
Les Cahiers du GERAD ISSN: 0711–2440

Blackbox optimization for origami-inspired bistable struc-
tures

L. Boisneault, C. Audet, D. Melancon

G–2024–51
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nécessaire et un lien vers l’article publié est ajouté.
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McGill, Université du Québec à Montréal, ainsi que du Fonds de
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Abstract : Bistable mechanical systems exhibit two stable configurations where the elastic energy
is locally minimized. To realize such systems, origami techniques have been proposed as a versatile
platform to design deployable structures with both compact and functional stable states. Conceptu-
ally, a bistable origami motif is composed of two-dimensional surfaces connected by one-dimensional
fold lines. This leads to stable configurations exhibiting zero-energy local minima. Physically, origami-
inspired structures are three-dimensional, comprising facets and hinges fabricated in a distinct stable
state where residual stresses are minimized. This leads to the dominance of one stable state over the
other. To improve mechanical performance, one can solve the constrained optimization problem of
maximizing the bistability of origami structures, defined as the amount of elastic energy required to
switch between stable states, while ensuring materials used for the facets and hinges remain within their
elastic regime. In this study, the Mesh Adaptive Direct Search (Mads) algorithm, a blackbox optimiza-
tion technique, is used to solve the constrained optimization problem. The bistable waterbomb-base
origami motif is selected as a case-study to present the methodology. The elastic energy of this origami
pattern under deployment is calculated via Finite Element simulations which serve as the blackbox in
the Mads optimization loop. To validate the results, optimized waterbomb-base geometries are built
via Fused Filament Fabrication and their response under loading is characterized experimentally on a
Uniaxial Test Machine. Ultimately, our method offers a general framework for optimizing bistability in
mechanical systems, presenting opportunities for advancement across various engineering applications.

Keywords : Origami, multistability, blackbox optimization, Finite Element method
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1 Introduction

Initially an artistic technique of folding paper, origami is now used in engineering to develop deployable

systems whose kinematics are embedded directly in the crease pattern Misseroni et al. (2024). This

has led to the design of sub-millimeter scale mechanical metamaterials Iniguez-Rabago and Overvelde

(2022); Jamalimehr et al. (2022); Liu et al. (2021); Ze et al. (2022) and robots Li et al. (2017); Rus

and Tolley (2018) capable of shape reconfiguration as well as meter scale structures Melancon et al.

(2022); Zirbel et al. (2015); Zhu and Filipov (2024) that deploy using simple actuation methods.

In engineering, origami research is mainly divided into two categories: rigid foldable Lang et al.

(2020); Feng et al. (2020); McInerney et al. (2022) and deformable Martinez et al. (2012); Hanna et al.

(2014); Hanson et al. (2024). Whereas rigid origami can be studied purely from a mechanism point of

view, i.e., by solving the equations of motion of rigid bodies Lang and Howell (2018), deformable origami

requires taking into account the storage of elastic energy to predict deployment. Mathematically, the

folding of deformable origami structures can either be modeled using simple, discrete elements such as

bars along a fold line and torsional springs across it Zhu and Filipov (2021), or using more accurate,

finite elements such as thin shells Zhu et al. (2022). While using the Finite Element Method (FEM)

to simulate folding provides a rich description of the stored elastic energy inside the origami structure,

it comes with an increase in computational cost.

During deployment, deformable origami structures store elastic energy mostly through folding of the

hinges and bending of the facets. While hinging energy is typically monotonic, bending energy can be

non-monotonic in some origami patterns, leading to multistability Brunck et al. (2016). This property

is defined as the coexistence of two or more equilibrium states where the elastic energy is locally

minimized. Recent works have shown that these stable configurations can be accessed via an imposed

displacement Hanna et al. (2014); Dalaq and Daqaq (2022), magnetic field Novelino et al. (2020); Fang

et al. (2019), internal pressure Melancon et al. (2022, 2021); Zhang et al. (2023), or through stimuli-

responsive materials Fang et al. (2017); Zhou et al. (2024). Because multistable structures embed

self-locking, they offer an advantage over other deployable systems relying on external mechanisms,

such as contact Brown et al. (2022); Jamalimehr et al. (2022) and spring-loaded devices Holland and

Straub (2016). Most of the current multistable origami literature focuses on characterizing the influence

of the pattern geometry on multistability Zhang et al. (2018); Gillman et al. (2019). Some works have

put forward optimization as a way to increase bistability, but they are limited to simple beam-based

structures Liu et al. (2020) or only maximize geometrical incompatibility Lee et al. (2023); Melancon

et al. (2021). However, to transition toward engineering applications, manufacturing parameters, such

as panel thickness and hinge type, become important.

This work puts forward a general framework to optimize and take into account multistability when

designing origami-inspired structures. In Section 2, the bistable waterbomb pattern Hanna et al. (2014)

is chosen as a case study and a modeling representation based on compliant crease is presented. Its

deployment and the associated bistability performance are computed via FEM and validated on 3D

printed samples. The geometry is then parameterized, and the selected design variables are shown to

have an impact on the bistable behavior of the origami structure. The question of finding the best

possible geometry is posed as a mathematical optimization problem, in which the objective function

consists in maximizing the energy required to switch back from the second to the first state, and is

constrained both by the fabrication limitation and the mechanical stress experienced during the deploy-

ment phase. Evaluating the objective and constraint functions requires launching a time-consuming

FEM simulation, which often fails to compute due to instabilities and nonlinearities in the mathe-

matical formulation. The resulting optimization problem is solved by the Nomad Audet et al. (2022a)

implementation of the Mesh Adaptive Direct Search (Mads) Audet and Dennis, Jr. (2006a) derivative-

free constrained blackbox optimization algorithm. A coupled blackbox-FEM framework is developed

to optimize the parameterized model, while taking into account the multiple failed evaluations. Finally,

in Section 3, the optimization process is applied with and without considering manufacturing limits

and the resulting geometries are presented.
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2 Methodology

2.1 The origami waterbomb base pattern: a simple bistable structure

The waterbomb base pattern is selected as a case study to describe the methodology developed herein

to improve the mechanical performance of bistable origami structures. This choice is motivated by

its simple geometry, ease of fabrication, and extensive researches on its kinematics Imada and Tachi

(2022), bistability Hanna et al. (2014), and potential applications to tune acoustic waves Benouhiba

et al. (2021), create logic gates Treml et al. (2018), build mechanical metamaterials Bai et al. (2023),

and develop innovative origami-based robots Fang et al. (2017). The geometrical description of the

waterbomb base is presented in Fig. 1. The classical approach to obtain the waterbomb fold is by

dividing evenly a flat, circular surface with mountain and valley folds around its geometrical center.

This axisymmetric pattern usually involves n = 4 repetitions so that opposite folds are of the same

type, mountain or valley, making the structure easier to fold in a cone-like shape of height h (see

Fig. 1a). When the central node, i.e., the tip of the cone, is pulled down by a distance δ, the structure

starts deforming elastically through the bending of the triangular faces and stretching of the fold lines.

When the δ = h, this stored elastic energy U reaches a maximum. Passed this point, i.e., for δ > h,

the energy U decreases towards a second local minimum. If the hinges connecting the panels are

ideal pivot connections, this second stable state is z-symmetrical to the initial configuration so that

there is no bending of the triangular faces. The bistable behavior of the waterbomb pattern can be

characterized mechanically by plotting U as a function of δ, as shown in Fig. 1b. For the case where

there is no energy cost associated with rotating the faces along a fold line, face bending prevails and

the energy curve shows two stable states with zero energy. Instead, if torsion springs of stiffness Kθ

are added to model the hinging energy, the second equilibrium state has residual stresses, resulting

in a nonzero energy local minimum. Hanna et al. Hanna et al. (2014) have shown that a different

stiffness in the mountain and the valley hinges, i.e., KθM and KθV , respectively, will affect the amount

of energy required to switch back from the second state to the first one. In Fig. 1b, their results are

reproduced numerically for three different scenarios, i.e., KθM = KθV = 0 (blue curve), KθM = KθV ,

with KθV ̸= 0 (red curve), and KθM = 2KθV , with KθV ̸= 0 (green curve).

In the most simplified representation of the waterbomb pattern, mountain and valley folds are

modeled as spring-loaded hinges that connect flat panels. A more continuous way of modeling this

origami pattern is to represent the folding geometry using compliant creases Zhu et al. (2022). In this

technique, fold lines are substituted with wider and softer regions to allow rotation and the central

node is replaced by a hole (see Fig. 1c where the dark and light shades correspond to faces and

compliant creases, respectively). This allows to take the hinge width into account, and a higher-order

of geometric continuity is implemented, i.e., smooth folds Peraza Hernandez et al. (2016) between the

faces. Applying the compliant crease origami modeling produces the same downside effect as adding

torsion springs on the simplified model : the second stable state has nonzero elastic energy. This type

of bistable energy curve has two characteristic features: a local maximum of elastic energy between

the two stable states, Umax, and an energy well depth of the second stable state, ∆U (see Fig. 1d).

Here, their ratio is used to quantify the bistability, ϕ, of the structure:

ϕ =
∆U

Umax
. (1)

When ϕ → 0 the structure becomes marginally bistable. Instead, when ϕ = 1, the two stable states

have the same amount of stored elastic energy.

2.2 Simulating bistable origami via the Finite Element Method

In this work, FEM is used to compute the bistability, ϕ, of the compliant crease waterbomb. The

origami pattern is discretized with four-node, linear shell elements (element code S4 in Abaqus Stan-

dard 2022) with linear elastic material model with elastic moduli Ef , Ec, Poisson’s ratios, νf , νc,
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Figure 1: Modeling the four-fold waterbomb origami pattern with different levels of complexity. a. Simplified representation
of the waterbomb with fold lines modeled as torsion springs shown in the flat configuration as well as in both stable states.
b. Energy-displacement curve of the spring model and the effect of increasing the hinging energy by adding springs
of stiffness KθM and KθV at the mountain and valley folds, respectively. c. Compliant crease representation of the
waterbomb with the fold lines modeled as regions of soft material shown in the flat configuration as well as in both stable
states. d. Energy-displacement curve of the compliant crease model.

densities, ρf , ρc, and elastic limit, Sf
Y , Sc

Y for the faces and compliant creases, respectively. As

shown in Fig. 2a, for given face and crease materials, five design variables are selected to generate

a wide range of geometry for the waterbomb model: three angles, θi, with i ∈ {1, 2, 3}, shaping
the compliant crease, ω = tc/tf , the ratio of out-of-plane crease thickness over face thickness, and

h/ro, the height of the waterbomb in its first stable state normalized by the outer radius. Together,

these values constitute the input vector x = (θ1/α, θ2/α, θ3/α, ω, h/ro) ∈ R5, with α = π/n.

The inner radius, ri/ro = 1/6, and the number of cyclic symmetry, n = 4, are fixed to reduce the

dimensionality of the design space. To speed up the computation, only 1/2n of the complete pattern

is modeled and cyclic boundary conditions are applied on the outer edges. In a cylindrical framework,

this means to the two lateral edges cannot move along the θ-axis, as well as rotate around the r-axis

and the z-axis. The FEM simulation is divided into two steps (see Fig. 2b):

Step-1: Forming. The waterbomb pattern is deformed from the flat configuration to the deployed

state defined by h/ro. To do so, the nodes located on the inner hole are pulled up by a distance

δ1 = h, and the node defined by θ2, i.e., the node located at the frontier between the face and

the crease, is fixed with respect to the z-axis. The geometry obtained at the end of this step is

retrieved and taken without any mechanical stress as the base geometry for the second step.

Step-2: Actuation. The waterbomb pattern is actuated from the first to the second stable state.

To do so, the nodes on the inner hole are pulled down by a distance δ2 = 2h, while the node

defined by θ3, is locked relative to the z translation,

During the FEM simulation, the stored elastic energy is obtained by integrating the reaction force

with respect to the applied displacement on the nodes of the inner holes during the Actuation step.

In addition, the maximum von Mises stress developed in the structure, σmax, as well as its location

and associated displacement δ are extracted from the FEM simulation to ensure the materials remain

in their elastic regime, i.e., σmax < Si
Y , with i ∈ {f, c} if the σmax is developed in the faces or

crease, respectively.
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Figure 2: Parametrized FEM of the waterbomb origami pattern. a. Representation of the geometrical variables θ1, θ2,
θ3, ω = tc/tf , and h/ro on the simulated part of the structure. b. Meshed model of the waterbomb at the beginning
and the end of the Forming and the Actuation steps as well as the associated boundary conditions imposed.

To highlight the effect of the geometrical parameters on the bistability of the waterbomb motif,

the FEM simulation is conducted on three different patterns:

Design I with xI =
(
θI
1/α, θI

2/α, θI
3/α, ωI , hI/ro

)
= (0.1, 0.5, 0.9, 1.0, 0.6),

Design II with xII =
(
θII
1 /α, θII

2 /α, θII
3 /α, ωII , hII/ro

)
= (0.5, 0.6, 0.7, 0.5, 0.704),

Design III with xIII =
(
θIII
1 /α, θIII

2 /α, θIII
3 /α, ωIII , hIII/ro

)
= (0.31, 0.46, 0.9, 1.5, 0.374).

These input vectors are chosen to represent the wide range of feasible geometries. Design I is the

standard waterbomb with parallel creases and equal thickness between facets and creases. Differently,

Design II includes creases wider, but thinner than facets. Finally, Design III alternates narrow and

wide creases which are thicker than the facets. For each design, the top and front views as well as the

two stable configurations and the von Mises stress field in the second stable state are shown in Fig. 3a.

Here, the ratios Ef/Ec = 21.67 and νf/νc = 0.78 are considered in the numerical simulations.

The evolution of the elastic energy during the deployment of each design is presented in Fig. 3b and

reveals that changes in the size and shape of the compliant creases can affect drastically the bistable

performance of the waterbomb pattern. The elastic energy is normalized with respect with the outer

radius ro of the pattern, as well as the facet’s material properties Ef and νf . For Design I, the

bistable performance is characterized by ϕI = 28.85%, with ∆UI/(Efroνf) = 1.56 × 10−3 and

UI
max/(Efroνf) = 5.41 × 10−3. Design II exhibits an increase of bistable performance with

ϕII = 57.74%, ∆UII/(Efroνf) = 0.57 × 10−3, and UII
max/(Efroνf) = 0.98 × 10−3. Finally,

Design III displays marginal bistability with ϕIII = 2.4%, ∆UIII/(Efroνf) = 0.05 × 10−3,

and UIII
max/(Efroνf) = 2.36 × 10−3. Note that the geometry of the creases affect not only the

multistability ratio ϕ, but also the maximum elastic energy Umax, the barrier of energy in the second

stable state ∆U , and the displacement δ required to switch to the second stable state.

Additionally, for the three design, the maximum mechanical stress is developed right before the

local maximum of energy (see diamond markers in Fig. 3b) and is located near the hole and on the stiff
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faces. This maximal value, normalized by the elastic limit of the facets material, is σI
max/S
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Y = 0.708
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max/S

f
Y = 0.685 MPa and σIII

max/S
f
Y = 0.473 MPa for the three designs. The location of

the maximum stress for the second stable state stays the same (see the contour maps in Fig.3a),

but one notes that a higher mechanical stress is associated with a lower bistability performance :

σI
state2/S

f
Y = 0.304 MPa, σII

state2/S
f
Y = 0.266 MPa and σIII

state2/S
f
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obtained through the parametrization and their geometrical representation in both equilibrium states for the FEM and the
3D printed models. b. Evolution of the elastic energy during deployment for the three designs showing the comparison
between FEM simulations and experimental tests.

2.3 Experimental validation

To validate the FEM simulations, physical prototypes of Designs I-III are fabricated using the Fused

Filament Fabrication (FFF) method. FFF enables fast prototyping of multi-material origami patterns

Ye et al. (2023). Here, the crease regions are printed with thermoplastic polyurethane (TPU from

Eryone with Ec = 120 MPa, νc = 0.45, ρc = 1200 kg/m3 and Sc
Y = 50 MPa) and the faces with

polylactic acid (PLA from Raise3D with Ef = 2600, νf = 0.35, ρf = 1040 kg/m3 and Sf
Y = 50

MPa). Using the initial deformed shape obtained from the FEM simulation of the waterbomb (Step-1:

Forming), a CAD model is generated. Interlocking geometry are added to improve bonding between

the soft and the rigid regions Kuipers et al. (2022). This way, when the model is sliced, the interface

between faces and creases will be composed of layers of an alternating set of PLA and TPU layers
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(see the Supplementary Materials section S1 for additional details on the fabrication of the physical

prototypes).

To experimentally measure the stored elastic energy during folding, the physical prototypes are

tested on a uniaxial test machine (MTS Insight Electromechanical 50), fitted with a 100 N load cell.

Inspired by previous experimental work on the waterbomb pattern Hanna et al. (2014), each specimen

is placed on custom-build supports that emulate the same conditions as the numerical simulation,

i.e., it is installed on triangular guiding rails preventing it from rotating around the z-axis, and the

central hole is attached to the load cell through a fixed bolt to measure the reaction force during the

deployment (see the Supplementary Materials S2 for additional details on the experimental testing).

The crosshead imposes a vertical displacement of δexp at a rate of 0.05 mm/s, to create quasi-static

conditions, until the second stable state is reached. After the test, the reaction force Fexp is integrated

along the displacement to obtain the experimental elastic energy Uexp of the waterbomb prototype:

Uexp(δexp) =

∫ δexp

0

Fexp(δ) dδ. (2)

In Fig. 3a, representative specimens of each prototype are shown in both stable states, and their

measured energy-displacement curves are plotted as doted line in Fig. 3b with the standard deviation

from five tests specimens shown as shaded areas. From the comparison with the simulated model,

one can assess that the deformed shapes obtained with the 3D printed sample match qualitatively

the computation both in the first and the second stable states (see Fig. 3a). Quantitatively, Design

I shows the closest match between predicted and measured energy landscapes with a relative error

of ϵIUmax
= 5.5% on the maximal amount of energy Umax and an error on the displacement of

the central node in the second stable state ϵIδ/ro
= 4.1%. Design II also shows good agreement

between simulations and experiments with ϵIIUmax
= 2.9% and ϵIIδ/ro

= 18.4%. However, there are

discrepancies between the predicted and measured energy landscapes for Design III with ϵIIIδ/ro
=

15.9% and ϵIIIUmax
= 25.7%. This deviation could be attributed to the boundary condition imposed

during the testing phase which can slightly differ from the one set numerically. In fact, the larger

soft creases of Design III close to the hole where the screw is fixed for mechanical testing could add

additional compliance that is not modeled in the FEM simulations.

2.4 Optimizing the mechanical performance of bistable origami

Optimization algorithms can be used to tune the geometrical parameters of the waterbomb origami

with compliant creases in order to address the loss of bistable performance seen in Fig. 3b. Consider a

simulation that takes an input vector x containing the five design variables, and outputs the bistable

performance of the associated structure, ϕ, as well as the maximum von Mises stress experienced by

the structure, σmax. The input vector x ∈ R5 is bounded by the two vectors lb and ub, respectively

the lower and the upper boundaries. This ensures that the optimization will not diverge and deliver

unrealistic results. To avoid mechanical failure, the maximum stress experienced by the structure σmax

must not exceed the yield strength, SY , of the material. The corresponding constrained optimization

problem is then formulated as :

max
x∈R5

ϕ =
∆U

Umax

s.t. σmax ≤ SY

lb ≤ x ≤ ub.

(3)

This optimization problem may be regarded as a blackbox : at each iteration k only the input

xk and output ϕk and σk
max data are known, and the time-consuming FEM simulations are consid-

ered hidden. In the present case, derivatives are difficult to obtain due to the numerous fails in the

computation, therefore derivative-free optimization techniques Audet and Hare (2017) are required.
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The NOMAD blackbox optimization software, which implements the Mads algorithm Audet and

Dennis, Jr. (2006b), is chosen to maximize the objective function while taking into account the con-

straints of the problem. Thanks to the dynamic adaption of the size of the searching space between

each iteration, Mads allows an efficient exploration of the design space. Additionally, NOMAD has

proven successful in the case of blackbox with a long computational time Audet and Orban (2006) and

with large part of the design space covered by hidden constraints, i.e., sets of points that cannot be

computed or that do not output numerical values when fed to the blackbox Chen and Kelley (2016).

Numerous studies in fields such as biomedical, aerospace or electrical engineering, have successfully

used NOMAD to solve optimization problems Alarie et al. (2021). This software is also provided with

a python package, PyNOMAD, allowing easy communication with the FE software.

In the present problem, each call to the blackbox requires an average of 110 seconds to compute

when successful, and computation fails on 30% of the calls, which makes NOMAD a suitable solution

to solve the problem. Computations are made on an Intel Core i9-9900K processor. Here, every

evaluation requires a different computation time, depending on how well the FE solver performs on

the model defined by a given input vector. The optimization process is initiated with Design I, a

geometry with parallel creases and uniform thickness across the structure. This geometry is set in

NOMAD as the initial point x0 =
(
θ0
1/α, θ0

2/α, θ0
3/α, µ0, h0/ro

)
= (0.1, 0.5, 0.9, 1.0, 0.6), and is

known to provide a bistable performance of ϕI = 28.85%. NOMAD sends these parameters to the

blackbox for the first evaluation and the FE software, which computes the stored elastic energy and

von Mises stress during folding, outputs back to NOMAD both the bistable performance ϕ as well as

the maximum value of stress σmax (Fig. 4a). The next evaluation points are determined by selecting

N + 1 random points (with N is the dimension of the design space) on a grid centered on the best

evaluation yet. A complete iteration of the optimization algorithm consists of the evaluation of these

N +1 points. If the multistable performance ϕ of the evaluation k is better than any of the previous

best evaluations, xk and the corresponding ϕk become the new champion and the size of the grid that

determines the next iteration points is expanded. However, if the computation does not result in an

improvement of the objective function, the size of the grid is reduced for the next iteration. If the

mechanical stress exceeds the yield stress limit, the point is discarded and cannot be the final output

value of the optimization, i.e., it is considered a failed evaluation. The algorithm continues until it

reaches a maximum of 1000 evaluations. The optimization process is schematized in Fig. 4b.

ϕk, σk
max

Finite 
Element 
Solver

(Abaqus)

Optimization 
Software

(Nomad)

Stopping 
criterion

x0

Initial 
point

Next evaluation point

xk+1 ∈ [lb, ub]

Umax

∆U
Final 
point

x*

Blackbox optimization loopa b
100

0

fu
nc

ti
on

 
va

lu
e

x1

x1x1

x2

x2x2

Success Failure

Best point to date,       Mesh
Trial point,       Search direction 

Figure 4: Strategy to optimize the bistability of origami-inspired structures. a. Coupling of the FEM blackbox with the
optimization algorithm NOMAD. b. Successive polling steps on an arbitrary 2D function with Mads depending if the
previous iteration was a success or a failure.
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3 Optimization results

The optimization is launched considering manufacturing limits, i.e., ensuring a minimum hinge width

of 0.4 mm, the diameter of the nozzle used for 3D printing the samples. The associated mathematical

lower and upper boundaries lb and ub as well as the evolution of the bistable performance ϕ(x) with the

number of evaluations are displayed in Fig. 5a. The design variables of the optimize geometry are xa =(
θa
1/α, θa

2/α, θa
3/α, ωa, ha/ro

)
= (0.1000, 0.1000, 0.5421, 0.5296, 0.7359) with an associated

bistable performance of ϕa = 64.8%. The performance here is more than doubled if compared

from the initial design (see the energy landscape and stable configurations of the initial and optimized

geometries in Figs. 5f-g). Around 30% of the evaluations performed ended up failing. This result can be

linked to the increase of the last variable, h/ro. Tall and narrow waterbomb folds are associated with

high geometrical frustration during reconfiguration and this can introduce high nonlinearities in the

numerical simulations. To reduce the number of failed evaluations, a second optimization is launched

with the initial height fixed to h/ro = 0.6 along the process. This optimization produces the final

vector xb = (0.4366, 0.9000, 0.9000, 0.5000, 0.6000) and the bistable performance ϕb = 58.4%

as shown in the convergence plot of Fig. 5b. While this represents a loss of 6.4% compared to the

results in Fig. 5a, it still shows a two-fold increase with respect to the initial design. In addition, the

number of failed computations goes from 30% to only 1% over 1000 evaluations. For the two different

optimizations, the convergence is fast with 99% of the final performance already reached after only

25 evaluations.

From the insets showing the final geometries in Figs. 5a-b and the stable states in Fig. 5g, one notes

that the optimization leads to configurations which reach the mathematical constraints for certain an-

gles θi/α, i.e., narrow compliant creases. To investigate the potential gain associated with a manufac-

turing technique with higher resolution, the lower/upper boundaries on θi/α are decreased/increased

and two additional optimizations are launched: one with all five design variables (Fig. 5c) and one

with the initial height fixed to 0.6 (Fig. 5d). For both cases, the valley folds of the final geometry

become even narrower to increase the bistable performance to ϕc = 77.7% and ϕd = 76.8% (see the

corresponding convergence graphs in Figs. 5c-d, energy curves in Fig. 5f, and stable configurations in

Fig. 5g). Importantly, for these two cases, the increase in bistability performance is linked to steep low-

ering in the elastic energy. While for the initial design U0
max = 36.93 mJ, the two optimal geometries

shown in Figs. 5c-d display Uc
max = 0.21 mJ and Ud

max = 1.57 mJ, respectively. For load-bearing

applications, one may want to design bistable origami structures which maximize bistability while

being able to develop a high amount of elastic energy during deployment. To do so, two methods can

be applied : using stiffer materials to manufacture the structure or adding Umax a new mathematical

constraint in the optimization. Here, the second approach is implemented with the added constraint

forcing the optimization to seek for designs with at least the same Umax as the initial design :

Umax ≥ U0
max (4)

In Fig. 5e, the last case is presented leading to xe = (0.4425, 0.8921, 0.8999, 0.6976, 0.8690) with

a bistable performance of ϕe = 62.3%. For this last scenario, the convergence of the optimization

displays two successive plateaus, caused by the additional difficulty for the algorithm to find geometries

that sustain an acceptable level of maximum elastic energy. The output geometry is almost identical to

the one obtained in Figs 5a-b, but with a higher initial height and thicker soft regions, characteristics

that affect the order of magnitude of the elastic energy response.
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Figure 5: Results of the blackbox optimization. Bistable performance ϕ(x) as a function of the number of evaluations
when taking into account manufacturing limits while leaving free (a) and fixing (b) the initial height h/ro. Effect of
increasing the range of the design variables on ϕ(x) while leaving free (c) and fixing (d) the initial height h/ro. e. Effect
of adding an additional constraint on the maximum energy developed during deployment Umax. f. Evolution of the elastic
energy during deployment for the initial geometry and the five optimized geometries (a)-(e). g. The two stable states of
the waterbomb for the initial geometry and the five optimized geometries.

4 Discussion

In this work, an optimization framework is developed to improve the bistability performance of origami-

inspired structures and applied to the waterbomb base pattern. The optimization results highlight a

two-fold increase in bistability performance from the classic straight crease waterbomb pattern to a

more complex geometry with uneven creases. The methodology developed here is general and can be

applied to other bistable origami-inspired structures (see the Supplementary Materials section S3 for

more details).

The presented framework is adaptable and could be further improved. First, implementing a bar-

and-hinge model Zhu and Filipov (2020) as surrogate computation model Booker et al. (1999); Audet

et al. (2022b) could speed up the optimization. Additional variables could be easily introduced in the

algorithm, e.g., a categorical variable Audet et al. (2023) that would determine the material used for

each region of the origami pattern, or curved creases Flores et al. (2022) to get more flexibility on the

crease shape. As shown with the optimization results in Fig. 5c-d, relaxing the optimization bounds,

which could be possible with other, high resolution fabrication techniques such as composite laminate
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Suzuki and Wood (2020), could further increase bistability. Finally, the optimization strategy could be

extended to multistable origami structures, i.e., with more than two stable states. To do so, one could

use multi-objective optimization, but this technique tends to lack efficiency and often designers have

to prioritize one objective over the other Audet et al. (2010). As multistable origami structures are

often made of an assembly of building blocks, e.g., kresling arrays Wang et al. (2023), the optimization

could be carried both locally on individual components and globally to ensure geometric compatibility.

References
S. Alarie, C. Audet, A.E. Gheribi, M. Kokkolaras, and S. Le Digabel. Two decades of blackbox optimization

applications. EURO Journal on Computational Optimization, 9:100011, 2021. doi: 10.1016/j.ejco.2021.
100011. URL https://doi.org/10.1016/j.ejco.2021.100011.

C. Audet and J.E. Dennis, Jr. Nonlinear programming by mesh adaptive direct searches. SIAG/Optimization
Views-and-News, 17(1):2–11, 2006a.

C. Audet and J.E. Dennis, Jr. Mesh Adaptive Direct Search Algorithms for Constrained Optimization. SIAM
Journal on Optimization, 17(1):188–217, 2006b. doi: 10.1137/040603371. URL https://dx.doi.org/10.

1137/040603371.

C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer Series in Operations Research
and Financial Engineering. Springer, Cham, Switzerland, 2017. doi: 10.1007/978-3-319-68913-5. URL
https://dx.doi.org/10.1007/978-3-319-68913-5.

C. Audet and D. Orban. Finding optimal algorithmic parameters using derivative-free optimization. SIAM
Journal on Optimization, 17(3):642–664, 2006. doi: 10.1137/040620886. URL https://dx.doi.org/10.

1137/040620886.

C. Audet, G. Savard, and W. Zghal. A mesh adaptive direct search algorithm for multiobjective optimization.
European Journal of Operational Research, 204(3):545–556, 2010. doi: 10.1016/j.ejor.2009.11.010. URL
https://dx.doi.org/10.1016/j.ejor.2009.11.010.

C. Audet, S. Le Digabel, V. Rochon Montplaisir, and C. Tribes. Algorithm 1027: NOMAD version 4: Nonlinear
optimization with the MADS algorithm. ACM Transactions on Mathematical Software, 48(3):35:1–35:22,
2022a. doi: 10.1145/3544489. URL https://dx.doi.org/10.1145/3544489.

C. Audet, S. Le Digabel, and R. Saltet. Quantifying uncertainty with ensembles of surrogates for blackbox
optimization. Computational Optimization and Applications, 83:29–66, 2022b. doi: 10.1007/s10589-022-
00381-z. URL https://doi.org/10.1007/s10589-022-00381-z.
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