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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2024
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Abstract : Designing efficient evacuation networks is crucial for disaster preparedness, as poorly
planned and managed evacuations can increase the time required for evacuees to reach safety zones or
shelters, and potentially resulting in more casualties. Incorporating traffic considerations into evacua-
tion network design and planning is essential to mitigate these risks. While some studies have estimated
traffic congestion, few have integrated multiple aspects of evacuation planning, which is crucial for de-
veloping effective and realistic plans but leads to complex optimization problems. In this study, we
propose and solve a mixed-integer programming model to address the Evacuation Network Design and
Planning Problem under Traffic Congestion (ENDPPTC). Our model concurrently optimizes shelter
locations, evacuation routes, and evacuee flows to minimize total evacuation time. Traffic congestion
is modeled using a CTM-based formulation that accounts for time-varying road properties, multiple
time periods, contraflow operations, and road segment capacities, ensuring a precise representation
of traffic dynamics. To solve the ENDPPTC, we develop both exact and heuristic methods based on
Benders decomposition. We also generate problem instances based on real-world network configura-
tions to create representative and standardized benchmarks. Our computational results demonstrate
that neglecting traffic congestion leads to inaccurate evacuation time estimates and significant delays,
whereas incorporating contraflow operations significantly reduces total evacuation time.

Keywords : Evacuation planning, shelter network design, traffic management, Benders decomposi-
tion, mumanitarian logistics
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1 Introduction

Over the last decade, more than 3,800 natural disasters have been recorded globally (EM-DAT, 2022).

The frequency and intensity of events such as floods, hurricanes, and wildfires have escalated during

this period (Hsiao et al., 2021; Insani et al., 2022), causing billions in economic losses and affecting

1.51 billion individuals (EM-DAT, 2022). When human safety is threatened, the evacuation of a

community, or part of a community, is often necessary (Kulshrestha et al., 2011; Bayram and Yaman,

2018a). Evacuations ensure the safety of populations through their prompt and efficient relocation to

safer areas (Nunes et al., 2014). Notable instances include the evacuation of over one million individuals

from southeast Louisiana during Hurricane Katrina in 2005 (Wolshon et al., 2006), the displacement of

88,000 residents during the 2016 Horse River fire in Fort McMurray (McGee, 2019), and the evacuation

of more than 13,000 people following the 2020 breakup of the Athabasca River, which led to extensive

flooding (Nafziger et al., 2021). Evacuations often pose significant logistical challenges, including road

closures and restricted vehicle access (Wolshon et al., 2006; McGee, 2019), underscoring the critical

need for well-prepared evacuation plans. In practice, closing some roads and directing traffic into

desired routes can be used to control traffic and increase evacuation capacity (Wolshon et al., 2006).

Evacuation planning starts well before any imminent threat arises and involves several decisions.

Three decisions are of utmost importance from a logistical perspective: locating shelters, establishing

primary evacuation routes, and determining the flow of evacuees. First, shelter locations are strate-

gically selected from potential safe sites, such as sports centers and hotels, that are situated outside

threatened areas and equipped to provide temporary accommodation (Esposito Amideo et al., 2021).

Second, safe evacuation routes are established considering the capacity of available roads. Finally, flow

decisions determine the number of evacuees that travel on the roads to reach the shelters. Evacuation

operations, however, trigger a massive, simultaneous movement of individuals towards roadways, lead-

ing to congestion and preventing evacuees from reaching safer locations quickly (Wolshon, 2001; White

et al., 2008; Bayram and Yaman, 2018a). Consequently, it is crucial to consider the impact of traffic

congestion when planning evacuations, ensuring that decisions accommodate the anticipated increase

in road usage and facilitate a smoother evacuation process.

The Cell Transmission Model (CTM) is one of the most common approaches used to assess traf-

fic congestion (Bayram, 2016). The CTM is a discretization of the hydrodynamic model of Lighthill

and Whitham (1955), in which the traffic flow is treated as a fluid and formulations are based on

the assumptions that there is a one-to-one relationship between speed and density, and traffic is con-

served. CTM-based approaches include realistic traffic phenomena such as disturbance propagation,
non-linearity between speed–density and travel time–density, and the creation of shockwaves (Zil-

iaskopoulos, 2000). Despite these advantages, the complexity of the optimization models underlying

CTM increases rapidly with network size, leading to significant computational challenges (Zheng and

Chiu, 2011). To address these challenges, heuristics and network flow-based algorithms have been de-

veloped to efficiently manage realistic-sized networks (Kimms and Maassen, 2012a,b; Bish and Sherali,

2013; Zheng et al., 2015; Bayram and Yaman, 2024).

Although traffic congestion has been considered in the context of evacuation planning, few studies

take into account shelter location, contraflow operations, and the dynamic nature of evacuations si-

multaneously. Incorporating these elements is crucial to ensure effective and realistic evacuation plans.

First, shelter location decisions are critical as they influence the routes evacuees take from threatened

areas to shelters, directly impacting traffic congestion (He et al., 2018). Contraflow operations, which

involve reversing the direction of traffic lanes to temporarily expand roadway capacity, can also be

employed to reduce congestion and influence evacuation duration (Esposito Amideo et al., 2021; Kim

et al., 2008). Additionally, evacuations are inherently dynamic, with varying conditions that can alter

the parameters of the problem over time. Therefore, dynamic models that account for these temporal

variations offer a more accurate representation of evacuations compared to static models (Bayram,

2016; Li et al., 2019).
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In this paper, we consider the Evacuation Network Design and Planning Problem under Traffic

Congestion (ENDPPTC), which aims to select shelter locations, establish evacuation routes, including

the number of lanes to be used in each direction (i.e., considering contraflow operations), and defining

the flow of evacuees on road segments. The goal is to minimize the total evacuation time, defined

as the sum of the evacuation times for all evacuees from the beginning of the time horizon to their

arrival at a safe location, including delays due to traffic congestion. We incorporate traffic congestion

using a CTM-based formulation that captures time-variant road segment properties, multiple periods,

and road capacities to ensure an accurate representation of traffic phenomena. Our focus is on mass

self-evacuation or car-based evacuation, where people use their own vehicles to drive to the shelters.

Those without a private vehicle may rely on alternatives, such as riding with friends or neighbors

(Dulebenets et al., 2019). Our main contributions include employing a more precise traffic model to

address congestion in evacuation network design, while also integrating traffic management. These

advancements result in complex models, prompting the development of a Benders decomposition (BD)

approach to effectively solve realistic instances. We also provide diverse and realistic instances to

facilitate the testing of methods for designing evacuation networks.

The remainder of the paper is organized as follows. Section 2 reviews the relevant background

literature. Section 3 describes the ENDPPTC and presents the mathematical formulation. Section 4

provides the solution approaches. Section 5 describes the instances and discusses the computational

results. We close with concluding remarks in Section 6.

2 Literature review

Evacuation planning and traffic management play a critical role in ensuring the safe and timely evacu-

ation of the vulnerable population (Bayram, 2016). In the planning phase, evacuation network design

focuses on selecting shelter locations, managing capacity, and determining evacuation routes based on

the transportation network. Once the evacuation is triggered in the response phase, evacuees will move

through the network, and the flow of evacuees on each road segment will influence travel times: higher

flows lead to increased congestion, thereby prolonging the time to reach safety. Most studies have

only focused on either evacuation network design (Coutinho-Rodrigues et al., 2012; Hadas and Laor,

2013; Sheu and Pan, 2014; Üster et al., 2018; Esposito Amideo et al., 2021) or traffic management

and modelling in the context of evacuation (Yao et al., 2009; Ng et al., 2010; Kimms and Maassen,

2012a,b; Lim et al., 2015; Yan et al., 2018; Li et al., 2019). Only a few studies have considered both

simultaneously.

In this section, we focus on OR optimization models and methods that are closely related to the

ENDPPTC, i.e., those that tackle network- and traffic-related decisions jointly. We then position our

study within the existing literature. We refer the reader to Murray-Tuite and Wolshon (2013), Bayram

(2016), Esposito Amideo et al. (2019), and Dönmez et al. (2021) for a more comprehensive review of

shelter location and evacuation planning. Finally, it is important to note that studies that consider

traffic congestion via micro-simulation (Jha et al., 2004; Alam and Habib, 2021b,a) and empirical

studies related to evacuation planning (Wong et al., 2018; Christianson and McGee, 2019; Hessami

et al., 2020) are beyond the scope of this review.

2.1 Evacuation network design under traffic congestion

Sherali et al. (1991) are the first to consider traffic congestion in evacuation network design planning

with the goal of minimizing the total evacuation time. The authors propose a single period nonlinear

mixed-integer programming problem with congestion-related travel times. In particular, the problem

considers shelter location and route definition decisions and is solved using a heuristic and an exact

implicit enumeration algorithm based on Benders decomposition. The authors use the Bureau of Public

Roads (BPR) function to approximate the impact of traffic congestion. The BPR function expresses

the relationship between travel time and traffic volume on a link based on parameters defined by the
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United States Department of Commerce (Bureau of Public Roads, 1964). The proposed approach is

tested using data from the Virginia Beach network. Similarly, Kongsomsaksakul et al. (2005) propose a

model that uses the BPR function to approximate traffic, but in a bilevel optimization framework. The

upper level is formulated as a shelter location problem whereas the lower level is defined as a combined

distribution and assignment model that determines the flow of evacuees in the network under traffic

congestion. The problem is solved using a genetic algorithm and tested considering a hypothetical

flood scenario in the city of Logan, Utah.

These two models consider a deterministic problem, where the number of evacuees and the avail-

ability of roads and shelters are known a priori. Kulshrestha et al. (2011) introduce the uncertainty

related to the number of people to evacuate into the problem using a bilevel robust optimization ap-

proach. The model determines shelter locations, selects routes and determines the flow of evacuees

that minimize the total cost of establishing and operating shelters while taking into account a predeter-

mined time limit to perform evacuation operations. The authors again use a BPR function to consider

traffic congestion and solve the problem using a cutting plane algorithm. The model is tested using

data from the city of Sioux Falls under a hypothetical disaster. In addition to demand uncertainty, Li

et al. (2012) also consider the availability of shelters in a stochastic bilevel framework. The proposed

model aims to minimize the weighted sum of the expected unmet demand, i.e., people who could not

find shelters, and the total evacuation time. The upper level considers shelter location-allocation deci-

sions, while the lower level determines the flow of evacuees. The problem is solved with a Lagrangian

relaxation-based heuristic, and tested using historical hurricane data from the state of North Carolina.

Bayram et al. (2015) develop a nonlinear integer programming model that locates shelters and

assigns evacuees to the closest shelter and to the shortest path within a tolerance distance range,

minimizing the total evacuation time. The BPR function is used to model flow-dependent travel time

on road segments. They linearized the problem using second-order cone programming techniques.

The model is tested using data from the Istanbul Metropolitan Municipality and the Japan Inter-

national Cooperation Agency for earthquake preparedness. Bayram and Yaman (2018a) extend the

model proposed in Bayram et al. (2015) introducing uncertainty in the number of evacuees and in the

availability of roads and shelters, leading to a scenario-based two-stage stochastic model. In this case,

twelve earthquake scenarios were considered based on various magnitudes and severity levels. Bayram

and Yaman (2018b) then developed an exact algorithm based on Benders decomposition to solve the

two-stage stochastic model with a large number of scenarios.

In addition to main decisions, such as shelter location and flow definition, He et al. (2018) also

integrate contraflow operations in their optimization model. They consider traffic congestion via the

earliest arrival flow (EAF) model, as an approximation of the CTM, and aim to minimize the total

evacuation time. A Benders decomposition algorithm is developed to solve the problem on data from

the Dallas-Fort Worth Metropolitan Area. Finally, Afkham et al. (2022) consider traffic via a BPR

function and proposed a bilevel model to minimize the total evacuation time. They also consider that

some roads could be equipped for contraflow. The upper level decides on the selection of shelters and

on the roads to be equipped. The lower level determines the flow of evacuees. They propose a Benders

decomposition algorithm to solve the problem.

Table 1 summarizes the studies on network design under traffic congestion and positions our study

within the related literature. It presents the objective function, targeting either evacuation time, cost,

or coverage (Cov.), and highlights the main decisions of each optimization model. Location (Loc.)

indicates whether or not shelter location is treated as a decision variable in the model. Flow Determi-

nation (Flow det.) identifies whether or not the model determines the number of evacuees assigned to

each road segment. Path Selection (Path sel.) and Route Definition (Route def.) both relate to how

evacuation routes are established, specifically which road segments are used during the evacuation.

Path Selection refers to cases where routes are chosen from a predefined set, while Route Definition

applies when evacuation routes and the flow of evacuees on each segment are determined simultane-

ously. Lastly, Link Capacity (Link Cap.) denotes whether or not the model includes decisions on the
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number of lanes available on each road segment. The table also indicates whether the optimization

model is multi-period and whether it considers contraflow operations. Additionally, it reports the

approach used to approximate traffic congestion and outlines the solution methods employed to solve

the proposed optimization models.

Table 1: Reviewed studies integrating shelter location decisions and traffic congestion

Objective Main decisions Characteristics

Loc. Flow Path Route Link Multi- Contra- Traffic
Reference Time Cost Cov. det. sel. def. cap. period flow congestion Solution approaches

Sherali et al.
(1991) ✓ ✓ ✓ ✓ BRP BD, heuristic
Kongsomsaksakul
et al. (2005) ✓ ✓ ✓ ✓ BRP Genetic algorithm
Kulshrestha
et al. (2011) ✓ ✓ ✓ ✓ BRP Cutting plane algorithm
Li et al. (2012) ✓ ✓ ✓ ✓ * BRP Lagrangian relaxation
Bayram et al.
(2015) ✓ ✓ ✓ ✓ BRP Commercial solver
Bayram and
Yaman (2018a) ✓ ✓ ✓ ✓ BRP Commercial solver
Bayram and
Yaman (2018b) ✓ ✓ ✓ ✓ BRP BD
He et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓ EAF BD
Afkham et al.
(2022) ✓ ✓ ✓ ✓ * ✓ BRP BD
This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ CTM BD, heuristic

*
The entire evacuation period is divided into independent time intervals.

2.2 Positioning and contributions of our paper

In this section, we position our study within the existing literature by examining how our approach

compares to previous research on evacuation network design under traffic congestion. We also highlight

the contributions of our work.

Several approaches have been employed to establish evacuation routes and determine the flow of

evacuees. Li et al. (2012) defined the flow between threatened areas and shelters, assuming that only

one path is available for evacuation between each pair of areas and shelters. Other studies have explored

either path selection (Kongsomsaksakul et al., 2005; Bayram et al., 2015; Bayram and Yaman, 2018b,a)

or route definition (Sherali et al., 1991; Kulshrestha et al., 2011; He et al., 2018; Afkham et al., 2022).

However, none of the reviewed studies explicitly consider road segment capacity, which is particularly

relevant when implementing traffic management strategies such as contraflow operations. The capacity

of a road segment depends on the number of lanes designated for contraflow operations and the number

of lanes reserved for inbound traffic, such as for police and rescue teams entering threatened areas.

Although He et al. (2018) and Afkham et al. (2022) consider contraflow operations as a means to

reduce traffic congestion, they do not account for partial inbound flow, meaning all lanes are dedicated

to outbound traffic. Moreover, Afkham et al. (2022) assumed a predefined capacity on each link as

an input for the BPR function, without considering the potential to increase road segment capacities

through contraflow operations, as we do.

Traffic congestion has been considered mostly through the BPR function. No studies consider traffic

congestion along with shelter location using more sophisticated and more precise approximation of

traffic, using CTM-based approaches for instance. With the BPR function, the travel time on the links

is expressed as a non-linear function of the traffic volume, resulting in non-linear optimization models.

The linearization of the models is usually done using piecewise linear approximations. Furthermore,

He et al. (2018) used an Earliest Arrival Flow (EAF) model to incorporate traffic congestion. The

EAF is a link-based approximation of the cell-transmission model (CTM) with time-invariant cell
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properties (Zheng et al., 2015). In general, BPR and EAF-based formulations are easier to solve

than CTM-based formulations. However, according to He et al. (2018), the EAF model is not able

to capture detailed traffic dynamics and was developed for cases with time-invariant link properties.

In addition, the BPR function is a link exit function that does not directly consider different traffic

phenomena such as disturbance propagation and the creation of shockwaves, which are common in

congested networks (Ziliaskopoulos, 2000; Waller and Ziliaskopoulos, 2006). Therefore, CTM-based

formulations are expected to provide better estimations of traffic congestion than BPR and EAF-based

formulations.

Most of the studies ignored the dynamic nature of evacuation operations. He et al. (2018) is the only

work integrating shelter location and traffic congestion using a dynamic setting, i.e., defining the flow

of evacuees over multiple periods. Their formulation is based on the assumption that link capacities are

time-invariant. In addition, although Li et al. (2012) and Afkham et al. (2022) divided the evacuation

period into smaller time intervals, they solved the problem for each sub-period independently, without

considering a multi-period framework. Dynamic models can provide better estimations of the impact

of traffic on congested networks (Bayram, 2016).

In this paper, we advance the literature by exploring evacuation network design and planning under

traffic congestion in a dynamic setting, with our contribution being threefold. First, we define and for-

mulate the Evacuation Network Design and Planning Problem under Traffic Congestion (ENDPPTC).

Our mathematical formulation integrates a state-of-the-art traffic model, the CTM, with shelter lo-

cation decisions, contraflow operations, time-variant road segment properties, multiple periods, and

road capacities. These features, which have not been considered simultaneously before, significantly

influence the time required for a safe evacuation. However, this integration results in a formulation

that is challenging to solve for real-world instances using commercial solvers or existing methods de-

veloped for other variants of evacuation planning problems. As a second contribution, we develop both

exact and heuristic solution methods based on Benders decomposition, an approach that has been suc-

cessfully applied in similar contexts (Rahmaniani et al., 2017; Bayram and Yaman, 2018b; He et al.,

2018; Afkham et al., 2022; Xu and Nair, 2024). Third, we generate problem instances with varying

topologies and network sizes, inspired by real-world configurations, and conduct extensive computa-

tional experiments. Through these experiments, we analyze the solutions provided by our proposed

formulations and offer practical insights based on our results.

3 Problem description and mathematical model

In this section, we describe the problem under study, introduce the mathematical notation, and present

the mathematical formulation. For summary purposes, a complete list of the mathematical notation

is provided in Appendix A.

3.1 Problem description and mathematical notation

The Evacuation Network Design and Planning Problem under Traffic Congestion (ENDPPTC) involves

different decisions: (i) the location of shelters, (ii) the evacuation routes, (iii) the number of lanes on

the roads that are used during the evacuation (including contraflow operations), and (iv) the flow of

evacuees on the roads during the evacuation. The objective is to minimize the total evacuation time,

i.e., the total travel time spent by evacuees to reach shelters, including delays and waiting times due

to traffic congestion. We assume that all evacuees are ready to evacuate at the beginning of the time

horizon. Additionally, we assume that evacuees follow the routing guidance and instructions of local

authorities or are influenced in their route choice by security forces and police traffic guidance (Goerigk

et al., 2014). In the following, we first define the ENDPPTC on the directed graph G representing the

network without traffic congestion. Then, we explain how this graph is modified to incorporate traffic

congestion using a cell-representation graph Gτ .
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3.1.1 Directed graph G without traffic congestion

The ENDPPTC can be defined on a directed graph G = (V, E), in which V is the set of nodes and E is

the set of directed links. The node set V = Vs ∪Vd ∪Vu ∪{p} comprises a set of source nodes Vs (e.g.,

population points, households, meeting points, facilities), destination nodes Vd (e.g., shelters, safe

zones, exit points), intersection nodes Vu (i.e., road intersections) and a sink node p, with Vs∩Vd = ∅.
The set of directed links E includes one link from each destination node Vd to the sink node p denoted as

Ep and the set of roads denoted as E \Ep. Figure 1 presents an example of a graph G with three source

nodes, two destination nodes, two intersection nodes, and nine roads represented with 18 directed

links.

1

2

3

4 5

6

7

p

Sources nodes (Vs)

Destination nodes (Vd)

Sink node (p)

Intersection nodes (Vu)

Figure 1: Example of a graph G

Each source node i ∈ Vs has a demand (bi), measured in number of vehicles, to be evacuated. A

shelter with a limited capacity Ki of number of vehicles that it can receive can be opened or not at each

destination node i ∈ Vd. In addition, a shelter can only be opened if at least md vehicles reach it. This

consideration helps to enhance staff deployment and management by preventing too low utilization

rates of available resources, including shelter facilities, staff, beds, food, and other essentials. While

there is no cost to open (use) a shelter, at most K shelters can be opened due to the limited resources

available for setting up and managing shelters.

To reach shelters, evacuees have to travel on a road-network. Each road goes from one node i ∈ V\p
to another node j ∈ V \ p and is represented by exactly two directed links in E \ Ep, i.e., implying that

it can be used in both directions. Each link e ∈ E \Ep has a length in miles (µe) and a number of lanes

(fe) that can be used for evacuation. Contraflow operations are allowed, i.e., some lanes can be used in

the opposite direction to facilitate the evacuation. However, at most fM
e lanes of link e ∈ E \ Ep can be

used in contraflow and we impose a maximum total number E of links with contraflow operations. This

is due to the resources required to deploy the contraflow operations, e.g., limited staff (police officers)

needed to control the new flow direction. In addition, this allows to consider that some lanes need to

remain available in their initial direction for inbound flow (police, National Guard, rescue teams, etc.)

into threatened areas (Wolshon, 2001). Each link e ∈ E \Ep is also associated with three traffic-related

parameters: its free-flow capacity representing the maximum number of vehicles that can pass per

hour without traffic congestion (qe), a free-flow speed representing the speed without traffic congestion

in miles per hour (ve), and its free-flow travel time in seconds which is computed as its length divided

its free-flow speed and reported in seconds, that is, te = µe/ve · 3600. In practice, using a link requires

resources to be deployed such as policemen to guide the people, or signs. Therefore, a link e ∈ E \ Ep

can only be used if at least me vehicles traverse it.

3.1.2 Cell-representation graph Gτ including traffic congestion

In the ENDPPTC, all the demand must be evacuated within a predefined time horizon T τ for which

each period t ∈ T τ has a time step τ . A better estimation of the traffic congestion is obtained

with lower values of τ , but this increases the complexity of the problem. The travel time on links

depend on the congestion induced by the flow of vehicles. Travel times are usually positive and

monotonically increasing functions of traffic flow, meaning that higher traffic volumes result in longer

travel times. To model traffic congestion, we use the Cell Transmission Model (CTM) approach

as proposed by Daganzo (1994, 1995). The CTM is a discretization of the differential equations of
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the Lighthill–Whitham–Richards (LWR) hydrodynamic theory of traffic flow (Lighthill and Whitham,

1955; Richards, 1956), in which the traffic flow is treated as a fluid, and there are two basic assumptions:

there is a one-to-one relationship between speed and density, and traffic is conserved. The general idea

of the CTM is to convert roads (links) into equal-sized segments, called cells, each of which has a length

that is equal to the distance that can be traveled during the predefined time step τ at the free-flow

speed, i.e., the travel speed without traffic (Bayram, 2016). Congestion occurs when the flow in one

cell cannot be propagated to the next, i.e., when vehicles must wait in a cell for one or multiple periods

before going to the next. In the following, we describe how the directed graph G is transformed into

the cell-representation graph Gτ to consider traffic congestion using the CTM approach.

Each source node i ∈ Vs is represented by a source cell, and the set of source cells is denoted by Cs.
Each destination node i ∈ Vd is represented by a destination cell, and the set of destination cells is

denoted by Cd. The sink node p is represented by a sink cell also denoted by p. Each link e ∈ E is

associated with a set of cells Ce. Therefore, the set of cells is defined as C = Cs ∪ Cd ∪ {p} ∪e∈E Ce.
In the cell-representation graph Gτ , each cell is connected with a directed arc to its successor and

predecessor cells. For each cell j ∈ C, we denote by Γj and Γ−1
j its set of successor and predecessor

cells, respectively. Figure 2 illustrates the cell-representation graph Gτ of the graph G presented in

Figure 1. The graph contains three source cells (Cs = {1, 2, 3}), two destination cells (Cd = {4, 5}),
and 46 cells associated with links in graph G. As an example, the link (2, 4) in the directed graph G

is represented with the set of cells {8, 9, 10, 11} in the cell-representation graph Gτ . In addition, for

cell 8 in graph Gτ , its set of successor cells is defined as Γ8 = {9}, while its set of predecessor cells is

defined as Γ−1
8 = {2, 7, 45}.

 

Figure 2: Example of a cell-representation graph Gτ

Each link e ∈ E is divided into ℓe cells (|Ce| = ℓe), where ℓe = ⌈te/τ⌉, that is, the number of cells

is computed as the free-flow travel time of edge e divided by the time step and rounded up to the

nearest integer. Note that ℓe = 1 for all e ∈ Ep. In addition, the length in miles associated with each

cell Ce, e ∈ E \ Ep, denoted by de, is computed as de = (τ/3600)ve and represents the distance that a

vehicle can travel during a time step τ according to the free-flow speed of its associated link.

A parameter 0 ≤ δ ≤ 1 represents the ratio between the free-flow speed and the backward wave

speed. A value closer to zero implies that there is more traffic which is propagated backwards in the

cells. Therefore, the flow propagation between two cells at any time period t ∈ T τ is bounded by i)

the maximum number of vehicles that can be accommodated in cell i ∈ Ce, e ∈ E \ Ep given l lanes in

operation (Nilt), and ii) the maximum number of vehicles that can flow into or out (pass in or out) of

cell i ∈ Ce, e ∈ E \Ep given l lanes in operation (Qilt). We define Nilt = lκde,∀i ∈ Ce, e ∈ E \Ep, where

κ denotes the traffic jam density, i.e., the number of vehicles per mile per lane when traffic flow stops

completely. We also compute Qilt = l(τ/3600)qe,∀i ∈ Ce, e ∈ E \ Ep.
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3.2 Mathematical model

We model the ENDPPTC as a mixed-integer linear programming problem. Our model is adapted

from the linear programming formulation proposed by Ziliaskopoulos (2000), which is a CTM-based

flow model that considers evacuation planning and traffic congestion. In the ENDPPTC, the model is

adapted to consider additional decisions related to shelter location, route definition, and link capacities,

including contraflow operations.

The additional following notation is necessary to model the ENDPPTC. In the directed graph,

each road is represented by exactly two directed links in E \ Ep. Therefore, for each pair of links

e, e′ ∈ E \ Ep, we define gee′ as a binary parameter equal to one if links e and e′ represent the road in

opposite directions, and 0 otherwise. We define Le as the set of lanes that can be used on a given road

in the same direction. For link e ∈ E \Ep, given e′ ∈ E \Ep such that gee′ = 1, the number of lanes than

can be used in the same direction is equal to fe + fM
e′ . Therefore, Le = {1, ..., fe + fM

e′}, ∀e, e′ ∈ E \ Ep

such that gee′ = 1. We also define nji as a binary parameter equal to one if node i ∈ V \ Vu in graph

G is represented by cell j ∈ C \ ∪e∈ECe in the cell-representation graph Gτ , and 0 otherwise.

The ENDPPTC can then be modeled using four sets of variables. First, for every destination node

i ∈ Vd, we define Zi as a binary variable equal to one if a shelter is opened at destination node i,

and 0 otherwise. Second, for every directed link e ∈ E \ Ep, we define Lle as a binary variable equal

to one if l ∈ Le lanes are used during the evacuation, and 0 otherwise. Third, for every cell j ∈ C
and period t ∈ T τ , we define Xjt as a continuous variable representing the number of vehicles in cell

j at period t. Finally, for each pair of connected cells j ∈ C, k ∈ Γj , we define Yjkt as a continuous

variable representing the number of vehicles moving from cell j to cell k at period t ∈ T τ . Using these

variables, the ENDPPTC can be modeled as follows:

(ENDPPTC) min
∑

j∈C\{p}

∑
t∈Tτ

τXjt, (1a)

s.t. Xj1 = bi +Xj0 −
∑
k∈Γj

Yjk0, ∀ j ∈ Cs, i ∈ Vs : nji = 1, (1b)

Xjt = Xj(t−1) −
∑
k∈Γj

Yjk(t−1), ∀ j ∈ Cs, t ∈ T τ : t > 1, (1c)

Xpt = Xp(t−1) +
∑

k∈Γ−1
p

Ykp(t−1), ∀ t ∈ T τ , (1d)

Xjt = Xj(t−1) +
∑

k∈Γ−1
j

Ykj(t−1) −
∑
k∈Γj

Yjk(t−1), ∀ j ∈ C \ {Cs ∪ {p}}, t ∈ T τ , (1e)

∑
k∈Γj

Yjkt ≤ Xjt, ∀ j ∈ C \ {p}, t ∈ T τ , (1f)

∑
k∈Γj

Yjkt ≤
∑
l∈Le

QjltLle, ∀ j ∈ Ce, e ∈ E \ Ep, t ∈ T τ , (1g)

∑
j∈Γ−1

k

Yjkt ≤
∑
l∈Le

QkltLle, ∀ k ∈ Ce, e ∈ E \ Ep, t ∈ T τ , (1h)

∑
j∈Γ−1

k

Yjkt ≤
∑
l∈Le

δNkltLle − δXkt, ∀ k ∈ Ce, e ∈ E \ Ep, t ∈ T τ , (1i)

∑
t∈Tτ

Yjpt ≤ KiZi, ∀ j ∈ Cd, i ∈ Vd : nji = 1, (1j)

∑
t∈Tτ

∑
k∈Γ−1

j

Ykjt ≥ me
∑
l∈Le

Lle, ∀ j ∈ Ce, e ∈ E \ Ep, (1k)

∑
t∈Tτ

Yjpt ≥ mdZi, ∀ j ∈ Cd, i ∈ Vd : nji = 1, (1l)
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∑
i∈Vd

Zi ≤ K, (1m)

∑
l∈Le

Lle +
∑
l∈Le′

Lle′ ≤ 1, ∀ e, e′ ∈ E \ Ep : gee′ = 1, (1n)

∑
l∈Le

lLle ≤ fe + f M
e′ , ∀ e, e′ ∈ E \ Ep : gee′ = 1, (1o)

∑
e∈E\Ep

∑
l∈Le:l>fe

Lle ≤ E, (1p)

Xj|Tτ | = 0, ∀ j ∈ C \ {p}, (1q)

Xjt ≥ 0, ∀ j ∈ C, t ∈ T τ , (1r)

Yjkt ≥ 0, ∀ j ∈ C, k ∈ Γj , t ∈ T τ , (1s)

Zi ∈ {0, 1}, ∀ i ∈ Vd, (1t)

Lle ∈ {0, 1}, ∀ l ∈ Le, e ∈ E \ Ep. (1u)

The objective function (1a) minimizes the total evacuation time, i.e., the sum of the time required

for all vehicles to reach the shelters. Constraints (1b) and (1c) define the cell-mass conservation for the

source cells at period t = 1 and t > 1, respectively. That is, at period t = 1, the number of vehicles at a

given source cell is equal to its demand. At period t, such that t > 1, the number of vehicles at a given

source cell is equal to the number of vehicles that were at the source cell at period t− 1 by removing

those that left to another cell at period t − 1. Xj0 and Yjk0 represent the initial state of the system.

Constraints (1d) define the cell-mass conservation for the sink cell p, i.e., the number of vehicles at

the sink cell at period t is equal to the number of vehicles that were at the sink cell at period t − 1

added to those that arrived at the sink cell at period t. Similarly, constraints (1e) define the cell-mass

conservation for all the other cells. Constraints (1f) state that the flow between cells j and k is bounded

by the number of vehicles at the starting cell j. Similarly, constraints (1g) and (1h) state that the flow

between cells j and k is bounded by the maximum flow that can flow out of the starting cell j and

into the ending cell k, respectively, according to the number of lanes in operation. Constraints (1i)

define that the flow between cells is bounded by the cell’s remaining capacity which is affected by the

ratio between its free-flow speed and its backward wave speed (δ) as in the literature (Ziliaskopoulos,

2000). That is, for a given cell i ∈ Ce, e ∈ E \ Ep at a given time period t ∈ T τ , it corresponds to the

maximum number of vehicles that can be accommodated in a given cell minus the number of vehicles

that are already in the cell, which is computed as δ(
∑

l∈Le
NiltLle −Xit). Constraints (1j) limit the

number of vehicles that can be evacuated to shelters. Constraints (1k) and (1l) establish the minimum

flow on links and shelters to consider their operation. Constraint (1m) limits the number of shelters

that can be opened. Constraints (1n) force the evacuation flow to only one direction for a given road

segment. Constraints (1o) limit the number of lanes that can be used during evacuation operations

to the number of available lanes, including the contraflow operations. Constraints (1p) set a limit on

the number of links with contraflow operations. A giving link e ∈ E \ Ep uses lanes in contraflow if

the number of used lanes is higher than fe. Constraints (1q) force the evacuation of all vehicles to the

sink cell. Finally, constraints (1r) and (1u) establish the domain of decision variables.

4 Branch-and-Benders-cut algorithm to solve the ENDPPTC

It is important to develop specialized solution methods to solve the ENDPPTC due to the complexity

of the problem. In the ENDPPTC, the problem can be decomposed to reduce its complexity using

Benders decomposition. Furthermore, the impact of traffic congestion on evacuation time can be more

precisely estimated when using shorter time periods, i.e., smaller values of τ . However, this leads

to an increase in the number of variables and constraints, thus further complicating the model. In

this section, we present an exact Branch-and-Benders-cut (BBC) algorithm to solve the ENDPPTC

(Section 4.1). We also propose enhancement strategies to speed up our BBC algorithm (Section 4.2).
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Additionally, in Appendix D we present an algorithm developed to solve the subproblem heuristi-

cally, which results in a matheuristic BBC. The matheuristic BBC is used to find feasible solutions,

particularly for instances with small τ values.

4.1 Branch-and-Benders-cut algorithm

Benders decomposition is a variable-partitioning technique to efficiently solve complex problems (Ben-

ders, 1962; Rahmaniani et al., 2017). In our Benders decomposition approach to solve the ENDPPTC,

the problem is decomposed in a master problem (MP) and a subproblem (SP). The MP considers only

the binary variables, i.e., shelter location and lanes to be used during the evacuation. The SP deter-

mines the flow of evacuees on the different links during the evacuation considering the MP solution.

In the classical Benders decomposition, the MP and the subproblem are solved iteratively (starting

with the MP). At each iteration, violated (optimality or feasibility) Benders cuts derived from the SP

are added to the MP. This process is repeated until a stopping criterion is reached (usually a running

time limit or a predefined optimality gap). The optimality gap can be calculated at each iteration.

The objective function of the MP gives a valid lower bound, while feasible SPs provide valid upper

bounds for the original problem (Rahmaniani et al., 2017). We implement a BBC algorithm in which

the MP is solved by a single search tree, and the cuts are generated within the tree. This strategy

has yielded satisfactory results in different applications, including network design, transit systems, and

transportation network recovery (see e.g., Gendron et al., 2016; Errico et al., 2017; Gouveia et al.,

2018; Moreno et al., 2019, 2020).

Our proposed BBC embeds the resolution of the master problem and the subproblem in a branch-

and-bound (B&B) tree, calling the subproblem when an integer solution is found as shown in Figure 3.

At each node r of the branching tree, the linear relaxation of the current master problem (LPr) is

solved. The subproblem is then only solved if the corresponding solution is integer, feasible and has

a better objective value (OFr) than the objective value of the current incumbent (OF∗
r). Otherwise

branching is performed if the solution is non-integer, while node r is pruned if the solution is infeasible

or its corresponding objective value is higher than or equal to the objective value of the current

incumbent. When the corresponding subproblem is solved, three possibilities can arise: 1) generating

a violated feasibility Benders cut, 2) generating a violated optimality Benders cut, and 3) setting the

LPr solution as the new incumbent. A feasibility cut is violated and added to the MP if the subproblem

is infeasible, whereas an optimality cut is violated and added to the MP if the subproblem is feasible

and its objective function is higher than the objective function of the current MP (OFr). If no cuts are

generated, i.e., the subproblem is feasible and its objective function is equal to OFr, LPr is set as the

new incumbent solution, with OF∗
r = OFr, and the node is pruned. If a cut is generated, the described

steps are applied again. Automatized cuts and heuristics available in general-purpose optimization

software can be used at each node r as well, although they are not presented in Figure 3.

In the following, we first describe and model the Benders MP (Section 4.1.1). Then, we describe

and model the Benders subproblem SP (Section 4.1.2) for the ENDPPTC. Finally, we formulate the

optimality and feasibility cuts for the ENDPPTC (Section 4.1.3).

4.1.1 Master problem

In the ENDPPTC, the complicating variables are the binary variables corresponding to opening (or

not) a shelter (Zi, i ∈ Vd) as well as the number of lanes selected in each link (Lle, l ∈ Le, e ∈ E \Ep).

Therefore, the Benders MP for the ENDPPTC consists of determining 1) the shelter location by

considering the maximum number of shelters, 2) the number of lanes used on each link by considering

the maximum number of lanes in contraflow.

To model the MP, the additional variable Θ is used and aims to compute the total evacuation time,

which represents our objective function to be minimized. The MP can then be modeled as follows:

(MP) min Θ, (2a)
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s.t. (1m)− (1p), (1t), (1u),

Θ ≥ 0. (2b)

Note that, initially, the lower bound for Θ is zero. Every time a solution is found for the MP, feasibility

or optimality cuts are added, which will likely increase the lower bound of Θ.

Start at node r

Solve the LPr of the
current master problem MP

Is the LPr
infeasible or is
OFr ≥ OF∗

r?

Does LPr solution
satisfy the
integrality

constraints?

Branch

Prune the node r

Add feasibility or
optimality cuts

Does LPr violate
feasibility or

optimality cuts?

Solve the subproblem SP
(capacitated traffic model)

Fix the shelter location
and lanes in operation
from the MP solution

Set the LPr solution
as the new incumbent

yes

no

no

yes

yes

no

Figure 3: Flowchart illustrating the cut generation in a given node r of the branch-and-bound tree

4.1.2 Subproblem

Given the shelter location and routes defined in the MP, the subproblem entails determining the flow

along the links across the time horizon, minimizing the total evacuation time. Thus, when the variables

Lle and Zi are fixed, the remaining problem becomes a LP model similar to the CTM proposed in the

literature (Ziliaskopoulos, 2000; Zheng and Chiu, 2011), but with additional constraints related to the

capacity of shelters and minimum flow on links. Let Z̄i and L̄le be the value of variables Zi and Lle

in the solution of the MP. The subproblem (SP) is defined as follows:

(SP) min
∑

j∈C\{p}

∑
t∈T τ

τXjt. (3a)

s.t. (1b)− (1f), (1q)− (1s),∑
k∈Γj

Yjkt ≤
∑
l∈Le

QjltL̄le, ∀ j ∈ Ce, e ∈ E \ Ep, t ∈ T τ , (3b)
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∑
j∈Γ−1

k

Yjkt ≤
∑
l∈Le

QkltL̄le, ∀ k ∈ Ce, e ∈ E \ Ep, t ∈ T τ , (3c)

∑
j∈Γ−1

k

Yjkt ≤
∑
l∈Le

δNkltL̄le − δXkt, ∀ k ∈ Ce, e ∈ E \ Ep, t ∈ T τ , (3d)

∑
t∈T τ

Yjpt ≤ KiZ̄i, ∀ j ∈ Cd, i ∈ Vd : nji = 1, (3e)∑
t∈T τ

∑
k∈Γ−1

j

Ykjt ≥ me
∑
l∈Le

L̄le, ∀ j ∈ Ce, e ∈ E \ Ep, (3f)

∑
t∈T τ

Yjpt ≥ mdZ̄i, ∀ j ∈ Cd, i ∈ Vd : nji = 1. (3g)

The objective function (3a) is written as for the ENDPPTC, i.e., (1a). Constraints (3b)–(3g) are

similar to constraints (1g)–(1l), but variables Lle and Zi are fixed according to the MP solution (Z̄i,

L̄le).

4.1.3 Optimality and feasibility cuts

Every time an integer solution is found in the MP, the SP is solved. When the SP is solved, a dual

solution is obtained. Let λ̄
(1b)
ji , λ̄

(3b)
jet , λ̄

(3c)
jet , λ̄

(3d)
jet , λ̄

(3e)
ji , λ̄

(3f)
je , and λ̄

(3g)
ji denote the values of the dual

variables associated with constraints (1b), (3b), (3c), (3d), (3e), (3f), and (3g) upon solving the SP.

Using these values, an optimality cut is generated if the suproblem is feasible and optimally solved,

while a feasibility cut is generated if the subproblem is infeasible and dual unbounded. In the following,

we formulate the optimality and the feasibility cuts.

Optimality cuts. If the subproblem is feasible and optimally solved, an extreme point is found. The

following optimality cut is then added to the MP:

Θ ≥
∑
j∈Cs

∑
i∈Vs:
nji=1

biλ̄
(1b)
ji +

∑
j∈Ce

∑
e∈E\Ep

∑
t∈T τ

∑
l∈Le

QjltLleλ̄
(3b)
jet +

∑
j∈Ce

∑
e∈E\Ep

∑
t∈T τ

∑
l∈Le

QjltLleλ̄
(3c)
jet

+
∑
j∈Ce

∑
e∈E\Ep

∑
t∈T τ

∑
l∈Le

δNjltLleλ̄
(3d)
jet +

∑
j∈Cd

∑
i∈Vd:
nji=1

KiZiλ̄
(3e)
ji (4)

−
∑
j∈Ce

∑
e∈E\Ep

∑
l∈Le

meLleλ̄
(3f)
je −

∑
j∈Cd

∑
i∈Vd:
nji=1

mdZiλ̄
(3g)
ji .

Feasibility cuts. If the subproblem is infeasible (i.e., dual unbounded), an extreme ray is found. The

following feasibility cut is then added to the MP:

0 ≥
∑
j∈Cs

∑
i∈Vs:
nji=1

biλ̄
(1b)
ji +

∑
j∈Ce

∑
e∈E\Ep

∑
t∈T τ

∑
l∈Le

QjltLleλ̄
(3b)
jet +

∑
j∈Ce

∑
e∈E\Ep

∑
t∈T τ

∑
l∈Le

QjltLleλ̄
(3c)
jet

+
∑
j∈Ce

∑
e∈E\Ep

∑
t∈T τ

∑
l∈Le

δNjltLleλ̄
(3d)
jet +

∑
j∈Cd

∑
i∈Vd:
nji=1

KiZiλ̄
(3e)
ji (5)

−
∑
j∈Ce

∑
e∈E\Ep

∑
l∈Le

meLleλ̄
(3f)
je −

∑
j∈Cd

∑
i∈Vd:
nji=1

mdZiλ̄
(3g)
ji .

4.2 Enhancement strategies

In this section, two strategies to improve the performance of the BBC algorithm are presented. The
first improvement strategy consists of formulating a stronger master problem (Section 4.2.1). The
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second strategy consists of generating only a subset of variables and constraints in the subproblems

according to the solution obtained from the improved master problem (Section 4.2.2). Note that the

second strategy can only be used if the first strategy is used as it requires the solution of the stronger

master problem.

4.2.1 Strengthened master problem MP∗

In the original master problem, the information related to the flow decisions and the estimation of

the traffic congestion is lost due to the decomposition. In this case, the subproblem can be called

many times. Therefore, a large number of cuts can be generated which impacts the convergence of the

algorithm. In general, the performance of the algorithm can be significantly affected by the quality of

the initial bound obtained from the MP. For this reason, many strategies have been proposed to devise

stronger master problem formulations and to retrieve part of the information lost in the decomposition

(see e.g., Errico et al., 2017; Gendron et al., 2016; Moreno et al., 2020). In this section, we propose a

stronger master problem formulation, referred to as MP∗, by adding new variables and constraints to

simulate the flow decisions and setting a lower bound for Θ.

The stronger master problem MP∗ is defined on the graph G over the set of time periods T τ . It

incorporates traffic-congestion parameters computed in the cell-representation graph Gτ . To properly

define MP∗, we introduce the sets E−
i and E+

i , ∀i ∈ V which are defined as the set of incoming links

to node i ∈ V (i.e., links starting at a node ∀j ∈ V, i ̸= j and ending at i) and outgoing links from

node i ∈ V (i.e., links starting at node i and ending at a node ∀j ∈ V, i ̸= j). For each period t ∈ T τ ,

we also define Kelt as the capacity of link e ∈ E \ Ep given l lanes in operation, which is computed as

Kelt = min{maxi∈Ce
{Qilt},maxi∈Ce

{δNilt}}. MP∗ can then be modelled using two additional sets of

continuous variables, i.e., χit, i ∈ V, t ∈ T and υet, e ∈ E , t ∈ T τ . For each period t ∈ T τ , we define χit

as the number of vehicles at node i ∈ V at period t, and υet as the number of vehicles travelling on

link e ∈ E at period t. MP∗ can then be modelled as:

(MP∗) min Θ, (6a)

s.t. (1m)− (1p), (1t), (1u)

Θ ≥
∑
t∈Tτ

∑
e∈E\Ep

τℓeυet +
∑
t∈Tτ

∑
i∈V\{p}

τχit +
∑
t∈Tτ

∑
e∈E−

p

τυet, (6b)

∑
e∈E+

i

υe1 + χi1 = bi, ∀ i ∈ Vs, (6c)

∑
e∈E+

i

υet + χit =
∑

e∈E−
i :

t−ℓe>0

υe(t−ℓe) + χi(t−1), ∀ i ∈ Vs, t ∈ T τ : t > 1, (6d)

∑
t∈Tτ

∑
e∈E−

p

υet =
∑
i∈Vs

bi, (6e)

∑
e∈E+

i

υet + χit =
∑

e∈E−
i :

t−ℓe>0

υe(t−ℓe) + χi(t−1):
t>1

, ∀ i ∈ V \ {Vs ∪ {p}}, t ∈ T τ , (6f)

∑
t∈Tτ

υet ≥ me
∑
l∈Le

Lle, ∀ e ∈ E \ Ep, (6g)

∑
t∈Tτ

υet ≥ mdZi, ∀ e ∈ {E+
i ∪ E−

p }, i ∈ Vd, (6h)

∑
t∈Tτ

υet ≤ KiZi, ∀ e ∈ {E+
i ∪ E−

p }, i ∈ Vd, (6i)

υet ≤
∑
l∈Le

KeltLle, ∀ e ∈ E \ Ep, t ∈ T τ , (6j)

υet ≤ δ
∑
l∈Le

(min
j∈Ce

{Njlt})Lle − δυe(t−1):
t>1

, ∀ e ∈ E \ Ep, t ∈ T τ , (6k)

υet ≥ 0, e ∈ E, t ∈ T τ , (6l)

χit ≥ 0, i ∈ V, t ∈ T τ . (6m)
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Constraints (6b) establish a lower bound for the total evacuation time, which is defined as the
sum of the travel time on the links (

∑
t∈T τ

∑
e∈E\Ep τℓeυet +

∑
t∈T τ

∑
e∈E−

p
τυet) plus the waiting

time on the nodes (
∑

t∈T τ

∑
i∈V\{p} τχit). Constraints (6c) and (6d) set the flow of vehicles for each

source node at periods t = 1 and t > 1, respectively. Note that travelling along a link e ∈ E requires
a time ℓe. Constraints (6e) and (6f) set the flow of vehicles for the sink node and all other nodes,
respectively. Constraints (6g) and (6h) establish the minimum flow on links and shelters to consider
their operation. Constraints (6i) ensure that the number of vehicles evacuated to each shelter respects
its capacity. Constraints (6j) and (6k) state that the flow on a link e ∈ E \ Ep is bounded by its
capacity, according to the number of lanes in operation. Finally, constraints (6l) and (6m) define the
domain of the decision variables. Note that MP∗ has a stronger lower bound than MP, but is more
difficult to solve, particularly when considering small values of τ .

4.2.2 Improved subproblem SP∗

The subproblem SP becomes computationally intractable when considering small time steps (τ), as
smaller time steps result in more cells and time periods. In this section, we propose a strategy to
reduce the complexity of the subproblems using the information when solving MP∗. We refer to this
subproblem as SP∗. This strategy can only be used if we solve MP∗.

When solving MP∗, we obtain a solution with flows on the links. Using the optimal solution found
when solving MP∗, we reduce the cell-representation graph Gτ on which SP and SPh are solved by
generating cells representing links on which there is a strictly positive flow of evacuees in the solution.
Let χ̄it and ῡet be the value of variables χit and υet in the optimal solution of the MP∗. In the
subproblems, we then generate only the variables Xjt, j ∈ Ce, t ∈ T τ such that

∑
t′∈T τ ῡet′ > 0 and

the variables Ykjt, j ∈ Ce, k ∈ Ce′ , k ̸= j, t ∈ T τ such that
∑

t′∈T τ ῡet′ > 0 and
∑

t′∈T τ ῡe′t′ > 0.
This strategy allows to reduce the size of the subproblem. In addition, we still guarantee that optimal
solutions can be found for the subproblem because we eliminate cells that would not be used anyway.

5 Computational results

This section describes the instance generation methodology (Section 5.1), analyzes how different time
step values affect the traffic impact estimation (Section 5.2), compares the computational performance
of the proposed formulation and solution methods (Section 5.3), assesses the impact of how traffic is
modeled in the evacuation time (Section 5.4), and analyzes the solutions in light of different parameter
variations (Section 5.5). In this section, we report summarized results. Detailed results can be accessed
at Mendeley data (Moreno et al., 2023). All the algorithms were coded in C++ and run on a PC with
an Intel Gold 6148 Skylake processor with 16.0 GB of RAM and a single thread. The MIP and LP
models were solved using IBM CPLEX Optimization Solver 20.1. Benders cuts are added using the
Callback classes available in the Concert Technology Library. We impose a computational time limit
of 10,800 seconds, and the stopping criterion was either the elapsed time exceeding the time limit or
the optimality gap being smaller than 10−4. All the remaining parameters of CPLEX were kept at
their default values.

5.1 Instance description

In this section, we describe the instances. We start by detailing how we have generated the different
networks inspired by real network configurations. Then, we specify the different parameters. The
instance data files are publicly available at Mendelay data (Moreno et al., 2023), and the algorithm
for generating instances is available upon request.

5.1.1 Network structure

The instances were randomly generated based on procedures previously used in the literature and
inspired by real network configurations (Masucci et al., 2009; Zheng and Chiu, 2011; Ulusan and
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Ergun, 2018; He et al., 2018; Esposito Amideo et al., 2021). A total of 144 networks are generated,
with different topologies, areas, and source and destination nodes location. In the following, we first
describe the four network topologies. Then, we explain how the nodes including the source nodes (Vs),
the destination nodes (Vd) and the intersection nodes (Vu) have been generated. Finally, we detail the
generation of the directed links representing the roads (E \ Ep).

The instances are divided into four classes based on their topology: Grid (G), Grid-like (L), Ir-
regular (I), and Sparse (S). These topologies simulate real-road networks. For example, Boston and
Manhanttan road networks can be represented using irregular and grid-like network topologies (Ulu-
san and Ergun, 2018), respectively, whereas remote villages can be represented using sparse net-
works. For each topology, nine different rectangular areas, referred to as sizes, (h× w) are generated,
where h represents the height and w represents the width of the area. The generated areas are
(3× 12), (4× 9), (4× 15), (5× 12), (6× 6), (6× 10), (6× 20), (8× 15), (10× 12). The instances are re-
ferred to as X (h×w), where X represents the topology and (h×w) indicates the size of the area. For
example, G (3 × 12) refers to a Grid topology on a (3 × 12) rectangular area. Figure 4 illustrates an
example of these four topologies on a rectangular area of (8× 15).

G, L, and I networks have h × w nodes, while S networks have ⌈0.4 · h× w⌉. The nodes in the G
and L topologies are positioned equidistantly in the rectangular area, while in the I and S topologies
they are randomly positioned (see Figure 4). Each generated node is either a source node (Vs), a
destination node (Vd), or an intersection node (Vu), and Vs ∪ Vd ∪ Vu = ∅. The number of generated
source and destination nodes depends on the area size. Specifically, the number of destination nodes
is given by |Vd| = ⌊0.1 · (h× w)⌋, while the number of source nodes is given by |Vs| = ⌊0.07 · (h× w)⌋.
The nodes Vs and Vd are randomly located in area considering two configurations: aside and sur-
rounding. In aside configuration, the source and destination nodes are located at the opposite sides
of the rectangular area. These configurations represent disasters, such as Tsunamis in near-coastal
ocean regions, where people need to be evacuated to the opposite side of the city. In surrounding con-
figurations, source nodes are located in the center of the area, while destination nodes are located on
the outskirts of the area. Surrounding configurations represent, for example, flood evacuations where
people in low-lying areas need to be evacuated to high-lying areas. For both configurations, there are
no destination nodes located within a radius r (measured in miles) of a source node, and two values
of r = {3, 5} are tested. Figure 5 illustrates these two configurations on a sparse topology.

In the G, L, and I topologies, the number of roads is (h − 1) · w + (w − 1) · h (i.e., |E \ Ep| =
2 · [(w − 1) · h + (h − 1) · w]), while the S topologies have ⌈0.4 · [(w − 1) · h+ (h− 1) · w]⌉ roads (i.e.,
|E \ Ep| = 2 · ⌈0.4 · [(w − 1) · h+ (h− 1) · w]⌉). In addition, the length µe of each link e ∈ E \ Ep is
one unit of distance µe = 1 in the G topology, while it can go up to two units of distance (µe ≤ 2) in
the L, I and S topologies. The arcs are generated using the generation procedure to build Erdös-Rényi
Planar Graphs (Masucci et al., 2009). The roads are classified into three categories: freeways, arterial
streets and local streets (similar to He et al., 2018). Freeways and arterial streets traverse the networks
from left to right and from bottom to top. The number of freeways and arterial streets is calculated
based on the width and height of the rectangular area, as well as the network topology. Specifically,
in the G, L, and I topologies, the number of freeways from left to right is ⌊h/7⌋, and from bottom to
top is ⌊w/7⌋. In contrast, in the S topology, these numbers are max 0, ⌊h/7⌋ − 1 and max 0, ⌊w/7⌋ − 1,
respectively. In addition, in the G, L, and I topologies, the number of arterial streets from left to
right are ⌊h/4⌋, and from bottom to top are ⌊w/4⌋, while these numbers are min{0, ⌊h/4⌋ − 1} and
min{0, ⌊w/4⌋ − 1} in the S topology. In addition, we ensure that freeways and arterial streets have a
continuous path (see Appendix B for more details). Figure 6 illustrates a L(8× 15) instance with its
specific freeways, arterial streets and local streets.
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Figure 4: Example of four instances G(8× 15), L(8× 15), I(8× 15), and S(8× 15)
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Figure 5: Example of a aside and surrounding configurations with instance S(10× 12)
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Figure 6: Example of freeways, arterial streets and local streets, L(8× 15)

5.1.2 Parameters

In this section, we specify the different parameters that have been used in our experiments. We
first specify the parameters related to the nodes as well the maximum number of shelters. Then, we
describe the parameters related to the links. Finally, we define the traffic congestion parameters. Note
that in the traffic congestion parameters, we do not discuss the value of the time step (τ) as different
values have been tested to assess the quality of the solutions and the performance of the algorithm
(see Section 5.2).

Each source node i ∈ Vs has a demand bi representing the number of vehicles to be evacuated. The
values of bi were generated following the method used by Esposito Amideo et al. (2021), specifically
from an integer uniform distribution between 50 and 550 vehicles, i.e., bi ∼ U(50, 550),∀i ∈ Vs. In
addition, destination node has a capacity (Ki, i ∈ Vd) computed as

Ki =

∑
k∈Vs bk

ϕ · K
,∀i ∈ Vd,
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where ϕ is a weighting parameter set to 0.8 as in Esposito Amideo et al. (2021). In addition, the
minimum number of vehicles that can be sent during the evacuation to a destination node is set to 5%
of the total demand, that is, md = 0.05

∑
i∈Vs bi. The maximum number of shelters is set as K = |Vd|.

Each generated road is represented by two directed links in E \ Ep. As detailed in Section 5.1.1,
each road has a category: freeway, arterial street and local street. According to its category, its links
have different values: i) the free-flow capacity (qe), ii) the free-flow speed (ve), and iii) the number of
available lanes (fe). Table 2 defines the values qe, ve, and fe according to its category. In addition, the
maximum number of lanes that can be used for contraflow operations in link e ∈ E \Ep is computed as
fM
e = fe − 1, and the maximum number of links in contraflow is computed as E = |E \ Ep|/2. Finally,
if a link is selected for the evacuation, the minimum number of vehicles that can be sent over that link
during the evacuation is set to 1% of the total demand, that is, me = 0.01

∑
i∈Vs bi,∀e ∈ E \ Ep.

Table 2: Parameters for each link category

Link Capacity Free-flow speed # lanes
category (qe) (ve) (fe)

Freeway 1800 veh/h/lane 65 mph 3
Arterial street 1200 veh/h/lane 40 mph 2
Local street 600 veh/h/lane 30 mph 1

For the traffic congestion parameters, the value of the traffic jam density is set to 180 vehicles per
mile per lane (κ = 180). In addition, for each cell i ∈ Ce, e ∈ E \ Ep, the ratio between the backward
wave speed and free-flow speed is set to 0.3 (δ = 0.3). These values are averages based on the literature
(Li et al., 2003; Ziliaskopoulos, 2000; Zheng and Chiu, 2011). Finally, we have set the time horizon T τ

to allow for the evacuation of the total demand. At period t = 0, we set the initial state of the system
with 0 vehicles in each cell (Xj0 = 0,∀j ∈ C) and with 0 vehicles moving from a cell to another cell
(Yjk0 = 0,∀j ∈ C, k ∈ Γj). In the G, L, and I networks, the time horizon is set to 1.5 hours, while it
is set to 2 hours in the S networks.

5.2 Analysis of time step τ

In this section, we tested different values for the time step τ , ranging from 6 to 30 based on the literature
(He et al., 2018; Mohebifard and Hajbabaie, 2019; Zheng and Chiu, 2011). Figure 7 reports the average
computational time (in seconds) as well as the percentage of feasible and optimal solutions obtained
with our solution approach for different values of τ . Note that for instances that are not solved to
optimality within the 10,800-second time limit, we use 10,800 seconds to compute the average compu-
tational time. Figure 8 reports the impact on the solution quality (i.e., the value of the total evacuation
time) for different values of τ . More precisely, this is computed as (zτ − z6)/z6 where zτ and z6 are
the values of the total evacuation time with the tested values of τ , i.e., {6, 9, 12, 15, 18, 21, 24, 27, 30},
and when setting τ = 6. We report the average over all the instances that are solved to optimality for
all the tested values of τ .

On the one hand, the results show that when increasing the value of τ , this decreases the complexity
of the algorithm, i.e., more instances are solved within shorter computational time. As a general trend,
for every increment of 3 of τ between 6 and 18, 12% and 14% additional instances are solved to feasibility
and optimality, with an average computational time decrease of 1,659 seconds. For every increment
of 3 of τ between 18 and 30, the number of instances solved (feasible and optimal solutions) remain
stable, with an average computational time decrease of 191 seconds. Our solution approach can solve
only 44% of instances to optimality with τ = 6, whereas more than 98% of instances are solved to
optimality with τ ≥ 18, and 100% of instances are solved to optimality with τ = 30. In addition, the
average computational time decreases from 7,748 seconds with τ = 6 to 348 seconds with τ = 30.

On the other hand, the results show that when increasing the value of τ , this reduces the quality
of the solution, i.e., the evacuation time is overestimated. When going from τ = 6 to τ = 30, the total
evacuation time is overestimated by 8.0%, 5.4%, 9.4%, 4.8% for the G, L, I, and S networks. Note
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Figure 7: Average run time and percentage of feasible and optimal solutions obtained by our BBC for different
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Figure 8: Impact of τ on the estimation of the total evacuation time (objective function)

that for the G and L networks, increasing the value of τ sometimes yields a reduction of the total
evacuation time, e.g., when going from τ = 21 to τ = 24 the total evacuation time is overestimated
by an average of 6.2% and 5.4% for G networks, and 5.2% and 4.4% for L networks. This is due
to the fact that a larger time step (τ) increases the link capacities (Qilt, Nilt). As a general trend,
this overestimation is the lowest for sparse (S) networks and the highest for irregular (I) networks.
Considering both solution quality and algorithmic complexity, setting τ = 18 provides a reasonable
trade-off, yielding a sufficiently accurate solution within a reasonable time frame. In fact, when fixing
τ = 18, 98.6% of the instances are solved to optimality with an average computational time of 1,110
seconds. In addition, compared with τ = 6, the overestimation of the evacuation time is less than 5%
on average. Therefore, in the following sections, we fix τ = 18.

5.3 Computational performance of our BBC

In this section, we first compare our complete BBC (with the two enhancement strategies) with three
other solution algorithms: i) a MIP, ii) the BBC without reducing the complexity of the subproblem,
and iii) the BBC with no improvement strategies. Second, using our complete BBC, we analyze its
performance on the different network sizes and topologies. Note that the average computational time is
computed by considering a time of 10,800 seconds for instances that are not solved to proven optimality
within the time limit.
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5.3.1 Comparison between our BBC and other solution algorithms

In this section, we analyze the performance of our Benders decomposition algorithm, referred to as
our BBC. Our BBC includes all enhancement strategies proposed in Section 4.2, including solving
the stronger master problem MP∗, as introduced in Section 4.2.1, and reducing the complexity of the
subproblem, i.e., SP∗ as introduced in Section 4.2.2. First, we compare it with solving Model (1)
(using IBM CPLEX Optimization Solver 20.1), referred to as MIP. Second, we analyze the impact
of considering the two proposed enhancement strategies. More precisely, we solve two variants of the
BBC: 1) a variant where no improvement strategies are used, referred to as Basic BBC, that is with MP
and SP, and 2) a variant where the stronger master problem is solved without reducing the complexity
of the subproblem, referred to as BBC with MP∗, that is with MP∗ and SP. Note that as explained in
Section 4.2.2, to reduce the complexity of the subproblem, it is necessary to solve MP∗. Therefore, we
cannot test a variant where we reduce the complexity of the subproblem and solve the basic master
problem MP.

Table 3 reports the following information: the percentage of instances for which a feasible solution
is found (%Feas); the percentage of instances which are solved to proven optimality (%Opt); the
average computational time in seconds (Sec.); the percentage of the computational time spent in the
branch-and-bound tree (% Time B&B); the percentage of the computational time spent to solve the
subproblem (% Time SP); the average number of nodes explored in the branching tree (# B&B nodes);
and the average number of subproblems that are solved (# SP solved). Also, we compute % Time
B&B, % Time SP, # B&B nodes, and # SP solved over optimal solutions.

Table 3: Average results of the proposed exact methods over 144 instances with τ = 18

Method %Feas %Opt Sec. % Time B&B % Time SP # B&B nodes # SP solved

MIP 36.8 35.4 8,274 – – 0.5 –
Basic BBC (MP-SP) 0.0 0.0 10,800 – – – –
BBC with MP∗ (MP∗-SP) 94.4 94.4 1,347 41.7 58.3 24.5 1.5

Our BBC (MP∗-SP∗) 100.0 98.6 1,110 47.6 52.4 36.3 1.6

Our results show that our BBC outperforms all other tested methods. In particular, it solves all
instances to feasibility. It also solves the most instances to optimality (98.6%) and is the fastest (1,110
seconds on average). When removing the improvement strategy for the subproblem, i.e., BBC with
MP∗, the total computational time increases by an average of 237 seconds and 4.2% of the instances
which were solved to optimality with our BBC cannot be solved to optimality. When removing both
improvement strategies (Basic BBC), this is the worse solution algorithm as no instances can be solved
to feasibility and optimality. With the basic BBC, there is no information about the flow decisions in the
master problem, and solving the subproblem often yields an infeasible solution. Finally, while the MIP
outperforms the basic BBC, it performs worse than BBC with MP∗ and our BBC. The performance
of the MIP can be explained due to large number of cells and periods required to incorporate traffic
congestion in the model. For many instances, the MIP is unable to solve the linear relaxation within
the 10,800-second time limit. More precisely, only 36.8% and 35.4% of the instances can be solved to
feasibility and optimality, compared with 94.4% and 94.4% for BBC with MP∗, and with 100.0% and
98.6% for our BBC. In addition, the average computational time increases to 8,274 seconds (compared
with 1,347 seconds for BBC with MP∗ and 1,110 for our BBC).

In addition, when analyzing the results obtained with BBC with MP∗ and our BBC, we see that
the number of subproblems is small (1.6 on average for both algorithms) compared with the number
of branching nodes (on average between 24.5 and 36.3). This can be explained by the fact that to
solve the subproblem, the master problem needs to yield an integer solution. In our branching tree,
solving the master problem often yields a non-integer solution, and therefore branching is performed.
In addition, solving the subproblem is the most time-consuming part of our BBC, i.e., on average 1.6
subproblems are solved and require 52.5% of the total computational time.
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Our results highlight the need to develop a sophisticated solution algorithm, and in particular the
need to strengthen the formulation of the master problem for the BBC. Having a stronger master
problem by retrieving information that was lost in the decomposition, significantly improves the per-
formance of the BBC algorithm. In addition, solving the subproblem, i.e., estimating the traffic, is the
most time-consuming part. Therefore, it is also important to find methods to reduce the complexity
of the subproblem and to limit the number of times it is solved.

5.3.2 Impact of the network size and topology on the algorithmic performance

In this section, we analyze the performance of our BBC (with MP∗ and SP∗) according to the size and
the topology of the network. Tables 4 and 5 report the computational results of our BBC for different
network topologies and sizes, respectively. In both tables we report: the percentage of instances
which are solved to proven optimality (%Opt); the average computational time in seconds (Sec.);
the percentage of the computational time spent in the branch-and-bound tree (% Time B&B); the
percentage of the computational time spent to solve the subproblem (% Time SP); the average number
of nodes explored in the branching tree (# B&B nodes); and the average number of subproblems that
are solved (# SP solved). Note that we do not report the percentage of instances for which a feasible
solution is found as it is 100.0%.

Table 4: Average results of our BBC for different network topologies

Topology %Opt Sec. % Time B&B % Time SP # B&B nodes # SP solved

Grid (G) 100.0 1,377 58.5 41.5 60.9 2.3
Irregular (I) 100.0 621 46.8 53.2 19.0 1.3
Grid-like (L) 100.0 1,230 54.1 45.9 52.4 1.6
Sparse (S) 94.4 1,211 30.9 69.1 10.7 1.3

Table 5: Average results of our BBC for different network sizes

Size %Opt Sec. % Time B&B % Time SP # B&B nodes # SP solved

h
×

w
=

1
2
0

6× 20 93.8 3,660 43.3 56.7 53.5 1.7

8× 15 93.8 2,809 47.5 52.5 124.2 2.3

10× 12 100.0 2,002 59.8 40.2 62.4 2.9

h
×

w
=

6
0 4× 15 100.0 631 28.8 71.2 8.1 1.6

5× 12 100.0 320 44.9 55.1 14.3 1.6

6× 10 100.0 361 57.2 42.8 49.6 1.3

h
×

w
=

3
6 3× 12 100.0 106 66.5 33.5 6.0 1.1

4× 9 100.0 56 31.8 68.2 1.0 1.1

6× 6 100.0 44 53.9 46.1 2.7 1.0

First, our results show that S networks are the hardest to solve, with 94.4% of instances with
proved optimality, which can be explained by the fact that they have a longer time horizon, while I
networks seem to be the easiest to solve. In addition, for the G and L networks, our BBC spends more
time solving the B&B tree, while for the I and S networks solving the subproblems requires more time.
Particularly, solving the subproblems in S networks requires twice as much time as solving the B&B
tree.

Second, increasing the size of the network increases the complexity of the problem. In networks
with h × w = 120, the average run time is 2,824 seconds, while in networks with h × w = 60 and
h× w = 36, the average run times are 437 and 69 seconds, respectively. Furthermore, the complexity
of the problem also depends on the value of h/w, i.e., as h/w increases the computational time
decreases. As an example, for instances with h × w = 120, the average computational time is 3,660
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seconds with 6 × 20 (h/w = 0.3), 2,809 seconds with 8 × 15 (h/w = 0.53) and 2,002 seconds with
10 × 12 (h/w = 0.83). In fact, as the value of h/w increases, the source and destination nodes are
usually closer which reduces the complexity of the problem.

5.4 Impact of traffic congestion

In the ENDPPTC as modeled with (1a)–(1u), the location of shelters (modeled with Zi) and the lanes
used during the evacuation (modeled with Lle) are determined by considering traffic congestion in the
network using a CTM approach. In this section, we refer to this problem as the ENDPPTC-CTM
and aim to compare the results obtained with a better traffic estimation (using the CTM approach)
with more standard approaches that have been developed in the literature. We first solve the evacua-
tion network design planning problem without traffic congestion (ENDPP) using a mono-period flow
location-allocation problem where the travel time is not affected by traffic (i.e., no traffic is incurred
and therefore there is no waiting time) and the objective consists of minimizing the total evacuation
time as

min
∑
e∈E

τℓeXe,

where Xe if the flow of vehicles on link e ∈ E . We also model the ENDPPTC with a mono-period
flow location-allocation problem where traffic is estimated using the Bureau of Public Roads (BPR)
function (Afkham et al., 2022; Bayram and Yaman, 2018b), and refer to this as the ENDPPTC-BPR.
The BPR function is commonly used in transportation planning and traffic engineering to model travel
time on a road segment as a function of the road’s capacity and traffic volume. The function accounts
for the increase in travel time due to congestion. The objective can then be modeled as

min

∑
e∈E

τℓeXe

(
1 + α

(
Xe

Ue

)β
)
,

where Ue is the practical capacity of the link e ∈ E (maximum flow rate, in vehicles per hour), and
α ≥ 0, β ≥ 0 are parameters defined in accordance with the road characteristics (Bayram and Yaman,
2018a), and they are taken as α = 0.15 and β = 4 as in previous works in the literature (Bayram
and Yaman, 2018a,b; Kongsomsaksakul et al., 2005; Sherali et al., 1991). This objective function
is non-linear, but we linearize it using a piecewise linear approximation as in Afkham et al. (2022).
Appendix C provides the detailed models for the ENDPP and the ENDPPTC-BPR.

For the ENDPP and the ENDPPTC-BPR, Table 6 report for each network topology and size the
following information: i) the percentage of evacuation time underestimation (∆ Evac. time % ) which
is computed for each instance as (z∗ − z′)/z∗, where z∗ is the optimal solution value found when
solving the ENDPPTC-CTM and z′ is the optimal solution value found when solving the ENDPP or
the ENDPPTC-BPR, respectively, and reported as an average over all instances; ii) the percentage of
the CTM-based evacuation time overestimation (∆ CTM time % ) which is computed for each instance
as (z′′ − z∗)/z∗, where z′′ is the optimal solution value found when solving the ENDPPTC-CTM by
fixing the shelter location (Zi, i ∈ Vd) and the lanes used during the evacuation (Lel, e ∈ E \Ep, l ∈ Le)
with the optimal solution values (Z̄i, i ∈ Vd and L̄el, e ∈ E \Ep, l ∈ Le) found when solving the ENDPP
or the ENDPPTC-BPR, respectively, and reported as an average over all instances.

Our results show that, on average, when ignoring the traffic in the evacuation time, i.e., ENDPP, or
estimating it using a BPR function ENDPPTC-BPR, the evacuation time is underestimated by 42.1%
and by 40.8%. Similarly, when fixing the shelter locations and the lanes used during the evacuation
for the ENDPPTC-CTM with the values found when solving the ENDPP and the ENDPPTC-BPR,
this increases the evacuation time by an average of 41.3% and by 26.3%. In addition, the impact on
the sparse (S) networks is the most important, which can be explained by the fact that these networks
have fewer roads and, consequently, fewer options to deviate traffic. For these, the total evacuation
time was underestimated by more than 53% on average, and fixing the values of the shelter locations
and the lanes used during the evacuation yielded an increase of more than 17% on average. Finally,
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Table 6: Impact on the evacuation time estimation when comparing the ENDPPTC-CTM with the ENDPP and
ENDPPTC-BPR

ENDPP ENDPPTC-BPR

∆ Evac. time (%) ∆ CTM time (%) ∆ Evac. time (%) ∆ CTM time (%)

Topology

Grid (G) 35.6 45.2 35.0 29.7

Irregular (I) 37.2 45.5 36.1 30.0

Grid-like (L) 39.4 35.9 38.6 27.8

Sparse (S) 56.2 38.5 53.5 17.7

Size

h
×

w
=

1
2
0

6× 20 38.4 48.1 36.5 26.6

8× 15 36.1 53.5 34.4 30.0

10× 12 35.8 40.3 35.0 27.2

h
×

w
=

6
0 4× 15 48.4 49.4 45.9 21.9

5× 12 41.8 42.2 40.8 24.3

6× 10 43.0 37.9 41.8 26.7

h
×

w
=

3
6 3× 12 42.1 32.8 41.4 27.6

4× 9 46.2 31.4 44.9 26.8

6× 6 47.4 35.8 46.4 25.8

Average 42.1 41.3 40.8 26.3

with larger networks, i.e., networks with larger values of h×w, the underestimation of the evacuation
time is less important than for smaller networks. For the ENDPP and the ENDPPTC-BPR, the real
evacuation time increases by at most 38.4% and 36.5% for the larger networks (h×w = 120), while it
increases by at most 48.4% and 46.4% for the smaller networks (h × w = 60 and h × w = 36). This
can be explained by the fact that smaller networks have a smaller number of roads which limits the
potential evacuation paths.

Our results suggest that properly estimating traffic during an evacuation is important as the re-
sulting solutions are greatly affected by this estimation. Properly estimating traffic is also important
in sparse networks like in rural areas where traffic can also become an issue due to the restricted
road network. In fact, while the BPR function allows to capture partly the traffic incurred dur-
ing the evacuation, the results obtained are close to not considering traffic. Nonetheless, solving the
ENDPPTC-CTM is more difficult than solving the ENDPP and EPPTC-BPR: the computational time
to solve ENDPPTC-CTM is on average 16 times the computational time required to solve the ENDPP
and ENDPPTC-BPR. While the CTM approach is more complex, it allows to better represent traffic
congestion and to provide better evacuation time estimates.

5.5 Solution analyses

In this section, we analyze the solutions according to different performance indicators which are defined
as follows: i) the total evacuation time in hours (Evac. time), i.e., objective function (1a); ii) the total
travel time and waiting time as a percentage of the total evacuation time (% Travel and % Waiting);
iii) the maximum evacuation duration in hours (Max evac. duration), which represents the maximal
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time required to evacuate the demand and is be computed as

τ/3600 ·min

{
t ∈ T τ : X̄pt =

∑
i∈Vs

bi

}
,

where X̄pt is the value of variable Xpt in the solution of the ENDPPTC; and iv) the percentage of
opened shelters (% Shelters used), which is computed as∑

i∈Vd Z̄i

|Vd|
,

where Z̄i is the value of variable Zi in the solution of the ENDPPTC. First, we analyze the solutions
according to these performance indicators and the network topologies and sizes. Second, we conduct
sensitivity analyses on four parameters: the demand (bi), the capacity of destination nodes (Ki), the
number of lanes available for contraflow operations (fM

e ), and the ratio between the free-flow speed and
the backward wave speed (δ).

5.5.1 Analyses of network topology and size

Table 7 reports for every network structure (G, I, L, and S) and rectangular area, the average value of
each performance indicator. We can notice that on average 66.8% and 33.2% of the total evacuation
time are spent traveling and waiting. Additionally, the maximum time required for all the demand
to be evacuated is on average 0.7 hour (approximately 45 minutes). Finally, 91.8% of the shelters are
used in the solutions on average.

Table 7: Average values of the performance indicators according to the network topologies and sizes

Evac. Max evac. %Shelter

time %Travel %Waiting duration used

Topology

Grid (G) 481.3 76.2 23.8 0.5 91.7

Irregular (I) 545.6 74.9 25.1 0.6 91.9

Grid-like (L) 549.3 71.9 28.1 0.7 92.4

Sparse (S) 790.3 52.0 48.0 1.0 91.4

Size

h
×

w
=

1
2
0

6× 20 1,230.8 71.1 28.9 0.9 84.9

8× 15 935.6 70.0 30.0 0.7 86.5

10× 12 842.7 72.5 27.5 0.7 86.5

h
×

w
=

6
0 4× 15 649.5 59.3 40.7 0.9 86.5

5× 12 470.7 64.3 35.7 0.7 90.6

6× 10 518.7 61.7 38.3 0.7 91.7

h
×

w
=

3
6 3× 12 239.0 63.1 36.9 0.6 100.0

4× 9 240.7 57.9 42.1 0.6 100.0

6× 6 197.2 60.1 39.9 0.5 100.0

Average 591.7 66.8 33.2 0.7 91.8

By analyzing the results according to the different network topologies, we realize that for grid (G),
irregular (I), and grid-like (L) networks the average time spent waiting during the evacuation represents
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less than 30% of the total evacuation time. In contrast, this is drastically different for sparse (S)
networks where on average 48% of the evacuation time is spent waiting. We also note an increase
in the average maximum evacuation duration in sparse networks. These results can be explained by
the fact that these networks have less roads thus yielding more traffic, which in turn results in more
waiting during the evacuation.

By analyzing the results according to the different network sizes, we can realize that for larger
networks the average time spent traveling during the evacuation is higher than in smaller networks.
More precisely, in networks with h×w = 120, on average more than 70% of the total evacuation time
is spent traveling, while in networks with h × w = {36, 60} it represents less than 65% of the total
evacuation time. This can be explained by the fact the smaller network sizes have less potential paths
for evacuation which creates more congestion, i.e., waiting. In addition, for a given network size, as the
value of h/w increases, the average evacuation time tends to decrease. For example, with h×w = 120,
the average total evacuation time is 1,230.8, 935.6, and 842.7 hours with h/w = 0.3, h/w = 0.53, and
h/w = 0.83. In fact, as the value of h/w increases, the source and destination nodes are usually closer
which reduces the evacuation time. Finally, we can note that as the size of the network increases, less
shelters are used. In our instances, this can be explained by the fact that there are more shelters in
larger networks, which allows for a larger shelter capacity in proportion of the total demand.

5.5.2 Sensitivity analyses

In this section, we conduct sensitivity analyses to evaluate the impact on the performance indicators
of four varying parameters independently: the demand (bi), the destination node capacity (Ki), the
number of lanes available for contraflow operations (fM

e ), and the ratio between the free-flow speed
and the backward wave speed (δ). Table 8 reports for each parameter change, the average percentage
of increase for each performance indicator, denoted by ∆ Performance indicator. To compute ∆
Performance indicator, we first compute for each parameter change, each performance indicator and
each instance the percentage of increase according to the initial value of the parameter. As an example,
when increasing the demand from bi to 2.5bi, the impact on the evacuation time is computed as
(z∗2.5bi − z∗bi)/z

∗
bi
, where z∗2.5bi and z∗bi are the total evacuation times with 2.5bi and bi, and reported as

a percentage. These values are then averaged over all the instances and reported in Table 8.

Table 8: Average percentage of increase in the performance indicators for the different sensitivity analyses

∆ Evac. ∆ Max evac. ∆ Shelter
time (%) ∆ Travel (%) ∆ Waiting (%) duration (%) used (%)

Demand (bi)

1.5bi 80.5 –16.6 33.5 28.9 0.4
2bi 181.8 –28.0 56.4 58.1 0.8
2.5bi 303.4 –36.8 74.2 87.7 0.6

Shelter capacity (Ki)

ϕ = 0.4 –6.4 –3.0 6.1 –8.5 –27.3
ϕ = 0.2 –8.1 –3.6 7.3 –10.6 –37.5
ϕ = 1/K –8.4 –4.1 8.2 –11.2 –39.8

Number of lanes available for contraflow operations (fMe )

0 7.1 7.8 –9.1 24.1 0.4

Ratio between free-flow speed and backward wave speed (δ)

0.2 0.6 –0.4 0.7 0.2 0.0
0.5 0.0 0.0 0.0 –0.1 0.0

First, when increasing the demand by 1.5, 2, and 2.5, the average total evacuation time increases
by 80.5%, 181.8%, and 303.4%, and the maximum evacuation duration increases by 28.9%, 58.1%, and
87.7%. This is explained by the fact that the percentage of the total evacuation time spent waiting
increases which is due to a more congested network. We can also note that increasing the demand has
almost no impact on the number of shelters.
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Second, we increased the destination node capacities (Ki). Recall that we had set ϕ = 0.8 and

Ki =

∑
k∈Vs bk

ϕ · K
,∀i ∈ Vd.

In these sensitivity analyses, we set ϕ = {0.4, 0.2, 1/K}. Our results show that increasing the shelter
capacity tends to decrease the total evacuation time as well as the maximum evacuation duration,
but the effect is not linear. Doubling the shelter capacity (ϕ = 0.4) decreases the evacuation time
and the maximum evacuation duration by an average of 6.4% and 8.5%, while quadrupling the shelter
capacity (ϕ = 0.2) decreases these values by 8.1% and 10.6%. In addition, as expected, the percentage
of shelters used decreases as their capacity increases. With ϕ = 0.4 and ϕ = 0.2, the average number
of shelters used decreases by 27.3% and 37.5%. Finally, when the shelter capacity is equal to the total
demand, i.e., by setting ϕ = 1/K, the total evacuation time and the maximum evacuation duration
decrease by an average of 8.4% and 11.2%, and the percentage of shelters used decreases by 39.8%.
This shows the need to have more than one shelter location even if the capacity of the shelters is not
restricting, as this allows for more evacuation paths and reduces the total evacuation time and the
maximum evacuation duration.

Third, we aim to assess the impact of allowing contraflow operations or not. Recall, that we had
set fM

e = fe − 1,∀e ∈ E \ Ep. In these sensitivity analyses, we set fM
e = 0,∀e ∈ E \ Ep. The results

show that allowing contraflow operations allows to decrease the evacuation time and the maximum
evacuation duration by an average of 7.1% and 24.1%. This is mostly explained by the fact that
allowing contraflow operations reduces the time spent during an evacuation for waiting as it allows for
more evacuation possibilities.

Fourth, we aim to determine the impact of the traffic congestion, represented by δ, on the solutions.
In the literature, this value usually ranges from 0.2 to 0.5 (Zheng and Chiu, 2011). Therefore, we had
set δ = 0.3 and conduct sensitivity analyses by setting δ = {0.2, 0.5}. Modifying the ratio between the
free-flow speed and the backward wave speed has almost no impact on the total evacuation time and
the maximum evacuation duration. When considering δ = 0.2, which implies more traffic congestion,
the total evacuation time and the maximum evacuation duration increase by 0.6% and 0.2%. This
is due to higher waiting times caused by more traffic congestion. For our instances, the results with
δ = 0.3 and δ = 0.5 are similar.

Our results show that the parameter with the most impact on traffic congestion is the demand.
Therefore, estimating it is crucial when planning evacuations. In practice, if the demand is not evac-
uated simultaneously, which is the case in phased evacuation (Wolshon et al., 2006), this can mitigate
the impact of wrongly estimating the demand. Our results also show that the parameter with the
most impact on the percentage of shelter used is the capacity of shelters. Surprisingly, we can also see
that more or less traffic congestion, represented by δ, has almost no impact on the evacuation time.

6 Conclusions

As disasters become increasingly frequent, effective evacuation planning has become crucial for pro-
tecting human lives. A key early decision during emergencies is determining whether evacuation is
necessary, with the goal of relocating individuals to designated safety zones or shelters. These shelters,
which provide protection for those displaced or at risk, must be accessible and strategically located
outside of threatened areas. Additionally, transportation plans must be thoughtfully devised, taking
potential traffic into account to ensure that evacuees can reach shelters both promptly and safely.
Failure to consider traffic in evacuation planning can result in inaccurate evacuation time estimates
and compromise the overall effectiveness of the response. Thus, key decisions in disaster preparedness
include the strategic selection of shelter locations and the design of transportation plans that account
for traffic—both essential components of an effective evacuation network.

In this study, we propose a new mathematical model that integrates traffic congestion and shel-
ter location decisions. Traffic congestion is addressed through a CTM-based formulation that also
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incorporates contraflow operations, time-variant road properties, multiple periods, and the definition
of road capacities. Given that this integration leads to an intractable problem for real-size instances,
we developed exact and heuristic solution methods based on Benders decomposition to solve it. To
further enhance these methods, we proposed strategies such as the formulation of a stronger master
problem. Additionally, we generated 144 problem instances with varying topologies and network sizes,
inspired by real-world configurations. These instances are valuable to researchers, providing standard-
ized datasets for those studying evacuation planning and enabling comparative analysis across different
approaches.

The computational results demonstrate the effectiveness of the proposed solution strategies in
efficiently solving the problem. The best exact method found optimal solutions for 94.4% of the
tested instances, with an average optimality gap of less than 0.01%. Additionally, the results highlight
that ignoring traffic congestion leads to a poor estimation of evacuation time, causing greater delays in
evacuation operations. To mitigate the impact of traffic congestion, one effective strategy is to consider
longer alternative routes for evacuation, which increases total travel time but reduces overall waiting
time due to congestion. While this behavior was consistent across different network topologies, the
impact of traffic congestion is more pronounced in sparse networks, which typically have fewer roads
and, therefore, fewer options for diverting traffic.

Contraflow operations significantly impact total evacuation time, with a 7.1% increase observed
when they were not implemented. Changes in evacuee demand also have a substantial effect, with
doubling the demand leading to a 181.8% increase in total evacuation time. In this scenario, waiting
time increased far more than travel time. Additionally, variations in shelter capacity impact the
total evacuation time, though not directly proportional to changes in capacity. When shelters have
large capacities, adding more shelters does not necessarily reduce evacuation time. Ignoring shelter
capacity during planning can result in infeasible evacuation networks if the selected shelters cannot
accommodate the actual demand. Therefore, accurately estimating evacuee demand and considering
shelter capacity are crucial when planning evacuations under traffic congestion.

In conclusion, this study highlights the critical role of integrated planning in ensuring the efficiency
and feasibility of evacuation strategies. By addressing multiple factors simultaneously, we provide
a more realistic approach to evacuation planning. Future research could explore the application of
this model in different real disaster scenarios and investigate the impact of real-time data on evacua-
tion strategies, opening new avenues for dynamic and adaptive evacuation planning while considering
different forms of uncertainty.

Declaration of generative AI and AI-assisted technologies in the writ-
ing process

During the preparation of this work the authors used ChatGPT in order to improve the readability
and language of the manuscript. After using ChatGPT, the authors reviewed and edited the content
as needed and takes full responsibility for the content of the published article.
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Appendix

A Notation

Sets
V Nodes
Vs Source nodes, i.e., threatened or affected communities
Vd Destination nodes, i.e., potential shelter locations
{p} Super destination node/cell
E Directed links (roads)
Le Set of lanes that can be used on a given link e ∈ E \ Ep (including lanes for contraflow operations)
T τ Set of periods in the time horizon
C Set of cells
Ce Set of cells that belongs to link e ∈ E \ Ep

Cs Source cells, i.e., cells representing sources nodes
Cd Destination cells, i.e., cells representing destination nodes
Γj Successors cells of cell j ∈ C
Γ−1
j Predecessor cells of cell j ∈ C

Parameters
bi Demand in source node i ∈ Vs

Ki Capacity of shelter i ∈ p
md Minimum number of vehicles that can be sent to the shelters during evacuation operations
me Minimum number of vehicles that can be sent over the links during evacuation operations
fe Number of lanes available in link e ∈ E
fMe Maximum number of lanes that can be used for contraflow operations in link e ∈ E
E Maximum number of links in which contraflow operations can be defined
K Maximum number of shelters that can be operated
Nilt Maximum number of vehicles that can be accommodated in cell i ∈ C at time interval t ∈ T given l lanes

in operation
Qilt Maximum number of vehicles that can pass in/out of cell i ∈ C during time interval t ∈ T given l lanes

in operation
nji Binary parameter equal to 1 if node i ∈ V \ Vu in graph G is represented by cell j ∈ C \ ∪e∈ECe in the

cell-representation graph Gτ , and 0 otherwise
gee′ Binary parameter equal to 1 if links e ∈ E \ Ep and e′ ∈ E \ Ep represent the same road in opposite

directions, and 0 otherwise
τ Discrete size of the time steps
δ Ratio w

u
(u and w are the free-flow and backward wave speed)

Decision variables
Zi Binary variable equal to 1 if shelter i ∈ p is opened, and 0 otherwise
Lle Binary variable equal to 1 if l lanes are selected for operation in link e ∈ E, and 0 otherwise
Xjt Number of vehicles in cell j ∈ C at period t ∈ T τ

Yjkt Number of vehicles moving from cell j ∈ C to cell k ∈ Γj at period t ∈ T τ

B Instance generation

In this section, we provide additional details on the generated instances. First, we provide the algorithm
that we implemented to generate the different categories of roads (freeway, arterial street and local
street). Second, we give an overview of the characteristics of the generated instances.

B.1 Algorithm to generate the different type of roads

Given the number of freeways and arterial streets, these roads are built using an algorithm based on
shortest path problems. For instance, a basic scheme for the construction of freeways from left to right
is outlined in Algorithm A1. The same procedure is repeated to generate the arterial streets from left
to right and also for freeways and arterial streets from bottom to top. We first generate the freeways
and then the arterial streets. Once an arc belong to a freeway, we do not consider it for the generation
of arterial streets. Finally, after the generation of freeways and arterial streets, the reaming arcs are
considered belonging to local streets.
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Algorithm A1 Basic scheme for the construction of freeways from left to right

1: Initialization:
Let F be the number of freeways from left to right.
Let (xi, yi) be coordinates indicating the location of node i.
Let h and w be the height and width of the network, respectively.
Set dist = height

F
.

2: Divide the network from bottom to top in F sections of length dist.
3: for f = 1 to F do
4: Randomly select a node i such that xi ≤ 1 (on the left) and (f − 1) · dist ≤ yi ≤ f · dist (in section f);
5: Randomly select a node j such that xj ≥ w − 1 (on the right) and (f − 1) · dist ≤ yj ≤ f · dist (in section f);
6: Find the shortest path i− j from node i to node j;
7: Set the arcs in the shortest path i− j as arcs that belong to freeway f ;
8: end for

B.2 Characteristic of the generated instances

Table A1 shows the main characteristics of the generated networks: the topology, the size, the ratio
( h
w ), the average degree ¡k¿, the number of nodes, the number of source and destination nodes, the

node positioning, the shelter location, the number of arcs, the arc length, the minimal distance between
the source and destination nodes and the number of generated networks.
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Table A1: Characteristics of the randomly generated networks

Size Ratio Node po- Shelter Arc Min dist. # net-

Topology (h × w) ( h
w
) ¡k¿ #nodes |Vs| |Vd| sitioning* location* #arcs length S −D** works

Grid (G) 6× 20 0.26 1.78 120 8 12 E A, S 214 r = 1 d = 3, 5 4
Grid (G) 8X15 0.50 1.81 120 8 12 E A, S 217 r = 1 d = 3, 5 4
Grid (G) 10X12 0.82 1.82 120 8 12 E A, S 218 r = 1 d = 3, 5 4
Grid-like (L) 6X20 0.26 1.78 120 8 12 E A, S 214 r ≤ 2 d = 3, 5 4
Grid-like (L) 8X15 0.50 1.81 120 8 12 E A, S 217 r ≤ 2 d = 3, 5 4
Grid-like (L) 10X12 0.82 1.82 120 8 12 E A, S 218 r ≤ 2 d = 3, 5 4
Irregular (I) 6X20 0.26 1.78 120 8 12 R A, S 214 r ≤ 2 d = 3, 5 4
Irregular (I) 8X15 0.50 1.81 120 8 12 R A, S 217 r ≤ 2 d = 3, 5 4
Irregular (I) 10X12 0.82 1.82 120 8 12 R A, S 218 r ≤ 2 d = 3, 5 4
Sparse (S) 6X20 0.26 1.79 48 8 12 R A, S 86 r ≤ 2 d = 3, 5 4
Sparse (S) 8X15 0.50 1.81 48 8 12 R A, S 87 r ≤ 2 d = 3, 5 4
Sparse (S) 10X12 0.82 1.83 48 8 12 R A, S 88 r ≤ 2 d = 3, 5 4

Grid (G) 4X15 0.21 1.68 60 4 6 E A, S 101 r = 1 d = 3, 5 4
Grid (G) 5X12 0.36 1.72 60 4 6 E A, S 103 r = 1 d = 3, 5 4
Grid (G) 6X10 0.56 1.73 60 4 6 E A, S 104 r = 1 d = 3, 5 4
Grid-like (L) 4X15 0.21 1.68 60 4 6 E A, S 101 r ≤ 2 d = 3, 5 4
Grid-like (L) 5X12 0.36 1.72 60 4 6 E A, S 103 r ≤ 2 d = 3, 5 4
Grid-like (L) 6X10 0.56 1.73 60 4 6 E A, S 104 r ≤ 2 d = 3, 5 4
Irregular (I) 4X15 0.21 1.68 60 4 6 R A, S 101 r ≤ 2 d = 3, 5 4
Irregular (I) 5X12 0.36 1.72 60 4 6 R A, S 103 r ≤ 2 d = 3, 5 4
Irregular (I) 6X10 0.56 1.73 60 4 6 R A, S 104 r ≤ 2 d = 3, 5 4
Sparse (S) 4X15 0.21 1.71 24 4 6 R A, S 41 r ≤ 2 d = 3, 5 4
Sparse (S) 5X12 0.36 1.75 24 4 6 R A, S 42 r ≤ 2 d = 3, 5 4
Sparse (S) 6X10 0.56 1.75 24 4 6 R A, S 42 r ≤ 2 d = 3, 5 4

Grid (G) 3X12 0.18 1.58 36 2 3 E A, S 57 r = 1 d = 3, 5 4
Grid (G) 4X9 0.38 1.64 36 2 3 E A, S 59 r = 1 d = 3, 5 4
Grid (G) 6X6 1.00 1.67 36 2 3 E A, S 60 r = 1 d = 3, 4 4
Grid-like (L) 3X12 0.18 1.58 36 2 3 E A, S 57 r ≤ 2 d = 3, 5 4
Grid-like (L) 4X9 0.38 1.64 36 2 3 E A, S 59 r ≤ 2 d = 3, 5 4
Grid-like (L) 6X6 1.00 1.67 36 2 3 E A, S 60 r ≤ 2 d = 3, 4 4
Irregular (I) 3X12 0.18 1.58 36 2 3 R A, S 57 r ≤ 2 d = 3, 5 4
Irregular (I) 4X9 0.38 1.64 36 2 3 R A, S 59 r ≤ 2 d = 3, 5 4
Irregular (I) 6X6 1.00 1.67 36 2 3 R A, S 60 r ≤ 2 d = 3, 4 4
Sparse (S) 3X12 0.18 1.53 15 2 3 R A, S 23 r ≤ 2 d = 3, 5 4
Sparse (S) 4X9 0.38 1.60 15 2 3 R A, S 24 r ≤ 2 d = 3, 5 4
Sparse (S) 6X6 1.00 1.60 15 2 3 R A, S 24 r ≤ 2 d = 3, 4 4

* E: equidistant; R: random; S: surrounding; A: aside.
** Minimum distance from sources to shelters.

C Proposed benchmarks

In this section, we present a description of the proposed benchmark approaches (FLA and BPR).
These benchmarks are used to verify the impact of traffic congestion into the problem.

C.1 Flow location-allocation model (ENDPP)

ENDPP is a flow location-allocation problem in which no traffic congestion is considered. The sets,
parameters, and variables for the ENDPP are defined as follows.

Sets
V Nodes
Vs Source nodes, i.e., threatened or affected communities
Vd Destination nodes, i.e., potential shelter locations
p Super destination node
E Directed links (streets)
Ei Set of arcs incident to node i ∈ V
E−
i Set of incoming arcs for node i ∈ V

E+
i Set of outgoing arcs for node i ∈ V
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Parameters
τ Discrete size of the time steps
ℓe = |Ce| Travel time in link e ∈ E (in number of periods)
Ki Capacity of shelter i ∈ Vd

Ue Practical capacity of the link e ∈ E (maximum flow rate, in vehicles per hour)

Additional variables
Xe Flow of vehicles on arc e ∈ E
Zi Binary variable equal to 1 if shelter i ∈ Vd is used for the evacuation operations,

and 0 otherwise.
Lle Binary variable equal to 1 if l lanes are selected for operation in link e ∈ E,

and 0 otherwise.

Based on the above notation, the ENDPP problem is stated as follows.

(ENDPP ) min
∑
e∈E

τℓeXe, (A1)

s.t. ∑
e∈E+

i

Xe = di, ∀ i ∈ Vs, (A2)

∑
e∈E−

p

Xe =
∑
i∈Vs

bi, (A3)

∑
e∈E+

i

Xe =
∑
e∈E−

i

Xe, ∀ i ∈ V \ {Vs, {p}}, (A4)

Xe ≥ me
∑
l∈Le

Lle, ∀ e ∈ E , (A5)

Xe ≥ mdZi, ∀ e ∈ {E+
i ∪ E−

p }, i ∈ Vd, (A6)

Xe ≤ KiZi, ∀ e ∈ {E+
i ∪ E−

p }, i ∈ Vd, (A7)

Xe ≤
∑
l∈Le

UeLle, (A8)

∑
i∈Vd

Zi ≤ K, (A9)

∑
l∈Le

Lle +
∑
l∈Le′

Lle′ ≤ 1, ∀ e ∈ E , e′ ∈ E : ree′ = 1, (A10)

∑
l∈Le

lLle ≤ fe + fM
e′ , ∀ e ∈ E , e′ ∈ E : ree′ = 1, (A11)

∑
e∈E

∑
l∈Le:l>fe

Lle ≤ E, (A12)

Zi ∈ {0, 1}, Lle ∈ {0, 1}, ∀ i ∈ Vd, l ∈ Le, e ∈ E , (A13)

Xe ≥ 0, ∀ e ∈ E . (A14)

Constraints (A2) set the flow of vehicles in the source nodes. Constraints (A3) set the flow of vehicles
in the super sink node, while constraints (A4) set the flow of vehicles in the other nodes of the network.
Constraints (A5) and (A6) establish the minimum flow in arcs and shelters to consider its operation.
Constraints (A7) set the capacity limit in the shelters, while constraints (A8) set the capacity limit for
arcs. Constraint (A9) limits the number of shelters that can be opened. Constraints (A10) force the
evacuation flow to only one direction in a given street segment. Constraints (A11) limit the number of
lanes that can be used in the evacuation operations to the number of available lanes. Constraints (A12)
set a limit on the number of links with contraflow operations. Finally, constraints (A13) and (A14)
establish the domain of the decision variables.
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C.2 Flow location-allocation model with BPR function (EPPTC-BPR)

EPPTC-BPR is the EPP model using the BPR function to approximate traffic in a single period
context.

(EPPTC-BPR) min

∑
e∈E

τℓeXe

(
1 + α

(
Xe

Ue

)β
)
,

s.t.

Constraints (A2)–(A14).

where Ue is the practical capacity of the link e ∈ E (maximum flow rate, in vehicles per hour), the
parameters α ≥ 0 and β ≥ 0 reflect the road characteristics, and they are taken as 0.15 and 4,
respectively. The problem is linearized using a piecewise linear approximation (Afkham et al., 2022).

D Matheuristic BBC

In this section, we present a matheuristic BBC algorithm to solve the EPPTC. In what follows, we
describe the proposed matheuristic and present some computational results.

D.1 Matheuristic descripticion

In the proposed BBC algorithm, solving the subproblem is non-trivial and requires most of the compu-
tational time. Therefore, we have implemented a matheuristic BBC algorithm which relies on solving
the subproblem heuristically. Note that the MP is formulated with Model (2) (see Section 4.1.1), but
the optimality and feasibility cuts have to be adapted due to the changes in the SP. In addition, a
different time step γ ≥ τ can be defined for the master problem, i.e., the master problem solution for τ
is approximated using time step γ.

The matheuristic BBC consists of solving the SP heuristically by solving several auxiliary subprob-
lems in an iterative manner. Each auxiliary subproblem, referred to as SPh, is similar to the exact
SP using Model (3), but solved over a subset h ≤ |T τ | of time periods by considering a penalty in
the objective function and heuristic lower and upper bounds for variables Yjkt and Xjt. More pre-
cisely, rather than including constraints (1q), the objective function of SPh considers a penalty to be
minimized when the demand is not fully evacuated.

We provide a detailed mathematical formulation for auxiliary subproblem SPh, with h ≤ |T τ |. Let
us recall that Ȳ lw

jkth and Ȳ up
jkth are predefined lower and upper bounds for variable Yjkt, while X̄lw

jth and

X̄
up
jth are predefined lower and upper bounds for variable Xjt. Also, let Ȳ γ

et be the solution of variable

Y γ
et in the master problem MP∗. For a given h, its corresponding auxiliary subproblem SPh can then

be modeled as follows:

min
∑

j∈C\{p}

τ |T τ |Xjh +
∑
j∈Cd

∑
t∈T τ :
t≤h

τtYjpt −
∑
j∈C

∑
k∈C\{p}

∑
t∈T τ :
t≤h

τ |T τ |Yjkt (A15a)

s.t. Xj1 = bi +Xj0 −
∑
k∈Γj

Yjk0, ∀ j ∈ Cs, i ∈ Vs : nji = 1, (A15b)

Xjt = Xj(t−1) −
∑
k∈Γj

Yjk(t−1), ∀ j ∈ Cs, t ∈ T τ : 1 < t ≤ h, (A15c)

Xpt = Xp(t−1) +
∑

k∈Γ−1
p

Ykp(t−1), ∀ t ∈ T τ : t ≤ h, (A15d)

Xjt = Xj(t−1) +
∑

k∈Γ−1
j

Ykj(t−1) −
∑
k∈Γj

Yjk(t−1), ∀ j ∈ C \ {Cs ∪ {p}}, t ∈ T τ : t ≤ h, (A15e)
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∑
k∈Γj

Yjkt ≤ Xjt, ∀ j ∈ C \ {p}, t ∈ T τ : t ≤ h, (A15f)

∑
k∈Γj

Yjkt ≤
∑
l∈Le

QjltL̄le, ∀ j ∈ Ce, e ∈ E , t ∈ T τ : t ≤ h, (A15g)

∑
j∈Γ−1

k

Yjkt ≤
∑
l∈Le

QkltL̄le, ∀ k ∈ Ce, e ∈ E , t ∈ T τ : t ≤ h, (A15h)

∑
j∈Γ−1

k

Yjkt + δXkt ≤
∑
l∈Le

δNkltL̄le, ∀ k ∈ Ce, e ∈ E , t ∈ T τ : t ≤ h, (A15i)

∑
t∈T τ :
t≤h

Yjpt ≤ kdi Z̄i, ∀ j ∈ Cd, i ∈ Vd : nji = 1, (A15j)

∑
t∈T τ :
t≤h

∑
j∈Γ−1

k

Yjkt ≤
∑
t∈T τ

Ȳ γ
et, ∀ k ∈ Ce, e ∈ E , (A15k)

Ȳ lw
jkth ≤ Yjkt ≤ Ȳ up

jkth, ∀ j ∈ C, k ∈ Γj , t ∈ T τ : t ≤ h, (A15l)

X̄lw
jth ≤ Xjt ≤ X̄

up
jth, ∀ j ∈ C, t ∈ T τ : t ≤ h, (A15m)

Xjt ≥ 0, Yjkt ≥ 0, ∀ j ∈ C, k ∈ Γj , t ∈ T τ . (A15n)

The first term of the objective function (A15a) penalizes the demand that is not evacuated until
period h. The second term of the objective function (A15a) computes the total evacuation time for the
demand that arrives at the shelters. Finally, the third term of the objective function (A15a) is employed
to influence the progress of the demand that cannot be evacuated until period h toward shelters.
Constraints (A15b)–(A15f) are equivalent to constraints (1b)–(1f). Constraints (A15g)–(A15j) are
equivalent to constraints (3b)–(3e). Constraints (A15k) set a limit for the flow on links based on the
solution Ȳ γ

et of the flow variable Y γ
et from MIP∗. These constraints ensure that the original minimum

flow constraints (3f) and (3g) are met, since the flow in MIP∗ satisfy them. Finally, constraints (A15l)
and (A15m) set bounds for variables Yjkt and Xjt.

The initial value of h is determined such that the evacuated demand is positive, and the lower
bounds for variables Xjt and Yjkt are set to 0, while their corresponding upper bounds are set to
infinity. Then, at each iteration, the value of h is incremented by ts, and the bounds for variables Yjkt

and Xjt are modified depending on the optimal solution obtained in the previous iteration denoted
by Ȳjkt and X̄jt. That is, for a given subproblem SPh, let us denote by Ȳ lw

jkth and Ȳ up
jkth the lower

and upper bounds for variable Yjkt, and X̄lw
jth and X̄up

jth the lower and upper bounds for variable Xjt.

Using the optimal solution obtained at the previous iteration, Ȳjkt and X̄jt, these bounds are set as
Ȳ lw
jkth = Ȳ up

jkth = Ȳjkt, and X̄lw
jth = X̄up

jth = X̄jt. Because h only considers a subset of time periods,
this implies that only a portion of the total demand might be evacuated. Therefore, this process is
repeated until the total demand is evacuated. Algorithm A2 provides a pseudo-code of this process to
solve SP heuristically. Note that even though SPh is easier to solve than the exact SP, because several
auxiliary subproblems SPh may have to be solved this process can be computationally extensive.

When the subproblem is solved heuristically, the optimality and feasibility cuts as defined in Equa-
tions (4) and (5) cannot be generated. Instead, new optimality and feasibility cuts are defined. Let Θ̃
be computed by evaluating the solution from the last solved subproblem SPh, where all the population
has been evacuated, according to the original objective function (3a). The optimality cuts are then
defined as:

Θ ≥ Θ̃ + Θ̃

( ∑
i∈Vd:
Z̃i=1

(Zi − 1)−
∑
i∈Vd:
Z̃i=0

Zi +
∑

e∈E\Ep

∑
l∈Le:
L̃le=1

(Lle − 1)−
∑

e∈E\Ep

∑
l∈Le:
L̃le=0

Lle

)
. (A16)
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Similarly, the feasibility cuts are defined as:∑
i∈Vd:
Z̃i=1

(Zi − 1)−
∑
i∈Vd:
Z̃i=0

Zi +
∑

e∈E\Ep

∑
l∈Le:
L̃le=1

(Lle − 1)−
∑

e∈E\Ep

∑
l∈Le:
L̃le=0

Lle < 0. (A17)

Algorithm A2 Pseudo-code to solve the SP heuristically

1: Initialization: h = sv, Evacuated demand = 0, Total demand =
∑

i∈Vs bi;
2: for l = 0 to sv do
3: Ȳ lw

jktl = 0, Ȳ
up
jktl = ∞, X̄lw

jtl = 0, X̄
up
jtl = ∞.

4: end for
5: while Evacuated demand ¡ Total demand do
6: Solve SPh;

7: Evacuated demand =
∑
j∈Cd

∑
t∈Tτ :
t≤h

Ȳjpt;

8: if Evacuated demand > 0 then
9: for l = 0 to h do
10: Ȳ lw

jktl = Ȳjkt, Ȳ
up
jktl = Ȳjkt, X̄

lw
jtl = X̄jt, X̄

up
jtl = X̄jt;

11: end for
12: for l = h+ 1 to h+ ts do
13: Ȳ lw

jktl = 0, Ȳ
up
jktl = ∞, X̄lw

jtl = 0, X̄
up
jtl = ∞;

14: end for
15: h := h+ ts;
16: else
17: sv := h+ ts;
18: for l = h+ 1 to sv do
19: Ȳ lw

jktl = 0, Ȳ
up
jktl = ∞, X̄lw

jtl = 0, X̄
up
jtl = ∞;

20: end for
21: h := sv;
22: end if
23: end while
Note. start value (sv) and time sloop (ts) are user-defined parameters for the initial value of h and its successive increments.

D.2 Results of the BBC matheuristic

The average computational results of the matheuristic over the tested instances with different time
steps (τ) values are presented in Table A2, which reports the percentage of feasible solutions (%Feas),
the average gap to the best upper bound obtained with the exact BBC, and the runtime (seconds).
Notice that the matheuristic has the advantage of finding feasible solutions for all tested τ values,
although it can be time-consuming in some cases, particularly for small time steps. In relation to
the quality of the solutions, the heuristic finds solutions that, on average, are within 3% of the best
solution obtained with the exact BBC.

Table A2: Average computational results of the BBC matheuristic for different time steps (τ)

τ %Feas Ratio Seconds

6 100 1.79 8,796
9 100 1.25 8,214
12 100 1.07 6,619
15 100 1.04 6,458
18 100 2.22 6,394
21 100 1.26 4,440
24 100 0.97 3,502
27 100 1.16 3,049
30 100 2.21 1,370
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