances proved
optimal by the exact solver.

#Better: number of times this algorithm is better than the exact solver.

Regarding the greedy-like heuristic algorithm of Forrester and Waddell (2022), the results in column

“Gap” reveal that their algorithm can only match optimal solutions for 142 instances out of 192.

Moreover, their optimality gaps are most of the time larger than 0.5%. This algorithm has the merit

of being fast to find its heuristic solution. Nevertheless, the gaps obtained by the heuristic solution

of Forrester and Waddell (2022) can be compared with the gaps of our DP algorithm in the space of

linear variables for comparable computational times. Overall, the results in Tables 5 and 6 show that

for a class of strongly NP-Hard problem like the CKP, our proposed DP heuristic algorithm (in all

the spaces) can be used as a fair alternative to the exact solution method specifically in the space of

quadratic and cubic variables. Even though the use of such a good heuristic solution as warmstart

does not seem to improve the performance of commercial solvers at this time, our experiments reveal

that this is simply due to the fact that the continuous relaxation for the CKP found in the literature

is still very weak.

6.3 Results for large instances

In this section, we conduct a third set of experiments with the aim of assessing the scalability of our

proposed DP heuristic algorithm, as well as furthering the comparison between our algorithm and that

of Forrester and Waddell (2022). For this set of experiments, we generated 10 instances for each com-

bination of size n ∈ {90, 120, 150, 200} and profit hyper-matrix density ∆ ∈ {25%, 50%, 75%, 100%},
for a total of 160 instances. The results are presented in Tables 7–10 for n = 90, 120, 150, 200. In

these tables, we report, for each instance, the lower bound from our DP heuristic algorithm (solution

from the linear, quadratic, and cubic spaces) in columns “LB”, and the lower bound of the heuristic

algorithm of Forrester and Waddell (2022), as well as the computational times of both algorithms in

columns “Time” for each algorithm. All the best solutions are highlighted in bold.

The results from the Tables 7–10 show that out of the 160 instances tested, our proposed DP

heuristic algorithm provides a better solution than the algorithm of Forrester and Waddell (2022)

for almost instances for all the spaces, except for some cases of the linear space solution. For some
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instances, the solutions provided by the two algorithms are equal. This suggests that our proposed

algorithm is dominant in terms of the quality of the heuristic solution for the solution provided by all

the spaces. The computational time of the algorithm of Forrester and Waddell (2022) remains very

low, while the computational times of our proposed DP heuristic algorithm are also reasonable for the

quality of the solutions obtained for all the spaces; instances of 200 items are solved within at most

five minutes for our algorithm in the quadratic space and less than 1 minute in the linear space.

Table 7: Comparative results of large instances for n = 90.

Linear Quadratic Cubic Forrester and Waddell (2022)

Instances LB Time (s) LB Time (s) LB Time (s) LB Time (s)

∆ = 25

1 76 330 0.16 77 282 1.59 77 282 53.40 74 046 0.39
2 3 753 277 1.00 3 754 107 52.58 3 754 107 2139.25 3 753 277 1.01
3 8 164 765 1.49 8 164 765 98.98 8 164 765 4091.73 8 164 765 0.52
4 3 025 186 1.21 3 121 213 45.33 3 121 213 1821.56 3 108 689 0.50
5 824 052 0.47 824 052 14.29 824 052 206.61 821 723 0.90
6 359 469 0.31 367 070 5.73 367 070 206.61 361 506 0.62
7 7 041 130 1.41 7 043 199 96.01 7 043 199 4015.09 7 043 199 0.52
8 972 838 0.59 979 581 16.30 979 581 636.37 970 298 0.47
9 1 016 045 0.54 1 018 817 14.59 1 018 817 548.14 1 016 045 0.92
10 1 277 704 0.60 1 281 347 21.00 1 281 347 811.75 1 270 450 0.48

∆ = 50

1 7 720 778 0.77 7 720 778 58.18 7 720 778 2389.13 7 720 778 0.51
2 5 914 117 0.66 5 914 117 45.82 5 914 117 1862.82 5 905 135 0.50
3 7 133 074 1.05 7 149 040 57.56 7 149 040 2350.57 7 133 074 0.77
4 947 881 0.11 947 881 7.89 947 881 302.07 947 881 0.43
5 6 194 185 0.72 6 194 185 45.02 6 194 185 1821.68 6 186 634 0.75
6 6 237 728 0.90 6 243 393 45.97 6 243 393 1861.30 6 198 411 0.76
7 11 744 440 1.22 11 744 440 80.18 11 744 440 3341.89 11 728 744 1.03
8 17 459 040 1.72 17 459 040 101.38 17 459 040 4227.32 17 459 040 0.52
9 597 107 0.22 597 107 5.67 597 107 211.56 593 591 0.60
10 7 524 118 1.31 7 542 219 53.08 7 542 219 2174.27 7 542 219 1.53

∆ = 75

1 120 702 0.21 135 680 0.76 135 680 27.63 135 680 0.39
2 22 120 049 1.79 22 120 049 91.36 22 120 049 3812.39 22 111 362 1.04
3 16 325 675 1.63 16 329 301 76.26 16 329 301 3115.30 16 319 699 1.28
4 11 727 974 1.06 11 727 974 61.03 11 727 974 2488.97 11 722 401 1.01
5 2 522 865 0.23 2 522 865 11.56 2 522 865 439.90 2 522 865 0.87
6 7 175 279 0.75 7 189 293 40.19 7 189 293 1596.17 7 156 695 0.74
7 5 498 445 0.35 5 498 445 28.03 5 498 445 1106.90 5 498 445 0.47
8 442 457 0.11 442 457 3.09 442 457 113.09 440 932 0.59
9 1 416 561 0.23 1 416 561 8.03 1 416 561 299.77 1 416 561 0.84
10 21 911 649 1.52 21 921 174 91.77 21 921 174 3782.34 21 918 446 1.02

∆ = 100

1 34 875 004 1.69 34 875 004 102.90 34 875 004 4279.40 34 875 004 0.50
2 5 066 348 0.37 5 066 348 21.04 5 066 348 807.82 5 066 348 0.68
3 14 105 606 0.84 14 105 606 56.50 14 105 606 2272.86 14 101 483 0.99
4 572 101 0.25 573 351 2.87 573 351 98.98 572 254 0.78
5 12 301 710 0.78 12 302 734 50.95 12 302 734 2044.73 12 302 734 0.97
6 14 165 308 1.22 14 174 114 58.11 14 174 114 2326.94 14 171 858 1.51
7 6 108 731 0.47 6 114 324 25.22 6 114 324 990.71 6 105 185 0.71
8 5 775 282 0.60 5 775 282 21.41 5 775 282 839.33 5 764 495 1.14
9 18 404 178 1.25 18 407 089 63.16 18 407 089 2575.17 18 361 312 0.77
10 31 527 068 2.26 31 527 068 100.72 31 527 068 4243.21 31 527 068 1.03
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Table 8: Comparative results of large instances for n = 120.

Linear Quadratic Cubic Forrester and Waddell (2022)

Instances LB Time (s) LB Time (s) LB Time (s) LB Time (s)

∆ = 25

1 9 279 674 4.80 9 456 200 58.52 9 456 200 3015.63 9 456 200 1.19
2 7 349 385 2.80 7 349 385 48.85 7 349 385 2499.67 7 349 385 2.32
3 7 724 484 2.93 7 730 660 49.54 7 734 043 2510.18 7 702 921 2.95
4 2 008 274 2.59 2 021 103 17.43 2 021 103 786.67 2 004 783 2.06
5 12 945 189 3.17 12 948 787 73.36 12 948 787 3883.25 12 922 957 1.88
6 199 764 2.96 196 009 4.46 197 565 103.71 196 960 2.17
7 1 863 707 2.25 1 863 707 15.92 1 863 707 703.98 1 863 205 1.56
8 422 120 5.06 426 893 6.11 426 893 199.43 414 388 1.41
9 4 328 656 3.45 4 442 244 31.60 4 442 244 1491.79 4 442 244 1.10
10 642 489 4.35 665 540 7.07 665 540 267.46 664 711 3.21

∆ = 50

1 32 327 061 3.42 32 325 449 86.64 32 325 449 4547.49 32 289 222 1.87
2 31 438 837 3.49 31 438 837 82.92 31 438 837 4327.89 31 417 140 3.10
3 22 145 293 4.93 22 713 584 67.27 22 713 584 3534.86 22 713 584 1.79
4 34 019 718 4.05 34 019 718 88.84 34 019 720 4628.94 34 013 193 2.44
5 15 308 033 2.65 15 323 512 49.21 15 323 512 2476.99 15 270 921 2.40
6 392 065 1.46 396 594 3.40 396 594 102.95 394 132 1.32
7 39 837 844 2.86 39 837 844 90.59 39 837 844 4874.88 39 837 844 2.41
8 3 447 635 1.42 3 443 790 13.07 3 447 635 610.90 3 431 079 1.50
9 11 872 578 4.08 12 215 020 38.42 12 215 020 2010.40 12 215 020 1.67
10 2 775 486 3.37 2 883 063 12.51 2 883 063 573.91 2 882 089 2.46

∆ = 75

1 108 774 1.30 112 417 2.13 110 586 30.33 110 586 2.45
2 39 654 846 3.32 39 658 846 75.37 39 658 848 4026.15 39 657 451 1.81
3 348 836 1.93 349 356 3.32 349 665 67.78 348 291 2.98
4 11 749 758 1.15 11 749 758 26.89 11 749 758 1371.60 11 749 758 1.11
5 2 016 970 0.70 2 017 881 6.22 2 017 881 289.13 2 014 730 0.98
6 5 517 389 1.19 5 517 311 15.05 5 517 311 718.90 5 513 056 2.53
7 15 636 301 1.49 15 639 736 37.41 15 639 736 1922.98 15 639 736 1.70
8 8 383 633 2.16 8 391 203 21.42 8 391 203 1017.09 8 371 136 3.15
9 2 360 690 2.46 2 364 243 8.65 2 366 496 325.42 2 356 674 2.36
10 52 477 323 4.06 52 477 323 91.34 52 477 323 4864.30 52 477 323 2.48

∆ = 100

1 23 571 631 3.18 23 576 112 41.15 23 576 112 2077.31 23 558 391 2.90
2 1 598 455 2.52 1 602 873 5.72 1 602 873 195.12 1 602 873 2.25
3 81 711 960 2.94 81 710 797 93.68 81 710 797 5172.31 81 710 797 1.26
4 5 731 134 1.51 5 731 134 11.92 5 731 134 556.00 5 720 711 1.02
5 45 333 412 4.14 45 331 466 68.25 45 331 466 3695.87 45 304 422 3.09
6 1 610 855 2.86 1 615 386 6.50 1 615 386 199.78 1 610 200 3.12
7 71 827 652 4.13 71 827 652 89.07 71 827 652 4926.31 71 820 271 1.23
8 68 045 123 3.46 68 045 123 84.66 68 045 123 4721.35 68 015 017 1.83
9 38 545 748 1.32 38 545 748 53.14 38 545 748 2992.18 38 545 748 1.76
10 1 074 652 1.72 1 074 652 4.00 1 074 652 130.39 1 062 777 1.35
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Table 9: Comparative results of large instances for n = 150.

Linear Quadratic Cubic Forrester and Waddell (2022)

Instances LB Time (s) LB Time (s) LB Time (s) LB Time (s)

∆ = 25

1 307 563 5.83 304 099 6.88 308 448 281.06 308 448 4.12
2 26 994 650 8.91 27 010 725 218.52 27 010 725 14 610.62 26 915 655 3.66
3 58 068 7.27 65 238 5.40 65 238 78.14 60 697 4.78
4 18 144 024 11.11 18 146 086 175.14 18 146 710 11 392.92 18 142 475 5.87
5 10 366 626 3.67 10 368 697 107.10 10 368 697 7347.08 10 368 697 4.23
6 488 280 5.76 488 280 11.25 486 836 399.02 480 275 3.44
7 21 767 637 8.71 21 779 488 195.72 21 779 488 13 992.62 21 730 100 4.72
8 13 702 545 5.04 13 700 680 135.59 13 700 680 9515.59 13 702 545 2.25
9 12 617 318 8.79 12 634 558 131.67 12 634 558 8506.72 12 602 667 7.73
10 22 181 834 8.14 22 182 190 191.87 22 182 190 13 339.19 22 143 216 4.64

∆ = 50

1 12 344 230 8.14 12 355 819 72.81 12 355 819 4267.36 12 329 270 5.24
2 28 107 394 7.70 28 121 147 137.30 28 125 369 8831.43 28 089 853 4.55
3 13 146 261 2.28 13 146 261 67.02 13 146 261 4291.24 13 146 261 2.07
4 13 281 059 9.65 13 677 767 69.82 13 677 767 4291.24 13 146 261 3.04
5 42 160 379 7.30 42 160 379 187.95 42 160 379 12 282.73 42 132 483 4.59
6 15 256 593 4.64 15 258 160 78.86 15 258 160 4887.55 15 235 640 4.19
7 133 409 3.23 131 723 4.42 133 409 86.67 126 860 2.41
8 61 388 796 7.63 61 391 129 239.52 61 391 129 15 804.01 61 357 865 3.60
9 34 201 208 7.99 34 201 208 166.53 34 201 208 10 690.14 34 127 260 3.43
10 122 923 11.34 121 923 8.92 121 984 82.12 123 409 3.21

∆ = 75

1 61 591 944 7.75 61 593 554 185.12 61 593 554 12 039.04 61 587 152 7.06
2 7 264 166 6.46 7 269 268 32.02 7 272 307 1638.29 7 266 263 2.86
3 8 435 698 4.61 8 447 654 35.12 8 447 654 1938.58 8 412 294 2.92
4 9 300 181 5.83 9 300 982 38.76 9 300 982 2170.13 9 296 241 4.75
5 17 001 492 7.93 17 015 404 68.12 17 015 404 4032.46 16 963 389 5.20
6 2 205 730 4.78 2 212 735 14.45 2 212 735 610.28 2 202 779 3.54
7 1 214 097 5.66 1 213 559 9.85 1 213 559 351.61 1 195 051 3.43
8 13 296 299 4.51 13 296 882 51.42 13 296 882 3114.77 13 292 641 5.03
9 577 221 4.39 583 210 7.95 583 126 219.64 578 984 7.26
10 78 355 623 3.87 78 355 623 203.89 78 355 623 13 790.92 78 301 769 2.36

∆ = 100

1 48 176 606 5.63 48 178 048 118.85 48 178 048 7631.35 48 124 309 4.44
2 25 372 202 3.40 25 372 202 67.67 25 372 202 4300.92 25 360 901 3.12
3 11 229 399 5.92 11 230 009 38.47 11 230 009 2105.02 11 230 009 8.47
4 31 565 982 5.82 31 569 984 86.75 31 569 984 5405.67 31 558 442 3.24
5 131 253 652 7.72 131 253 652 233.60 131 253 652 16 422.78 131 256 999 5.89
6 6 527 155 5.61 6 537 469 25.16 6 537 469 1294.17 6 537 469 4.77
7 2 474 233 2.90 2 476 308 10.37 2 476 308 514.64 2 476 308 3.35
8 2 063 011 3.07 2 063 011 9.73 2 063 011 464.67 2 063 011 5.02
9 457 291 4.19 456 139 6.22 456 386 144.56 456 290 4.87
10 16 939 371 6.86 16 943 967 54.32 16 943 968 3210.14 16 907 817 4.03
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Table 10: Comparative results of large instances for n = 200.

Linear Quadratic Cubic Forrester and Waddell (2022)

Instances LB Time (s) LB Time (s) LB Time (s) LB Time (s)

∆ = 25

1 14 526 441 16.68 14 532 003 193.21 14 532 003 22 885.53 14 523 962 9.56
2 17 667 205 25.05 17 682 838 241.21 17 682 838 28 231.72 17 647 937 9.86
3 12 725 623 31.08 12 725 623 176.99 12 725 623 20 216.74 12 617 387 9.55
4 14 039 991 10.03 14 039 991 181.62 14 039 991 21 417.31 14 009 980 7.12
5 6 303 727 33.71 6 428 801 87.61 6 428 801 10 264.29 6 428 801 10.85
6 856 118 31.80 876 123 18.43 881 283 1440.98 837 196 4.06
7 66 970 15.79 70 620 7.46 72 911 190.63 66 245 7.50
8 7 011 341 19.37 7 011 341 93.38 7 009 593 10 567.24 6 983 943 8.93
9 12 565 363 28.21 12 850 461 173.60 12 850 461 20 456.30 12 835 633 9.21
10 11 475 591 20.94 11 479 185 153.28 11 479 185 17 892.96 11 443 823 11.84

∆ = 50

1 117 249 17.75 130 623 4.55 130 623 195.53 129 952 12.74
2 284 341 17.45 288 386 9.58 288 386 354.62 272 635 5.67
3 16 437 953 17.53 16 437 206 108.88 16 449 730 12 751.87 16 427 721 9.07
4 35 216 784 15.10 35 223 879 233.23 35 223 879 27 722.76 35 178 681 7.75
5 374 397 11.85 374 397 8.41 374 397 187.20 363 242 7.44
6 326 902 22.23 331 424 11.51 327 543 1334.30 327 543 18.52
7 6 956 626 28.04 7 171 506 48.95 7 119 485 8745.12 7 119 485 6.45
8 19 465 535 21.17 19 468 568 138.51 19 468 568 13 903.72 19 440 834 14.07
9 35 126 361 17.63 35 126 361 235.45 35 126 361 28 859.32 35 084 317 9.82
10 9 449 363 20.11 9 465 478 67.24 9 465 478 9528.47 9 445 162 13.03

∆ = 75

1 5 532 892 10.11 5 532 426 29.46 5 532 426 3041.64 5 524 090 8.20
2 25 402 818 17.97 25 408 546 109.63 25 408 546 13 494.20 25 399 252 13.28
3 1 846 174 4.58 1 846 174 10.51 1 846 174 1065.76 1 846 174 5.84
4 89 998 736 26.44 90 032 846 389.50 90 032 846 47 557.50 89 867 159 10.74
5 52 488 416 13.17 52 488 416 225.12 52 488 416 27 732.26 52 488 416 9.73
6 12 742 285 11.88 12 742 285 55.49 12 742 285 6392.49 12 742 285 6.45
7 1 107 329 15.67 1 109 177 11.99 1 109 240 721.21 1 109 240 13.57
8 1 752 988 11.85 1 755 917 13.52 1 755 917 1103.22 1 755 917 7.80
9 1 469 203 17.20 1 469 203 14.35 1 469 203 894.05 1 468 598 7.78
10 94 118 431 10.79 94 118 431 389.05 94 118 431 48 695.73 94 077 164 5.34

∆ = 100

1 107 005 616 15.24 107 006 473 345.88 107 006 473 41 376.87 107 006 473 7.76
2 64 456 101 19.14 64 455 120 215.68 64 458 135 25 127.08 64 440 735 12.13
3 64 490 929 24.49 64 495 127 221.83 64 495 127 26 286.00 64 440 545 12.26
4 71 821 586 13.30 71 833 210 230.40 71 833 210 28 463.05 71 823 054 9.82
5 10 672 204 12.09 10 681 163 39.50 10 681 163 4364.95 10 678 204 8.16
6 14 878 153 18.01 14 878 153 53.27 14 878 153 5893.01 14 860 968 8.41
7 33 819 301 21.98 33 819 301 114.60 33 819 301 13 682.30 33 804 255 19.89
8 112 119 709 17.22 112 124 156 344.77 112 124 156 42 432.65 112 124 156 10.30
9 17 698 429 13.26 17 723 212 63.06 17 723 212 7158.17 17 665 120 6.57
10 18 499 129 8.18 18 499 325 61.09 18 499 325 7410.72 18 499 325 8.55

7 Conclusion

In this paper, we have presented a DP-based deterministic heuristic algorithm for the CKP. The

overall algorithm has three phases, which start with an item ordering, then a main DP framework, and

ends with the well-known “fill-up-and-exchange” local search procedure. The novelty in this proposed

algorithm is twofold. Firstly, we define an adaptation of the notion of upper planes in order to define

sorting criteria for the first phase of the algorithm. Secondly, the main DP framework of the algorithm

is a journey through three different spaces of variables, wherein each space produces a feasible solution

for the CKP.
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We have conducted a vast array of computational tests with a total of 680 test instances, in which

we evaluate a large number of capabilities of our proposed algorithm, as well as provide comparisons

with the other existing heuristic algorithm for the CKP. The computational results show that our

proposed algorithm can find optimal solutions for nearly 98% of the instances that could be solved to

optimality, while for the instances for which it cannot find an optimal solution, the optimality gaps are

consistently below 0.05% and significantly outperform an exact MIP solver. Furthermore, the results

also show that a basic version of our algorithm can match the performance of the existing heuristic

from the literature in terms of optimality gap and computational time, while a more advanced version

of our algorithm dominates this existing heuristic. Finally, they also show that our algorithm scales

well for larger CKP instances, while still dominating the existing heuristic for this problem.
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