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Abstract : The Quadratic Knapsack Problem (QKP) is a challenging combinatorial optimization
problem that has attracted significant attention due to its complexity and practical applications. In
recent years, Binary Decision Diagrams (BDDs) have emerged as a powerful tool in combinatorial
optimization, providing efficient bounds. In the literature of the QKP, all the exact methods are based
on computing tight bounds before applying branch-and-bound (B&B) schemes. We advance this
literature in this work by leveraging BDDs to compute bounds more effectively. We propose a novel
integration of dual bound tightening within a BDD-based B&B framework, employing a Breadth-
First Search (BFS) strategy. Our approach addresses the critical limitation of existing BDD-based
B&B methods, which often lack robust dual-bound tightening mechanisms. Furthermore, we propose
several efficient compilation techniques of BDDs for the QKP. Through an extensive experimentation
on several categories of QKP instances, we demonstrate that our method not only competes with but
often surpasses the bounding stages of the leading exact algorithms. Notably, our approach reduces
the average duality gap by up to 10% for the class of Hidden Clique QKP instances, showcasing its
potential. Furthermore, our findings indicate that the BFS B&B method outperforms state-of-the-art
BDD B&B approaches across all tested QKP instances, highlighting its effectiveness and potential for
broader application.

Keywords : Combinatorial optimization, binary decision diagrams, dynamic programming, branch-
and-bound, Quadratic Knapsack Problem
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1 Introduction

The Quadratic Knapsack Problem (QKP) was introduced in the 1980s and is used to model several

applications in fields such as telecommunications, hydrology, and combinatorics (Gallo et al., 1980).

Furthermore, in urban planning and logistics, the QKP is used to solve facility location problems

(Pisinger et al., 2007), such as those for hospitals and logistics centers. Additionally, the QKP holds a

great importance as a theoretical problem in nonlinear optimization, particularly in the context of the

clique problem in graph theory, where it is used to identify a strongly connected subgraph of a given

size (Caprara et al., 1999; Schauer, 2016).

The QKP is defined with a set N = {1, 2, . . . , n} of items that can be added to a knapsack of

integral capacity c. Each item i ∈ N is characterized by an integer weight ωi. A symmetric square

matrix P = (pij)1≤i≤n,1≤j≤n of size n represents the profits, where pii indicates the individual value

if item i is selected, and the additional profit pij + pji = 2pij if both items i and j are selected

simultaneously, with pij being non-negative and integral. A formal expression of this problem involves

utilizing a variable xi, defined within the set of binary decisions for each item i ∈ N . The variable xi

indicates whether item i is included in the solution or not.

max
∑
i∈N

∑
j∈N

pijxixj

s.t.
∑
i∈N

ωixi ≤ c,

xi ∈ {0, 1}, ∀i ∈ N.

(1)

Since its introduction, the QKP has attracted the interest of many researchers, leading to the

development of several algorithms. Gallo et al. (1980) were the first to introduce a branch-and-bound

(B&B) algorithm based on a family of upper planes, solving instances with a limited number of items.

Chaillou et al. (1989) introduced a Lagrangian formulation for the capacity constraint. Billionnet and

Calmels (1996) presented a bound based on the linearization of the integrality constraint. These early

algorithms only reported results for instances with up to 20 items. This size limit was surpassed by

the work of Caprara et al. (1999) and Billionnet et al. (1999). Indeed, Caprara et al. (1999) proposed a

Lagrangian relaxation and formulation, reporting optimal results for instances with up to 400 items for

dense matrices and 120 for sparse ones. Billionnet et al. (1999) developed a Lagrangian decomposition

bounding approach, solving instances of up to 150 items for dense matrices and 300 for sparse ones.

However, according to Pisinger et al. (2007), the bounds proposed by Caprara et al. (1999) dominate

those of Billionnet et al. (1999), especially for dense instances.

Furthermore, an asymptotic study of the QKP by Schauer (2016) later revealed that randomly

generated instances, according to the procedure proposed by Gallo et al. (1980), may be relatively

easy to solve. They proposed a new set of instances where most state-of-the-art heuristics failed to

report good results. For the exact algorithms, the only reported results for these new instances are by

Fomeni et al. (2022), who proposed a bounding of the linearized formulation based on cutting planes.

Their approach allowed them to solve instances with up to 800 items for the standard ones (Gallo

et al., 1980) and 400 for the recent instances (Schauer, 2016). All the exact algorithms above are of a

B&B type, where they compute bounds using different procedures and then use these bounds within

an Integer Programming (IP) B&B framework (Létocart et al., 2012). In this paper, we propose a new

bounding approach for the QKP based on Binary Decision Diagrams (BDDs), a flexible data structure

that allows encoding the solution space of any problem with a dynamic programming (DP) formulation

(Bergman et al., 2016).

A BDD is a directed acyclic graph B = (U,A) that encodes the set of values of binary variables x.

The set of nodes U represents different states that encode subproblems from the original problem, and

the set of arcs A represents transitions between these states. These transitions determine whether the

variable xi is assigned a value of 1 or 0. At each node u ∈ U , there are at most two outgoing arcs:

a 0-arc a0(u) and a 1-arc a1(u). The nodes are partitioned into layers L = (l1, ..., ln+1), where each
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layer li corresponds to a set of decisions over the variable xi for i ∈ N , plus a terminal layer. All arcs

in the graph are directed from one layer li to another layer lk with i < k. The first and last layers

contain only one node each, representing the root node (where no variable has been considered) and

the terminal node (where all the variables have been considered), respectively. A path from the root

node to the terminal node represents a solution s from the set Sol(B) of the solutions encoded in the

graph B. For any two nodes u, u′ ∈ U , there is a sub-graph that encodes a set of partial solutions

through the paths between u and u′. At each layer, nodes are added and processed to retain only

those that encode unique feasible partial solutions. This type of graph is called an exact BDD, and

its computation can be very expensive. Approximation approaches are possible to provide bounds on

the solution. Bergman et al. (2014a) studied the compilation of an approximated BDD that computes

bounds on the optimal solution value instead of directly computing the optimal value by limiting the

number of nodes in each layer to a fixed number.

According to Castro et al. (2022), BDDs have existed for over half a century in the Boolean function

community. Their application to optimization problems is relatively recent, following some successes

in scheduling, routing, and other areas over the past two decades (Castro et al., 2022). Castro et al.

(2022) illustrates how BDDs can enhance several existing optimization techniques, such as cutting

planes and column generation. Becker et al. (2005) and Tjandraatmadja and Van Hoeve (2019) show

that useful cuts can be generated from BDDs and relaxed BDDs if the relaxation is tight. This makes

it an attractive approach for enhancing the solution process of complex problems. While BDDs are

enumerative algorithms that will list alternative and non-dominated solutions, it is important to define

the notion of restricted and relaxed BDDs for computing bounds:

Restricted BDDs: compute a primal bound by restricting the number of nodes in each layer to be

below a certain threshold, ignoring some nodes beyond this threshold. This ensures it contains

only feasible solutions, although it may miss some or all optimal ones.

Relaxed BDDs: compute a dual bound by merging nodes from a layer, such that the relaxed BDD

encodes a superset of the set of feasible solutions. This may result in infeasible solutions from

the merged nodes being included.

The bounds provided by these BDDs can be made tighter by exploring the trees using a B&B fash-

ion. Bergman et al. (2016) proposed a BDD-based B&B that uses lower and upper bounds computed

from restricted and relaxed BDDs iteratively. This is achieved by repeatedly computing restricted

BDDs using exact information from relaxed BDDs, i.e., exploring a subset of nodes from the relaxed

BDD, called cutsets. These cutsets are obtained prior to the merging step of the relaxed BDDs. By

exploring these nodes, one can either find new cutsets or improve the primal bound. The relaxed BDDs

provide a dual bound for each of these nodes, which can also be made tighter by exploring more nodes

from the cutsets. The algorithm of Bergman et al. (2016) iteratively adds nodes (cutsets) to a pool

to be explored with restricted BDDs and terminates if all the nodes yet to be explored can be pruned

using the primal bound. They reported results showing that this branching approach outperforms

commercial solvers on several classes of problems, such as the Maximum Independent Set Problem

and the Maximum Cut Problem. As we will see in Section 2.2, their BDD B&B can be seen as a

depth-first search (DFS) one. Furthermore, Gillard et al. (2021) proposed a node filtering for BDDs

B&B, which reduces the size of the cutsets and accelerates the searching process.

In this paper, we propose a breadth-first search (BFS) B&B method for BDDs, demonstrating that

it outperforms the DFS B&B approach, with the added advantage of tightening the dual bound if

the algorithm does not finish within a certain time limit, which is not the case in the DFS version.

Additionally, we introduce minimum spanning trees (MSTs) as a tool to compute which nodes to merge

in relaxed BDDs efficiently. On the QKP side, we propose a DP formulation for BDDs, leveraging

fundamental properties and previous results from the QKP literature to compile restricted BDDs

efficiently. We compare our bounds from the BFS B&B with the results of the bounding phase of the

state-of-the-art exact algorithms previously discussed (Caprara et al., 1999; Fomeni et al., 2022). The

experiments show that our approach outperforms these algorithms and computes the best bounds for
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all the recent QKP instances (Schauer, 2016). More precisely, we compute near-optimal solutions and

tight dual bounds, which reduce 10% the duality gap, leading to a 93% solution quality improvement.

We organize the rest of this paper as follows. Section 2 reviews the state-of-the-art bounds for the

QKP of Caprara et al. (1999) and Fomeni et al. (2022) and presents the B&B approach to BDDs of

Bergman et al. (2016). In Section 3, we formally introduce the compilation approach of BDDs for the

QKP. Sections 4 and 5 describe our approximation approaches for restricted and relaxed BDDs for

the QKP, respectively. Section 6 presents the details of our proposed BFS B&B and discusses several

implications of this approach. In Section 7, we report the results of the computational experiments

used to assess the efficiency of our algorithms. Finally, Section 8 offers some concluding remarks.

2 Literature review

In this section, we describe the bounds from the literature for the QKP and introduce the B&B scheme

for exploring BDDs.

2.1 Bounds for the QKP

In this section, we review the bounds computation for the QKP from Caprara et al. (1999) and Fomeni

et al. (2022). For a more detailed literature review, we recommend Cacchiani et al. (2022) for the QKP

and Castro et al. (2022) for BDDs.

2.1.1 The Caprara, Pisinger, and Toth bounds

The upper bound proposed by Caprara et al. (1999) is computed using the following reformulation of

the objective function: ∑
i∈N

∑
j∈N

pijxixj =
∑
i∈N

p̃ixi, (2)

where p̃i = pii +
∑

j∈N\{i} pijxj and it is bounded by πi (i.e., p̃i ≤ πi), such that

πi = pii +max

 ∑
j∈N\{i}

pijxj |
∑

j∈N\{i}

ωjxj ≤ (c− ωi) , xj ∈ {0, 1} for all j ∈ N \ {i}

 . (3)

A valid upper bound U1
cpt for the QKP is the solution of the following problem:

max
∑
i∈N

πixi

s.t.
∑
i∈N

ωixi ≤ c,

xi ∈ {0, 1}, ∀i ∈ N.

(4)

By relaxing the integrality constraint in the computations of (3) and (4), we compute the bound

U1∗
cpt, which is obtained in O(n2) by solving n LP-relaxed knapsack problems for the computation of

πi for all i ∈ N , and one LP-relaxed knapsack problem for (4). Furthermore, Caprara et al. (1999)

showed that the bound could be strengthened if the objective function is reformulated as follows:∑
i∈N

∑
j∈N

pijxixj =
∑
i∈N

∑
j∈N

(pij + λij)xixj , (5)

for any skew-symmetric matrix Λ = (λij)i∈N
j∈N

, i.e., λij = −λji. We denote U1∗
cpt(Λ) as the corresponding

bound with this new formulation. To obtain the tightest bound, we solve the Lagrangian dual problem

U2
cpt = min

{λij :λij=−λji}
U1∗
cpt(Λ). This can be solved by subgradient optimization, leading to the bound

Ũ2
cpt for a near-optimal matrix Λ.
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The lower bound is obtained initially with the heuristic of Chaillou et al. (1983) combined with the

local search “fill-up-and-exchange” (Gallo et al., 1980). Secondly, attempts to improve this bound are

made by rounding down all variables from the solution obtained by solving the LP-relaxed knapsack

problem in (4). Finally, Caprara et al. (1999) propose a variable reduction procedure that helps tighten

the bound further. The idea is to fix a variable to its opposite value from the solution to the relaxed (4)

and compute the upper bound. If the resulting bound is lower than the lower bound, we can remove

the variable from the problem by fixing it to the appropriate value; otherwise, it is kept in the problem.

The bounding algorithm of Caprara et al. (1999) iterates between the computation of an upper bound,

a lower bound, and then variable reduction, stopping when no variable can be removed.

2.1.2 The Fomeni, Kaparis, and Letchford bounds

The bounding approach of Fomeni et al. (2022) relies on the integration of multiple sets of cutting

planes into the reformulation of model (1) into a 0-1 LP model. Let us retain the variables xi as

previously defined and introduce variables yij for all i, j ∈ N with i < j, such that yij = xixj .

max
∑
i∈N

piixi +
∑
i,j∈N
i<j

(pij + pji) yij

s.t.
∑
i∈N

ωixi ≤ c,

yij ≤ xi, ∀i, j ∈ N, i ̸= j,

yij ≥ xi + xj − 1, ∀i, j ∈ N, i ̸= j,

xi, yij ∈ {0, 1}, ∀i, j ∈ N, i ̸= j.

(6)

The first set of cutting planes is derived from the well-known valid inequalities of the knapsack

polytope called lifted cover inequalities (Balas, 1975; Wolsey, 1975). Define C ⊂ N as a cover set if∑
i∈C ωi > c. A cover C is called minimal if no subset of C is a cover. This allows us to define the

following valid inequalities of the knapsack polytope (Balas, 1975; Wolsey, 1975):∑
i∈C

xi +
∑

i∈N\C

αixi ≤ |C| − 1. (7)

Where αi are lifting coefficients that are computed by solving a KP problem over the items in C

by removing the weight of item i from the capacity. Balas (1975) showed that these coefficients could

naively, but efficiently, be computed by the so-called extended cover set E(C), where E(C) denotes

a subset of items in N \ C that weight at least as much as the heaviest item in C. This results in

an extended cover inequality if we set αi = 1 to all i ∈ E(C) and αi = 0 to the remaining items

i ∈ N \ E(C) ∪ C.

Another set of cuts, called triangle inequalities, is derived from the binary quadratic programming

literature (Padberg, 1989):

xi + xj + xk ≤ yij + yik + ykj + 1 ∀i, j, k ∈ N, i ̸= j ̸= k,

yik + yjk ≤ xk + yij ∀i, j, k ∈ N, i ̸= j ̸= k.
(8)

Fomeni et al. (2022) also mention another set of inequalities called the cover tree (Johnson et al.,

1993). Given a minimal cover C, we define KC as the complete graph with vertices in C, and let T be

the set of edges in the spanning tree in KC . We define di for all i ∈ C as the degree of the vertex in

the tree. The cover tree inequality takes the following form:∑
{i,j}∈T

yij ≤
∑
i∈C

(di − 1)xi. (9)
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Finally, Fomeni et al. (2022) strengthened their formulation by adding the reformulation-

linearization technique (RLT) inequalities (Sherali and Adams, 1990). These inequalities are gen-

erated for both the extended cover inequalities and the capacity constraint. For instance, for the

capacity constraint, this results in the following set of 2n constraints:∑
i∈N\{j}

ωiyij ≤ (c− ωj)xj ∀j ∈ N,

∑
i∈N\{j}

ωi(xi − yij) ≤ (1− xj)c ∀j ∈ N.
(10)

Regarding the lower bound, Fomeni et al. (2022) use two primal heuristic approaches. One is based

on DP (Fomeni and Letchford, 2014), while the second uses the solution x∗ obtained from the linear

program (6) along with the inequalities mentioned before. The approach involves sorting the items in

non-increasing order of their value in x∗ and sequentially adding them into an empty knapsack if their

weight does not exceed the residual capacity. Their bounding algorithm iterates between computing

the upper bound by solving the linear program (6), computing the lower bound using this sorted

approach, and then running separation routines to identify and add violated valid inequalities. The

algorithm terminates when no further violated inequalities are detected.

2.2 Binary Decision Diagram Branch-and-Bound

The B&B algorithm for BDDs of Bergman et al. (2016) starts by adding the root node to a global

priority queue P , which contains the nodes yet to be explored based on their attractiveness. For a

given node u ∈ P , a restricted BDD B is constructed for the sub-problem rooted in u. Notably, as

all paths in a restricted BDD are feasible solutions, the algorithm stores the longest path v∗(B) of B

plus the cost of the partial solution that led to node u. If this solution is better than the best-known

solution (BKS) so far, the BKS is updated.

If B is exact, i.e., it completes the BDD rooted in u without restrictions, then the processing of u

is concluded, and the algorithm moves on to explore another node. However, when B is not exact, a

relaxed BDD B is compiled from u. This relaxed BDD serves two purposes: first, it provides a dual

bound vu + v∗(B) on the profits achievable from exploring u, which is compared to the current BKS.

This dual bound can be used to prune unpromising nodes. Second, even if no pruning is possible, the

tree from the relaxed BDD is used to provide more nodes to queue P , called a cutset. When all nodes

from P have been explored, an exact solution is obtained. If a time limit forbids exploring all the

nodes in P , the method yields a heuristic solution, and no dual bound is available.

A cutset S, in the context of BDDs, is defined as a subset of nodes from a relaxed BDD B such

that any path from its root to its terminal node in B must go through at least one node in S. A

node u is said to be exact if all its incoming paths lead to the same state s(u). An exact cutset of

B is then composed entirely of exact nodes. Several cutsets can exist in a BDD. Below are the most

significant ones.

• Last Exact Layer (LEL) means the set of nodes in the last not relaxed layer B.

• Frontier cutset (FC) means all the nodes in B that are exact and have at least one relaxed direct

child.

The DFS characteristic of the BDD B&B of Bergman et al. (2016) arises from the fact that the

search is oriented by the attractiveness of a node in P , regardless of the depth or iteration of the B&B

when the node was added to the pool.
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3 BDDs for the QKP

Addressing a combinatorial optimization problem using BDDs requires a DP formulation (Bergman

et al., 2014a). This section introduces a customized DP formulation for the QKP tailored for integration

with BDDs. We will also discuss the compilation of an exact BDD using this formulation. We close

this section with a numerical example.

3.1 DP model for the QKP

In Binary Quadratic Problems, certain elements, such as the value function computations, are common

across many variants (Fomeni and Letchford, 2014; González et al., 2020). Hence, our proposed DP

formulation for the QKP is inspired by the Quadratic Independent Set Problem formulation described

by González et al. (2020). According to Bergman et al. (2016), the following components should be

defined in a DP formulation for BDDs:

• S: The set of states, denoted as {S0, . . . , Sn}, where Sj represents a subset of all states at layer j

in a BDD. The subset S0 and Sn respectively represent the root state and the terminal state.

• Transition function tj : Sj × {0, 1} −→ Sj+1 for j = 1, . . . , n, which computes subsequent states

based on decisions regarding the variable xj in states Sj . This function ensures that transitions

do not lead to infeasible states.

• Transition cost hj : Sj × {0, 1} −→ R for j = 1, . . . , n, determining the arc weights representing

the profits obtained by fixing the value of xj .

• Root value vr, representing the constant value associated with the objective function at the root

node.

Given a decision system of n + 1 stages represented by BDDs, we determine, at each stage j,

whether to add an item j to a given packing by setting the variable xj to 0 or 1. To make this decision,

we need information about the existing packing. Assuming a fixed variable ordering, we define the set

J := {k ∈ {1, . . . , j− 1} : xk = 1} as the partial packing at stage j, and γ = c−
∑
k∈J

ωk as the residual

capacity given the weight of the items in this packing. Thus, we define I := {k ∈ {j, . . . , n} : ωk ≤ γ}
as the set of eligible items that could be added to packing J . Additionally, to evaluate the marginal

value of adding item k into packing J , we must consider not only its linear profit but also the pairwise

interaction with the items already in J .

Through this approach, we can characterize the states Sj of a QKP represented in a BDD at stage j,

with the tuple ⟨I, q, γ⟩, where I ⊆ N is the set of eligible items based on the packing decisions made

in stages 1, . . . , j − 1 and q = (q1, q2, . . . , qn) is a vector of n elements of the following sum:

qi = pii +

j−1∑
k=0

2pkjxk ∀i ∈ N. (11)

The value of xk in Equation (11) corresponds to the assignments made in previous stages before

reaching stage j. The root and the terminal states are respectively sr = ⟨N, (p11, . . . , pnn), c⟩ and

st = ⟨∅,0, l⟩ with l ∈
[
0,min

k∈N
ωk

[
. At the root state, all items are eligible, and their potential

contribution is the linear profit associated with them; in the terminal state, no item is eligible, and no

potential contribution exists. For the residual capacity at the terminal state, it could not exceed the

lightest item; otherwise, it would mean that further packing is possible. The transition from states j

to j + 1, based on assigning a value to xj , is computed with the following function:

tj(I, q, γ, xj) :=

{
⟨I \Rj , (q1 + 2p1j , . . . , qn + 2pnj), γ − ωj⟩ if xj = 1

⟨I \ {j}, (q1, . . . , qn), γ⟩ otherwise
(12)

hj(I, q, γ, xj) := qjxj , (13)
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where Rj = {j} ∪ {k ∈ I : ωk ≤ γ − ωj} is the set of items that have a weight lower than the

residual capacity at the resulting state. Hence, Rj allows us to update the set I with the new eligible

items. We also remove item j from the set of eligible items in both cases because we must include the

information that we did decide on the assigned value variable xj . Finally, the transition cost is simply

the up-to-date qj value if item j is selected or 0 otherwise. In some cases, when the set Rj contains

more items than just j, the resulting state from the transition function does not contain all the items

yet to be considered in its eligible set. Hence, to prevent falling into an infeasible state by evaluating

the assignment of an item that does not exist in the eligible set, we wrap our transition function and

cost into the following functions:

t
′

j(I, q, γ, xj) :=

{
⟨I, q, γ⟩ if j ̸∈ I
tj(I, q, γ, xj) otherwise

(14)

h
′

j(I, q, γ, xj) :=

{
0 if j ̸∈ I
hj(I, q, γ, xj) otherwise.

(15)

Lastly we define the set of decisions F(C) := {0} ∪ {I(C)}, where I(C) equals to 1 if condition C

holds and 0 otherwise. Considering these presented elements, we can articulate the following Bellman

equations that are solved with the optimal solution of the QKP.

Vj(I, q, γ) = max
d∈F(j∈I)

(h
′

j(I, q, γ, d) + Vj+1(t
′

j(I, q, γ, d)))

Vn+1(I, q, γ) = 0.
(16)

The states at layer n+ 1 are terminal; hence, their value equals 0. Starting from the root state sr,

V1(sr) yields an optimal solution to the QKP. The root value vr is initially set to zero as there is no

accumulated profit. Its purpose will be clearer in Section 6 when we discuss BDD B&B.

3.2 Long transitions

It is common in BDDs literature to use long transitions between states (Bergman et al., 2016). However,

to our knowledge, it has never been applied in combinatorial optimization. The concept of a long

transition is to combine multiple decisions to transit between two adjacent states. This has the

advantage of reducing the state space size, as several states would be explicitly combined. This section

introduces two scenarios where long transitions are particularly relevant when certain fundamental

QKP assumptions are unmet. More specifically, we define particular states where the transition to the

terminal state is straightforward. For all states, we can formulate a subproblem for the items in I
with a maximum capacity of γ. To warrant an efficient exploration of these subproblems, they should

satisfy the following properties.

Property 1. The maximum capacity of the knapsack γ must be strictly less than the sum of the weights

of all items in I.
Property 2. The maximum number of items m that could fit into the knapsack must be at least 2.

The first property highlights a crucial concept in the QKP, indicating that it is impossible to select

all items. This is confirmed by checking whether the maximum number of items m that could fit

into the knapsack is equal to the number of items in the eligible set |I|. If this condition is true, the

exact solution to the problem can be easily obtained by assigning a value of 1 to all the remaining

decision variables. The second property prevents a situation where selecting only one item is the sole

possibility. Hence, states in the BDD graph that do not satisfy at least one of these properties are

immediately linked to the terminal state. We introduce a modified transition function t+j .

t+j (I, q, γ, xj) :=

{
(∅,0, 0) if m = 1 or m = |I|
t
′

j(I, q, γ, xj) otherwise,
(17)
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where m represents the maximum number of items that can fit into the knapsack, computed by

arranging the items in I in non-decreasing order of their weights and sequentially placing them into

the knapsack until the capacity is attained. We propose the modified function h+
j for the transition

cost.

h+
j (I, q, γ, xj) :=


max
i∈I

qi if m = 1∑
i∈I

qi +
∑

i,k∈I
i̸=k

pik if m = |I|

h
′

j(I, q, γ, xj) otherwise.

(18)

In the first case, the knapsack can only fit one item among all eligible ones. Thus, the best solution

is to select the item with the highest qi. The second case tests if the total weight is less than or equal

to the residual capacity, which leads to computing the overall profit of selecting all items. The linear

value of the items in I becomes equal to the values in q as it considers the linear profit of items and

their pairwise interaction with items J . If none of these tests is true, i.e., Properties 1 and 2 are

verified, then we return to the usual transition function from the previous section.

3.3 BDD Compilation

Equipped with the DP formulation introduced above, we outline the BDD construction in Algorithm 1.

Let su denote the state at node u, Iu the set of eligible items in state su, and r and t respectively the

root and terminal nodes. Algorithm 1 begins by creating a root node and placing it in the initial layer

l0. For each node u in the current layer li, the algorithm explores possible binary decisions d that are

allowed by the set F(j ∈ I and m ̸= 1 and m ̸= |I|). We limit the number of allowed decisions to

one (instead of two) when one of the conditions in F is verified, as in those cases the actions to take

are trivial and do not depend on the set of binary decisions as described in Equations (14), (15), (17),

and (18). For each decision, it creates a new node ud with a corresponding state sd determined by the

transition function. An arc ad(u) from node u to ud is established with a weight v(ad(u)) computed

using the transition cost function. The new node ud is then added to the set of nodes for the next

layer li+1. This iterative process continues until all n+ 1 layers are processed, ensuring the sequential

construction of the BDD.

Algorithm 1 Exact BDD

1: Set W ←− +∞ for an exact BDD; Set W for a restricted or relaxed BDD
2: Create root node r and let l0 = {r}
3: for i ∈ N do
4: if |li| > W then
5: Ci ← cluster nodes(li), li ← li{⊕ni : ∀ni ∈ Ci}
6: end if
7: j ← select var(li)
8: for u ∈ li and d ∈ F(j ∈ I and m ̸= 1 and m ̸= |I|) do
9: sd ← t+j (su, d) and create a new node ud with state sd

10: ad(u)← (u, ud), v(ad(u))← h+
j (su, d), li+1 ← li+1 ∪ {ud}

11: end for
12: end for
13: Return the longest path between the root r and the terminal node t

The condition in line 4 of the algorithm limits the layer’s size to a maximum of W nodes. For the

case of an exact compilation of BDD, we useW = ∞. The two operations in line 5 concern approximate

BDDs, which we will discuss in the next sections. The function cluster nodes(·) clusters the nodes in

the argument, and the operator ⊕ aggregates the nodes in each cluster to produce a reduced set of

aggregated nodes. The operation select var(·) in line 7 allows for dynamic variable ordering. While

several ordering approaches exist in the literature (Bergman et al., 2012), our experiments showed that

the dynamic approach below leads to a better performance:

select var(li) := argmax {qj | j ∈ Iu, u ∈ li} ,
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where Iu is the set of eligible items in node u. Finally, after the BDD is compiled, Algorithm 1 returns

the longest path between the root and terminal node.

3.4 Numerical example

We introduce a simple example on a QKP instance to illustrate the BDD tree. We consider the

following instance with n = 3 items, weights ω = (1, 1, 1), capacity c = 2, and the profit matrix P :

P =

 1 1 10
1 10 1
10 1 1

 .

Figure 1a shows the construction of an exact BDD using the formulation from Section 3.1, and

Figure 1b shows the result when the long transitions from Section 3.2 are considered. The main

difference between both BDDs is that by using long transitions, we reduce the number of nodes by half.

Furthermore, irrelevant paths (potential solutions), i.e., r → u2 → u5 → t, are not even considered

with long transitions. At node u1, the long transition is activated because Property 2 is not verified.

Hence, it is automatically linked to the terminal node with an arc weight of max
i∈I

qi = 3 at the state

s(u1). For node u2, Property 1 is not verified; thus, the best solution would be to include all items

with an arc weight of
∑
i∈I

qi +
∑

i,k∈I
i ̸=k

pik = 21 at state s(u2).

r ⟨{1, 2, 3}, (1, 10, 1), 2⟩

u2 ⟨{1, 3}, (1, 1), 2⟩u1 ⟨{1, 3}, (3, 3), 1⟩

u3 ⟨{3}, (3), 1⟩ u4 ⟨{3}, (21), 1⟩ u5 ⟨{3}, (1), 2⟩

t

10

3

1

3 21
1

x2

x1

x3

(a) BDD without long transitions

r ⟨{1, 2, 3}, (1, 10, 1), 2⟩

u2 ⟨{1, 3}, (1, 1), 2⟩u1 ⟨{1, 3}, (3, 3), 1⟩

t

10

3 21

(b) BDD with long transitions

Figure 1: Exact BDD

4 Restricted BDD

Restricted BDDs are designed such that whenever a layer li exceeds a maximum width size W , a subset

of its nodes is selected and discarded. In this way, the resulting longest path in the BDD is a valid

lower bound to the optimal solution. This is because all the paths in the restricted BDD still encode

feasible solutions to the problem, but they may not conserve the optimal ones.

Hence, restricted BDDs must be designed to navigate scenarios where the explored parts of the

solution space demand a more efficient representation. Intuitively, this can be achieved by removing

nodes u that have the shortest longest path v∗(Bru) to the root node r in the restricted BDD B

(Bergman et al., 2014c). However, in the case of BQPs, this is not enough as it does not take into

account the potential profits from the interaction with items in future iterations. Fennich et al. (2024)

proposed an approach to evaluate states of QKP solution in a DP framework, where the future profits

are considered. In this section, we present this approach for node selection. The idea is based on a
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fast calculation of a local lower bound to the subproblem encoded in each BDD node, denoting ulb.

The subproblem encoded in a BDD state is also a QKP that is formulated as follows.

max
∑
i∈I

qiyi +
∑
i,j∈I
j>i

2pijyiyj

s.t.
∑
i∈I

ωiyi ≤ γ,

xi ∈ {0, 1}, i ∈ I.

(19)

In this subproblem, we define a QKP on the set of items in I, where the capacity is the residual

capacity γ at node u. The quadratic profits between the items remain unchanged from the main

problem, but their linear profits are updated to the current values qi. These updated linear profits

reflect the standalone profit from adding item i, which includes its linear profit plus the pairwise gains

with the items already selected in the previous layers. This subproblem formulation has the potential

to give a future estimation of the profit if solved exactly. Extensive computations by Fennich et al.

(2024) show that heuristically solving problem (19) with the algorithm of Chaillou et al. (1983) from

multiple DP states is sufficient to reach good-quality results for the QKP. Furthermore, they proposed

a very fast local search called remove-and-fill-up that checks if the solution of Chaillou et al. (1983)

could be improved. The idea of this local search procedure is to remove an item k from the solution,

freeing up residual capacity. Items not yet in the solution with weights less than or equal to residual

capacity are identified and used to define a new QKP. The new QKP is formulated for these items,

considering their linear and quadratic profit contributions with the items still in the knapsack. This

subproblem is solved using the heuristic of Chaillou et al. (1983) to find a subset that maximizes the

profit. If this new subset improves the overall solution, it replaces item k. This process is repeated for

different items in the solution.

We denote Qu, the subproblem encoded at node u, and z(Qu) is its solution. We define ulb =

v∗(Bru) + z(Qu) as the selection criteria for width restriction. The selection process for restricted

BDDs is to set all |li| −W nodes with the lowest ulb values and return a set of all nodes. Then, in the

aggregation operation ⊕ in line 5 of Algorithm 1, these identified nodes are deleted, and the remaining

ones are returned.

5 Relaxed BDD

Relaxation in BDDs constitutes an extension of the problem as unlike restricted BDDs that underap-

proximate the solution space, relaxed BDDs overapproximate it when it comes to limiting the layer’s

width. In other words, the aggregation phase in Algorithm 1 does not remove states, but merges them,

which may lead to an infeasible state, resulting in a valid upper bound. This is done by proposing

a merging operation ⊕ between the states of the nodes for the aggregation process. The resulting

state should contain the information from both input states. For the QKP, we propose the following

merge operation w = ⊕({u, v}) where the state s(w) of the merged node w becomes Iw := Iu ∪ Iv,
qw := max (qu, qv) with qwi

= max (qui
, qvi) and γw = max (γu, γv). This is a valid merge as the new

state considers all the items from both eligibility sets; hence, no potential assignment is lost. Further-

more, the residual capacity and the potential profit are maximized such that the resulting paths from

a merged node would lead to at least the optimal value, hence the dual-bound nature of this solution.

Figure 2 shows a possible relaxation to the BDD in Figure 1a for W = 2.

In Figure 2, the nodes u4 and u5 are merged. The resulting state maximizes the residual capacity

and allows as much space in the packing as possible for future item selection. At the level of the profit

vector, the maximum potential value of item 3 is considered which, in this case, conserves the optimal

path to the terminal node within the feasible space.
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r ⟨{1, 2, 3}, (1, 10, 1), 2⟩

u2 ⟨{1, 3}, (1, 1), 2⟩u1 ⟨{1, 3}, (3, 3), 1⟩

u3 ⟨{3}, (3), 1⟩
u45 ⟨{3}, (21), 2⟩

t

10

3 3
1

x2

x1

x3

Figure 2: Relaxed BDD of Figure 1a

The selection of nodes for merging is crucial in ensuring tight bounds in relaxed BDDs. A greedy

strategy is to merge nodes with similar states. Bergman and Cire (2017) introduced an IP model to

compute the tightest relaxed BDD for a given W . However, their approach was primarily evaluated on

the knapsack problem and demonstrated effectiveness only on small-sized instances. In what follows,

we propose a heuristic method designed to achieve similar objectives if one can define a similarity

measure.

5.1 Node clustering

In the last decade, MSTs have been widely used for data clustering in different areas (Grygorash et al.,

2006). Constructing an MST from a distance matrix that encapsulates pairwise similarities between

states provides a hierarchical representation of relationships within the state space. Subsequently,

clusters are delineated by strategically cutting the branches of the MST, yielding a cohesive partitioning

of the states. This approach offers insights into the intrinsic structure of the state space and facilitates

meaningful interpretations of inter-state relationships. In this section, we propose a methodology for

clustering nodes using MSTs for our relaxed BDDs.

Let us consider the graph G = (li, E) that contains all nodes from the layer li in a relaxed BDD.

The weighted edges e ∈ E represent relationships between those nodes, and their weights encode a

measurement of similarity (discussed in the next section). We assume for now that G is fully connected,

but this does not always hold for QKPs as seen next. Equipped with G, we can run a variant of Kruskal

algorithm (Cormen et al., 2009) that returns the set of connected components to be merged in the

relaxed BDD. The Kruskal algorithm should stop when the number of connected components in the

MST equals the maximum layer width W . This variant of the Kruskal algorithm begins as usual

by sorting the edges of the input graph in a non-decreasing order of weight. The set of connected

components T is initialized, with each vertex defining an initial component, i.e., |T | = |li|. As the

algorithm progresses through the sorted edges, it evaluates whether merging two components would

violate the acyclic property of a tree. If a merging operation is permissible, the corresponding edge is

“added” to the MST, and the two components are merged into a single connected component. This

operation decreases the number of connected components, and the algorithm stops when the required

number of components is met or when a full MST is computed. A detailed pseudocode of this procedure

is provided in Appendix A.

5.2 Distance graph to measure similarity

Constructing a suitable distance graph is crucial to the success of our MST clustering. In this section,

we propose a distance graph for the states of a QKP, which allows us to measure similarity between

nodes and thus enables efficient node clustering to be merged in relaxed BDDs.
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First, recall ulb = v∗(Bru) + z(Qu) as the local lower bound of node u in a relaxed BDD B.

This information helps guide the clustering to merge nodes potentially leading to the worst solutions.

The reason is to reduce the overapproximation (relaxation) impact, as the solution we obtain is that

of the longest path. We define the set K ⊂ li that contains |li| − W nodes with the lowest ulb.

Furthermore, in preliminary experiments, we noticed that to ensure the tightness of the bound for the

QKP, it is crucial to limit the merge only to nodes containing the same maximum number of items

m to be added (sorting the items in li in non-decreasing order and adding the first ones until the

residual capacity is filled). Hence, we define the distance graph for the QKP as G = (li, E) where

E = {(u1, u2)|u1 ∈ K,u2 ∈ li,mu1 = mu2}, and mu is the number of items from the eligible set Iu
that could be included given the residual capacity γu. This formulation may lead to a sparse graph,

consequently resulting in insufficient edges to reduce the number of connected components to the

desired W if |E| < |li|−W −2. However, this allows us not only to consider resource allocation during

layer reduction but also the complexity of the state space. This changes the definition of W from the

maximum allowed width to the preferred width, if feasible. Furthermore, our experiments showed that

this potential expansion of layer width is manageable, reaching only a few hundred in the worst cases.

Regarding the edges weight, we compute a distance measure that considers the difference in the

attractiveness of outcomes between states and the extent of overestimation computed by the merge.

Therefore, we propose D(u1, u2) := |u1lb − u2lb|+ λ |γu1
− γu2

| as the distance between nodes u1 and

u2, where λ is a scaling factor intended to emphasize the importance of the capacity constraint. We

found it crucial to restrict the merging of nodes to those with very similar residual capacities; thus,

we set λ = 1× 106.

6 Our Binary Decision Diagram Branch-and-Bound

Bergman et al. (2016) introduced a DFS BDD-based B&B algorithm that uses information computed

from approximate BDDs to improve the search process within an exact BDD, terminating upon finding

an optimal solution. However, obtaining an optimal solution for complex problems can take a significant

amount of time. The DFS nature of the search makes it such that the dual bound available during the

search can be very weak (i.e., that of the very first iteration, if the nodes added to the pool during the

first iteration are yet to be explored). Consequently, if the search terminates due to a time limit, the

quality of the obtained solution cannot be evaluated efficiently.

In this section, we propose a BFS BDD-based B&B algorithm designed to extract tight bounds.

Furthermore, we also discuss the parallelization of this search scheme.

The definition of exact cutsets implies that they act as a frontier before which the relaxed BDD B

and its exact counterpart B have not diverged. Hence, the information on the longest path in B from

a tree rooted in r could always be reached with the following equation:

v∗(Sol(B)) = max
u∈S

(v∗(Solu(B))) (20)

where Solu(B) is a restriction on the solution space that crosses node u, and v∗(Solu(B)) = v∗(Bru)+

v∗(But). Equation (20) states that at least one path is optimal among all paths that cross S. This

implies that one can tighten the upper bounds in a relaxed BDD by fully exploring each node of an

exact cutset. This idea is demonstrated in the lemmas below. We introduce Su, the exact cutset

returned from B when it is rooted at node u.

Lemma 1. If S is an exact cutset of B then max
u∈S

(v∗(Solu(B))) is a valid upper bound on v∗(Sol(B))

Proof. Since the nodes u ∈ S are exact, then v∗(Solu(B)) = v∗(Bru) + v∗(But) because there is no

loss of information in the path from the root r to u. Hence, by the definition of Equation (20) we can

state v∗(But) ≥ v∗(But) ⇐⇒ max
u∈S

(v∗(Solu(B))) ≥ v∗(Sol(B)).
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Lemma 2. If S is an exact cutset of B then
⋃

u∈S
Su is also an exact cutset of B.

Proof. The proof is trivial as
⋃

u∈S
Su also acts as a complete frontier before which the relaxed BDD B

and its exact counterpart B have not diverged.

We propose a BFS B&B in Algorithm 2 that iterate over multiple exact cutsets of the BDD tree.

The goal is to explore the nodes of full cutsets, yielding tightened upper bounds throughout the search.

While our approach, similarly to the one of Bergman et al. (2016), requires the usage of a priority

queue P to feed the exploration process, we propose that new cutsets are added to a temporary set C,
which feeds P once P is empty. This is fully explained next.

Algorithm 2 BFS BDD-based branch-and-bound

1: Create root node r, C ← {r}
2: Set z ← −∞, z ←∞
3: while C ≠ ∅ do
4: P ← {u|u ∈ C, ulub > z}
5: z ← max(ulb|u ∈ P ), C ← ∅
6: for u ∈ P do
7: Explore node u with Algorithm 3
8: end for
9: end while
10: return z, z

Our proposed algorithm starts by creating a root node r and establishing the set of cutsets C ini-

tialized with a singleton element r. Then, the lower bound and upper bound are initialized respectively

z = −∞ and z = ∞. The main loop of the algorithm persists until there is no remaining node to be

explored in C. Within each iteration, the algorithm feeds nodes from the exact cutset C to the global

problem into the priority queue P . These nodes must possess a local upper bound ulub exceeding the

current lower bound z where ulub is a fast local upper bound on node u, proposed by Gillard et al.

(2021). It is computed with a bottom-up approach, cumulating the arc weights in the paths between

the terminal node t and u in the relaxed BDD B. This is practically done by inserting the local upper

bound calculation procedure in Appendix A at the end of Algorithm 1 when it is a relaxed BDD

compilation, with the terminal node and the weights of its incoming edges being the arguments. This

local upper bound is initially equal to zero for all nodes. The algorithm then clears the cutset C and
updates the global upper bound z by considering the maximum ulb over all nodes in P .

Algorithm 2 explores the nodes from P using the procedure described in Algorithm 3, following

their order of priority. For a given u, we first compute a restricted BDD B and update the current

best-known solution z if a better one is found by adding the best value at the current node vu to

the value of longest path in B. If the restricted BDD B is not exact, the algorithm then computes a

relaxed BDD B. If the relaxed BDD also yields a better solution, the algorithm updates the set of

cutsets C by including an exact cutset of B.

Unlike the approach of Bergman et al. (2016) mentioned earlier where the exact cutset from ex-

ploration of node u is directly fed to the priority queue P , our approach stores it in the set of exact

cutsets C instead of the queue P . Furthermore Algorithm 2 waits for all the nodes in P to be explored

to start the next iteration to ensure that the construction of a new valid exact cutset C to the main

problem is complete. If the latest is empty, at the next iteration, the algorithm stops with a proof of

optimality (Bergman et al., 2016); otherwise, it reiterates with the new set of extracted nodes.

The BDD B&B approach is easily parallelizable, as the exploration of nodes is independent. This

offers the advantage of achieving tighter upper bounds by accelerating the exploration of a complete

exact cutset. Moreover, this may lead to faster optimality in both BFS and DFS BDD B&B algorithms

(Bergman et al., 2014b).
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Algorithm 3 Exact nodes exploration procedure

1: procedure explore(u) ▷ args: root node u
2: B ← Restricted(u)
3: if vu + v∗(B) > z then
4: z ← vu + v∗(B)
5: end if
6: if B is not exact then
7: B ← Relaxed(u)
8: if vu + v∗(B) > z then
9: C ← C ∪ S where S is an exact cutset of B
10: end if
11: end if
12: if z = z then
13: stop the search as optimality is proven
14: end if
15: end procedure

Hence, we approach the parallelization as follows. We use a thread pool and enqueue the task of

node exploration at line 7 of Algorithm 2 into this thread pool according to its priority in P . The

master thread waits for all nodes in P to be processed before trying to make another iteration in the

main loop. Finally, even if the optimality is not reached, one can stop the process according to a

computational time limit and evaluate the quality of its feasible solution. This is helpful as it allows

a comparison between the bounds obtained with the algorithm of Caprara et al. (1999), Fomeni et al.

(2022), and our approach, as we will see in the computational results section next.

7 Computational results

This section presents the results and analyses of the computational experiments conducted to test the

efficiency of our proposed bounding algorithm. All the discussed algorithms are coded in C++ and

executed on machines equipped with 2 × Intel E5-2683 v4 Broadwell @ 2.1GHz with 32 GB of RAM.

We limit the computation of our experiments to 1 hour. We set the required maximum width W to 100

for the restricted BDDsd and 10 for the relaxed BDDs. Our choice of the parameter W is motivated

by the trade-off between solution quality and resource consumption after a preliminary tuning phase.

Furthermore, larger layer widths lead to larger cutsets; hence, it is relevant to consider a smaller width

when it comes to relaxed BDDs, as it will tighten the upper bound faster because of the fewer nodes

that need to be explored. Meanwhile, for restricted BDDs, larger widths may lead to better primal

solutions. This explains our choice to have different widths for each BDD type.

Section 7.1 describes the test instances. In Section 7.2, we report the qualities of the bounds

for our methods, which are compared against the bounds of Caprara et al. (1999) and Fomeni et al.

(2022), which were also reimplemented. Finally, in Section 7.3, we report a computational experiment

comparing the BFS B&B that we propose with the DFS B&B of Bergman et al. (2016).

7.1 Test instances

We now describe the benchmark instances used to evaluate the performance of our approach, encom-

passing both the longstanding standard instances from Gallo et al. (1980), the instances derived from

the dispersion and the densest subgraph problem (Pisinger et al., 2007), and the recent Hidden Clique

instances introduced by Schauer (2016).

Standard QKP Instances: the standard QKP instances, introduced by Gallo et al. (1980), have

been used for nearly four decades. Each item’s weight is a random integer between 1 and 100, and

the knapsack capacity is a randomly chosen integer between 50 and the total weights’ sum. The profit

matrix’s sparsity is generated for each case {25%, 50%, 75%, 100%}. We generated 240 instances for

various values of n and sparsity probabilities.
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Dispersion Problem Instances: the dispersion problem is a combinatorial optimization problem

where k facilities should be assigned to locations while maximizing the distance between the chosen

locations. The problem serves as another set of instances by formulating it as a special case of the QKP

(Pisinger et al., 2007). Eight variants were generated according to the distribution used to generate the

distance matrix, including Geometrical (GEO), Weighted Geometrical (WGEO), Exponential (EXPO),

and Uniform distributions (RAN). Additionally, we generated knapsack versions of these variants (KP-

{EXPO, GEO, WGEO, RAN}) where each location has a random weight in {1, . . . , 100}. A total of

400 instances were generated for this experiment.

Densest k Subgraph Instances: the densest k subgraph problem, a well-studied optimization prob-

lem, was employed in four variants: DSUB25, DSUB50, DSUB75, and DSUB90, with varying sparsity

levels in the profit matrix. The aim is that given a graph, we need to find the densest subgraph with k

nodes, which can be formulated as a QKP (Pisinger et al., 2007). A total of 200 instances for different

combinations of size and sparsity were generated.

Hidden Clique Instances: the hidden clique instances involve finding a hidden clique in a random

graph. These instances were introduced by Schauer (2016) and are known to be particularly challenging

(Alon et al., 2011). A total of 200 instances were generated for this experiment.

This diverse set of instances covers a broad spectrum of QKP variants, comprehensively assessing

our approach’s performance.

7.2 Bounds for the QKP

This section presents the computational results over all the instances just described. We compute both

the lower and the upper bounds using the algorithms reviewed in Section 2.1, as well as our parallelized

BFS BDD B&B using both LEL and FC. We use 24 cores for parallelization and allocate 1 GB of

RAM for each. For each algorithm, we report the average results of the following three metrics:

• Gap: the average percentage gap between the lower bound (LB) and the upper bound (UB),

computed as
UB − LB

UB
.

• Deviation (∆): the average percentage gap between the lower bound and the best-known solution

BKS from any of the algorithms. This gap is computed as
(BKS − LB)

BKS
. Zero values indicate

that the current algorithm produced the BKS.

• Time: the average runtime required for the execution of the algorithm.

The combination of Gap and ∆ allows us to obtain useful insights into the quality of both gaps.

If Gap1 ≤ Gap2 and ∆1 ≤ ∆2, then algorithm 1 has better performance with better lower and upper

bounds; if Gap1 ≤ Gap2 and ∆1 ≥ ∆2, then algorithm 1 has a less attractive lower bound but a better

upper bound; if Gap1 ≥ Gap2 and ∆1 ≤ ∆2, then algorithm 1 has a better lower bound but a less

attractive upper bound.

7.2.1 Results for standard instances

We report in Table 1 the results on the standard QKP instances randomly generated with the procedure

of Gallo et al. (1980). In this category of instances, we can observe the best feasible solution is obtained

with the algorithm of Fomeni et al. (2022) with an average deviation ∆ from the BKS of 0.01%.

However, when it comes to the Gap, Fomeni et al. (2022) have the least interesting results with an

average over 38%, meaning that their approach reports the worst upper bounds. On the other hand,

Caprara et al. (1999) and both BDD approaches lead to similar performances on average for both the

gap and the deviation, with FC being the dominating cutset for BDDs in these instances. For the

lower bound, both methods report interesting deviations of less than 0.5% for most instances and an

average of 0.2%. For the upper bound, we observe that the BDD approach leads to the best bounds
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for small instances with up to 200 items, but it fails to remain competitive above this size limit. This

can be explained by the resulting quality of the lower bounds for those instances due to the width

limit of 100 for the restricted BDD. We observed that to obtain better results, the required increase

in the width limit is significant, which leads to more resource consumption; hence, the trade-off is not

justified. However, the average difference between the two deviations ∆ of our BFS BDD B&B and

that of Caprara et al. (1999) is 0.5% and its median is 2%. This means that they are tight compared

to the difference between the upper bound of Caprara et al. (1999) and the one of Fomeni et al. (2022).

size density
Caprara et al. (1999) Fomeni et al. (2022) BDD (LEL) BDD (FC)

Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s)

50

25 18.07 1.01 4.30 0.28 0.20 3.15 0.00 0.00 31.52 0.00 0.00 2.23
50 17.01 0.29 6.11 0.54 0.00 3.34 0.00 0.00 5.85 0.00 0.00 0.96
75 17.05 0.25 7.78 0.20 0.00 5.76 0.00 0.00 4.67 0.00 0.00 1.18
100 11.50 0.38 7.20 0.43 0.00 5.14 0.00 0.00 2.32 0.00 0.00 0.69

100

25 21.83 0.49 16.91 29.59 0.03 14.52 20.74 0.22 2900.36 14.41 0.22 2889.03
50 17.34 0.17 18.63 30.77 0.00 39.27 13.70 0.05 2505.56 8.16 0.04 1460.40
75 21.21 0.16 21.88 30.63 0.00 29.16 22.98 0.22 3609.52 14.27 0.04 2899.83
100 10.91 0.06 22.46 24.87 0.00 15.98 9.11 0.00 2716.68 0.00 0.00 188.50

150

25 5.98 0.14 33.11 9.60 0.00 197.51 5.74 0.12 1094.08 4.71 0.12 903.96
50 30.40 0.53 41.72 31.90 0.00 433.63 31.63 0.49 3605.51 26.01 0.49 2960.73
75 19.61 0.17 46.32 34.37 0.00 18.30 22.33 0.43 3279.34 18.13 0.43 2887.40
100 9.18 0.07 56.83 7.73 0.00 66.25 8.17 0.02 3162.24 2.81 0.00 1456.52

200

25 31.50 0.43 63.56 18.93 0.00 812.17 31.11 0.13 3604.34 28.38 0.13 2909.91
50 36.45 0.31 77.70 78.05 0.04 1867.86 38.19 0.22 3605.49 33.66 0.22 3603.81
75 22.69 0.30 85.05 68.93 0.02 46.70 29.26 0.26 3603.61 24.62 0.26 3603.92
100 12.55 0.36 91.76 45.28 0.00 54.06 21.30 0.66 3603.26 16.32 0.66 3604.03

250

25 18.64 0.17 93.32 33.12 0.00 2680.61 23.16 0.30 3606.77 20.90 0.30 3606.08
50 15.47 0.17 101.48 28.57 0.00 984.90 19.49 0.21 3606.21 17.10 0.21 3605.52
75 19.64 0.16 133.65 50.66 0.00 1389.71 25.96 0.45 3607.84 23.08 0.45 3606.36
100 12.80 0.04 155.29 43.85 0.00 145.84 23.67 0.55 3607.42 19.48 0.55 3606.29

300

25 17.96 0.20 152.85 33.17 0.00 2858.90 19.04 0.07 2891.31 15.85 0.11 2176.31
50 27.23 0.20 172.41 54.49 0.00 2701.74 31.45 0.28 3610.57 29.27 0.28 3610.26
75 19.20 0.07 196.46 14.52 0.00 434.27 26.07 0.05 3609.50 22.70 0.05 3608.97
100 13.00 0.17 231.69 51.22 0.00 171.80 24.04 0.22 3611.03 22.19 0.22 3610.79

350

25 27.27 0.13 191.36 44.20 0.00 2952.62 29.47 0.27 3618.17 28.19 0.27 3616.75
50 31.93 0.10 247.17 58.09 0.00 3107.40 35.48 0.41 3621.32 34.58 0.41 3620.08
75 22.86 0.09 290.41 65.09 0.00 1268.44 31.27 0.38 3616.32 28.86 0.38 3616.56
100 10.80 0.04 303.21 47.82 0.00 263.87 19.16 0.24 3618.44 17.47 0.24 3618.18

400

25 34.64 0.17 271.55 54.58 0.00 3607.30 35.35 0.20 3628.83 34.22 0.20 3627.55
50 17.38 0.03 278.21 28.42 0.00 1017.86 22.07 0.30 3623.79 20.82 0.30 3623.63
75 24.50 0.24 409.19 74.83 0.00 1238.26 34.47 0.10 3628.61 32.91 0.10 3628.03
100 9.85 0.08 407.95 35.91 0.00 2498.12 15.94 0.08 3626.49 14.88 0.08 3624.58

450

25 20.57 0.40 341.49 36.45 0.00 3608.77 24.84 0.24 3630.93 23.85 0.24 3629.74
50 17.52 0.16 377.56 23.61 0.00 2576.66 21.55 0.32 3623.79 19.87 0.32 3195.12
75 22.42 0.08 536.01 61.02 0.00 2383.15 30.43 0.15 3644.18 29.25 0.15 3642.65
100 9.52 0.05 539.57 34.87 0.00 2207.47 15.74 0.04 3639.25 14.79 0.04 3641.44

500

25 30.00 0.09 420.61 48.87 0.00 2353.85 31.90 0.20 3658.67 31.32 0.20 3658.34
50 24.58 0.14 521.95 41.37 0.00 3290.59 28.29 0.24 3658.95 27.52 0.24 3654.26
75 20.98 0.08 652.78 40.47 0.00 3321.18 28.49 0.23 3664.69 27.66 0.23 3660.00
100 12.68 0.05 751.30 53.14 0.00 1514.92 22.11 0.06 3667.39 21.21 0.06 3662.26

550

25 34.06 0.14 571.65 55.83 0.00 3605.38 36.75 0.19 3666.44 35.97 0.19 3666.87
50 32.13 0.15 707.05 69.08 0.00 3278.58 39.19 0.25 3678.90 38.11 0.25 3674.31
75 13.92 0.05 681.85 40.14 0.00 3226.88 20.21 0.24 3663.04 18.97 0.24 3661.60
100 11.75 0.09 911.44 24.66 0.00 3401.85 20.54 0.43 3664.03 19.02 0.43 3660.42

600

25 25.56 0.14 683.79 41.33 0.00 3186.46 27.40 0.12 3698.79 26.85 0.11 3042.44
50 30.42 0.08 1140.28 44.97 0.00 2871.13 34.15 0.03 3696.53 33.54 0.03 3691.63
75 21.41 0.03 1075.67 54.57 0.00 3002.98 28.95 0.20 3723.01 28.33 0.20 3726.63
100 10.43 0.07 1242.10 41.86 0.00 3643.51 18.03 0.07 3704.26 17.45 0.07 3702.21

Avg 20.09 0.19 320.68 38.39 0.01 1633.50 22.89 0.21 3190.62 20.58 0.20 2986.44

Table 1: Results for the set of standard QKP instances

Regarding the computational time in Table 1, it is clear that BDD has the least interesting perfor-

mance while Caprara et al. (1999) is the fastest to converge. This is expected because the BDD B&B

have no stopping criteria other than proving optimality, which is difficult to achieve, especially for

large instances, while Caprara et al. (1999) has a simpler stopping criterion. Hence, most of the time,

BDD stops only due to the time limit. However, we can observe an average difference of 3 minutes
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between a BDD B&B with FC and with LEL. This means that the BDD B&B with FC solves more

instances to optimality.

7.2.2 Dispersion and Densest Subgraph instances

This section presents the results on the dispersion and densest subgraph instances. The results are

shown in Tables 2 and 3, wherein we report the average performance of 10 instances. On average, we

observe that the BDD B&B approach reports the best results for these instances by far, with LEL

being the best for the lower bound and FC for the upper bound.

However, for some categories of dispersion instances, the method of Fomeni et al. (2022) results

in the best lower bounds (Table 2). For some of these upper bounds, the approach of Caprara et al.

(1999) reports the best gaps for large instances. Otherwise, our BDDs have consistently good results,

competitive with the best ones for these particular instances, and much better results on average.

instance size
Caprara et al. (1999) Fomeni et al. (2022) BDD (LEL) BDD (FC)

Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s)

EXPO

25 21.81 0.02 3.01 0.19 0.19 0.63 0.00 0.00 0.15 0.00 0.00 0.10
50 26.20 0.58 7.54 1.97 0.43 6.98 0.00 0.00 416.73 0.00 0.02 26.73
100 29.44 0.93 21.33 62.11 0.39 184.86 19.17 0.00 2709.54 12.57 0.01 2317.66
200 26.76 2.28 76.30 51.05 1.66 1225.56 24.74 0.00 3248.30 18.88 0.68 2900.12
400 25.46 0.19 347.57 49.34 0.16 3601.45 29.68 0.00 3642.20 28.96 0.04 3315.18

GEO

25 14.95 0.13 2.82 0.14 0.14 4.68 0.00 0.00 0.09 0.00 0.00 0.03
50 16.14 0.00 7.29 4.18 0.00 13.53 0.00 0.00 3.37 0.00 0.00 1.04
100 16.47 0.00 22.77 40.63 0.00 42.44 4.88 0.00 2065.79 2.65 0.00 1635.46
200 16.98 0.00 80.01 33.81 0.00 903.61 11.06 0.00 3603.94 9.03 0.00 3301.67
400 16.91 0.01 356.55 53.74 0.00 3031.41 12.99 0.00 3637.32 12.06 0.00 3636.98

RAN

25 16.01 0.50 3.18 0.50 0.50 7.84 0.00 0.00 0.20 0.00 0.00 0.14
50 20.98 0.49 4.66 4.19 0.41 8.37 0.00 0.00 906.58 0.00 0.00 28.42
100 23.67 1.31 13.26 66.67 1.03 135.81 19.88 0.00 3246.48 14.53 0.01 2956.37
200 20.18 0.34 78.12 49.66 0.29 2102.43 20.34 0.00 3604.65 18.03 0.06 2646.90
400 24.81 1.02 339.18 69.48 0.82 3687.68 25.37 0.00 3639.74 23.89 0.14 3294.28

WGEO

25 9.84 0.81 2.52 0.00 0.00 0.26 0.00 0.00 0.08 0.00 0.00 0.04
50 7.56 0.31 5.70 0.10 0.02 7.83 0.00 0.00 22.67 0.00 0.00 1.54
100 8.25 0.18 19.62 0.07 0.00 3.10 15.34 0.27 3609.26 0.63 0.04 730.92
200 7.94 0.11 89.53 30.18 0.00 38.17 18.67 0.23 3603.72 16.09 0.23 3605.10
400 8.06 0.04 238.88 35.72 0.00 1067.41 21.03 0.11 3630.46 19.90 0.15 3629.75

KPEXPO

25 19.20 0.56 1.34 0.18 0.05 6.86 0.00 0.00 0.16 0.00 0.00 0.06
50 18.88 0.35 3.51 0.25 0.00 9.01 0.00 0.00 15.35 0.00 0.00 1.83
100 19.59 0.31 11.35 15.71 0.01 8.91 21.26 0.27 3606.75 7.54 0.24 3185.57
200 19.39 0.19 48.96 39.57 0.00 151.33 24.84 0.35 3603.53 22.20 0.35 3605.01
400 20.06 0.05 246.01 50.48 0.00 1098.06 26.50 0.08 3629.67 25.53 0.08 3628.54

KPGEO

25 6.40 0.14 2.29 0.03 0.00 6.83 0.00 0.00 0.05 0.00 0.00 0.03
50 8.61 0.86 3.67 0.19 0.00 9.09 0.00 0.00 2.35 0.00 0.00 0.76
100 8.10 0.49 11.92 4.94 0.00 13.57 13.69 0.28 3607.17 0.00 0.00 120.37
200 7.65 0.09 50.82 44.58 0.00 38.72 18.47 0.30 3603.59 15.23 0.31 3605.35
400 7.52 0.09 260.85 49.20 0.00 853.20 19.84 0.15 3629.12 18.81 0.15 3628.57

KPRAN

25 13.00 0.50 1.59 0.00 0.00 2.57 0.00 0.00 0.10 0.00 0.00 0.05
50 12.72 0.14 3.57 0.19 0.00 9.21 0.00 0.00 3.11 0.00 0.00 0.90
100 13.60 0.37 11.75 17.48 0.00 23.65 15.88 0.31 3608.41 0.00 0.00 715.44
200 12.84 0.08 50.29 45.52 0.00 432.08 19.79 0.12 3604.11 16.47 0.12 3604.58
400 12.65 0.06 251.00 44.76 0.00 1670.42 21.18 0.12 3630.51 20.18 0.12 3628.81

KPWGEO

25 4.25 0.36 3.05 0.07 0.00 3.37 0.00 0.00 0.13 0.00 0.00 0.04
50 7.44 0.35 4.69 0.48 0.00 1.33 0.00 0.00 13.09 0.00 0.00 0.93
100 7.30 0.18 11.46 4.68 0.00 10.05 17.71 0.16 3610.15 0.00 0.00 808.12
200 6.87 0.12 48.76 32.81 0.00 26.04 19.22 0.16 3603.51 16.02 0.16 3604.83
400 6.90 0.05 256.67 42.41 0.00 639.99 20.64 0.14 3629.15 19.49 0.17 3628.47

Avg 14.78 0.36 75.08 23.68 0.15 527.21 11.55 0.08 2124.78 8.47 0.08 1694.92

Table 2: Results for the dispersion instances

Concerning the densest subgraph instances reported in Table 3, our proposed approach computes

the best gaps for most combinations of size and densities. The average deviation with the LEL cutset

is 0.00%, indicating that it consistently obtains the BKS, and the average deviation for the FC is just

0.03%. Our method also reports the best gaps of 7.74% (LEL) and 6.78% (FC), against 10.58% of

Caprara et al. (1999) and 27.11% of Fomeni et al. (2022).
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instance size
Caprara et al. (1999) Fomeni et al. (2022) BDD (LEL) BDD (FC)

Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s)

DSUB25

25 12.71 0.24 1.16 1.07 1.07 0.72 0.00 0.00 0.14 0.00 0.00 0.08
50 10.70 0.10 2.89 1.15 0.22 2.14 0.00 0.00 79.07 0.00 0.00 1.38
100 30.95 1.49 17.78 62.53 2.82 282.09 24.77 0.00 3607.41 17.19 0.07 2539.90
200 17.98 1.56 30.14 57.50 1.71 2539.50 16.70 0.00 2532.77 16.45 0.08 2523.82
400 30.68 1.02 133.25 63.48 1.16 3425.45 32.54 0.00 3637.33 32.06 0.20 3636.18

DSUB50

25 8.80 0.00 1.18 0.56 0.56 0.52 0.00 0.00 0.11 0.00 0.00 0.07
50 2.64 0.10 3.01 0.86 0.86 1.74 0.79 0.00 395.45 0.00 0.00 29.33
100 11.98 1.41 9.13 46.81 2.21 403.22 9.64 0.00 1865.99 7.37 0.02 2047.83
200 13.58 0.36 31.32 39.29 0.78 1609.54 13.00 0.00 2163.80 12.58 0.05 1804.88
400 12.43 0.24 137.95 56.26 0.39 3384.42 13.20 0.00 3635.30 12.74 0.03 3291.10

DSUB75

25 3.83 0.00 1.18 1.09 1.09 0.10 0.00 0.00 0.04 0.00 0.00 0.03
50 0.84 0.00 2.96 0.34 0.34 2.64 0.00 0.00 10.93 0.00 0.00 0.28
100 6.81 0.33 8.96 30.37 0.69 70.24 5.80 0.00 1804.21 2.18 0.00 1185.86
200 9.98 0.61 33.88 55.02 0.92 2251.56 9.47 0.00 2523.97 9.16 0.02 2374.30
400 9.04 0.27 141.55 55.70 0.50 3142.95 9.42 0.00 2914.28 9.16 0.01 2913.58

DSUB90

25 5.66 0.00 1.33 0.00 0.00 0.02 0.00 0.00 0.09 0.00 0.00 0.05
50 4.07 0.03 3.14 0.16 0.15 0.96 0.61 0.00 417.45 0.00 0.00 21.44
100 7.43 0.15 9.36 19.17 0.24 32.09 6.36 0.00 1803.89 4.88 0.00 1450.41
200 4.14 0.09 32.66 18.86 0.13 1016.81 4.45 0.00 1803.78 3.75 0.01 1803.43
400 7.40 0.05 145.20 32.04 0.06 3341.95 8.14 0.00 2556.05 7.99 0.01 2556.49

Avg 10.58 0.40 37.40 27.11 0.80 1075.43 7.74 0.00 1587.60 6.78 0.03 1409.02

Table 3: Results for densest subgraph instances

7.2.3 Hidden Clique instances

This section reports the results of the set of Hidden Clique instances in Table 4. Remarkably, our

proposed approach reports the best gaps for these difficult instances, with the LEL cutset being the

dominating one. Hence, we outperform state-of-the-art methods on both the lower and upper bound,

improving the average gap and the deviation ∆ by at least 10%. The method of Caprara et al. (1999)

can only report good upper bounds but poor lower bounds; the method of Fomeni et al. (2022) reports

the worst lower bounds and fails to report any significant upper bound within the time limit for

instances of more than 100 items.

On the other hand, our proposed approach can prove optimality within the time limit of 1 hour

for instances with up to 500 items. We observe the consequence of the quality of this result on the

computational time. The average gap of our method (LEL) is of only 0.74% against 11.29% for Caprara

et al. (1999) and 91.21% for Fomeni et al. (2022). The average deviation to the BKS of our method is

of only 0.03%.

size
Caprara et al. (1999) Fomeni et al. (2022) BDD (LEL) BDD (FC)

Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s) Gap (%) ∆ (%) Time (s)

50 0.95 0.95 3.23 5.24 5.24 2.84 0.00 0.00 0.08 0.00 0.00 0.08
100 4.22 4.22 9.89 35.49 8.00 8.85 0.00 0.00 0.55 0.00 0.00 0.89
150 5.61 5.61 20.80 98.96 10.91 33.94 0.00 0.00 3.91 0.00 0.00 9.21
200 8.13 8.13 36.04 99.19 10.77 93.80 0.00 0.00 8.72 0.00 0.00 42.90
250 9.14 9.14 56.31 89.46 9.52 277.30 0.00 0.00 212.35 0.00 0.00 109.69
300 9.63 9.63 81.35 99.48 13.82 993.16 0.00 0.00 222.56 0.00 0.00 1066.87
350 10.07 10.07 114.39 99.57 13.20 1864.68 0.00 0.00 302.61 0.52 0.52 906.20
400 11.00 11.00 152.35 99.59 14.16 3482.54 0.00 0.00 37.70 0.00 0.00 576.86
450 12.19 11.94 201.75 99.65 14.61 3606.46 0.29 0.00 489.11 1.48 1.20 1268.15
500 12.47 12.01 235.55 99.68 13.93 3606.50 0.52 0.00 1791.60 2.77 2.28 2212.98
550 13.79 12.79 298.55 99.72 15.30 3610.72 1.34 0.20 1885.20 1.94 0.80 2541.42
600 12.83 11.67 404.84 99.75 16.07 3610.55 1.30 0.00 2606.07 3.33 2.08 2604.87
650 14.77 13.81 492.50 99.76 16.33 3619.66 1.10 0.00 1717.91 2.67 1.59 2637.26
700 15.05 14.10 583.21 99.78 17.53 3623.97 1.08 0.00 2167.54 3.17 2.12 3018.05
750 8.46 8.33 696.64 99.79 17.46 3624.21 0.14 0.00 1070.00 2.54 2.40 2686.69
800 16.35 15.63 816.96 99.81 17.98 3620.47 0.87 0.00 2091.89 2.72 1.87 2743.63
850 12.96 11.15 926.20 99.82 16.98 3617.30 2.02 0.00 3231.48 3.47 1.49 3494.68
900 15.06 13.75 1075.17 99.83 18.19 3612.50 1.68 0.14 2613.09 2.53 1.00 3168.53
950 15.68 13.87 1215.39 99.84 16.95 3615.42 2.11 0.00 2949.51 4.21 2.16 3261.11
1000 17.53 15.75 1564.63 99.85 18.11 3609.96 2.37 0.26 3745.17 3.55 1.47 3630.93

Avg 11.29 10.68 449.29 91.21 14.25 2506.74 0.74 0.03 1357.35 1.74 1.05 1799.05

Table 4: Results for the Hidden clique instances
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7.3 BFS vs DFS

We now present and discuss a comparison between the DFS B&B proposed by Bergman et al. (2016)

and our BFS B&B. Figure 3, reports the number of solved instances among all the sets of QKP

instances used in the previous experiments within the same time limit of 1 hour. We run both B&B

algorithms with a single thread, i.e., without parallelization, for a fair comparison with respect to the

DFS, even if our BFS can be efficiently parallelized.

We observe in Figure 3 that our BFS outperforms the DFS by solving more instances. This is

especially apparent when the LEL cutset is used, as shown in Figure 3a. Our approach solves 21 more

instances than the DFS approach, with 19 instances from the set of Hidden Clique. The difference in

the behavior is less flagrant when the FC cutset is considered, as one can see in Figure 3b.

(a) Last Exact Layer (LEL) (b) Frontier Custset (FC)

Figure 3: Cumulative number of solved instances over one hour of computation time.

While the conclusion from the computational experiments of Bergman et al. (2016) shows the

superiority of LEL over FC, it is worth mentioning that our experiments show a slightly opposite

behavior for all the QKP instances except the Hidden Clique ones.

8 Conclusion

In this paper, we have proposed a DP formulation for the QKP for BDDs. We enhanced this DP

formulation by introducing long transitions, allowing for more efficient solution space encoding. Ad-

ditionally, we proposed novel techniques for compiling approximate BDDs to compute tight bounds.

Specifically, we introduced the concept of a local lower bound, enabling more effective node aggregation

in both restricted and relaxed BDDs. We also introduced the use of MSTs in node clustering within

relaxed BDDs, facilitating efficient computation of the dual bound and providing competitive results.

A particular result of this study is the introduction of the BFS B&B for BDDs. We present this

approach as a technique that tightens both primal and dual bounds during the search. This has

significant implications, as it enables the computation of not only a feasible solution to the QKP but

also a tight dual bound, providing valuable insights into the solution’s quality.

Our computational experiments have demonstrated the excellent performance of our proposed

approach. We report results that, on average, improve the state-of-the-art duality gap of the QKP

by up to 10% (Caprara et al., 1999; Fomeni et al., 2022). Our results are particularly noteworthy for

the recently introduced set of instances by Schauer (2016), where our approach computes competitive

lower and upper bounds, with an average gap of only 0.74% against 11.29% and 91.21% from the

literature (Caprara et al., 1999; Fomeni et al., 2022).
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A Appendix

Algorithm A.1 MST Algorithm for node clustering

1: procedure cluster(G) ▷ G is the input graph
2: E ← sort edges of G by weight in non-decreasing order
3: T ← empty set of connected components
4: for v ∈ V (G) do
5: add {v} to T ▷ Each vertex is initially its own component
6: end for
7: for e ∈ E do
8: (u, v)← e
9: Tu ← component containing u in T
10: Tv ← component containing v in T
11: if Tu ̸= Tv then
12: merge Tu and Tv in T
13: end if
14: if |T | = W then
15: exit the loop
16: end if
17: end for
18: return T ▷ Return set of connected components
19: end procedure

Algorithm A.2 Local upper bound calculation

1: procedure propagate(u, v) ▷ args: node u, integer v
2: if ulub ≥ v then ▷ if u has a higher upper bound, no improvements are required
3: return
4: end if
5: ulub ← v
6: if u ∈ S then ▷ if u is in the exact cutset, no more computations are required
7: return
8: end if
9: for v ∈ U such that a = (v, u) ∈ A do
10: propagate(v, ulub + v(a)) ▷ propagate the local upper bound to v, a parent node of u
11: end for
12: end procedure
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