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Abstract : Population growth and city sprawl have been driving increasing amounts of traffic con-
gestion in multiple major cities worldwide. In this scenario, developing efficient public transportation
networks becomes critical to ensure adequate mobility. Hub network location models address the
problems of designing public transit networks to model —and to optimize— passenger mobility. More
specifically, hub-line location problems (HLLP) play an essential role in the design of rapid transit
corridors and subway lines. In this work we address the profit-oriented hub-line location problem
(ED-HLLP) for which we introduce a column generation method to solve the linear relaxation of a
mixed-integer model. The proposed methodology leads to the calculation of primal and dual bounds.
We assess the performance of the new approach on some classic datasets from the HLLP literature.
Furthermore, we conduct a more realistic study on a problem instance representing the metropolitan
area of Montreal, Canada. Finally, we conduct a sensitivity analysis to assess the major attributes
driving our results, both from an algorithmic point of view as well as from a planning perspective.

Keywords : Discrete location, hub location problem, urban mobility hubs, gravity models, column
generation, shortest path problem with resource constraints
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1 Introduction

Population growth, city sprawl and the urbanization of rural areas have been driving incremental levels

of traffic in major cities worldwide —mainly due to an increase in the acquisition and use of private

vehicles— significantly impacting the mobility of passengers on their daily trips (Nations, 2019; Aydin

et al., 2022). In this context, hub location problems (HLPs) play an important role in the design of

transportation networks. Specifically, the hub-line location problem (HLLP) addresses the problem of

designing a corridor (such as a subway line, or a rapid transit bus corridor) in transportation planning

to improve passenger mobility in their daily trips (Contreras and O’Kelly, 2019).

HLLP enables the integration of multiple modes of transportation, allowing for the allocation of

passengers to multiple sub-systems, which in turn translates into direct interactions between non-hub

nodes and multiple assignments for each origin and destination (OD) pair to more than one hub. A

hub node may be a a metro, train, or tram station where two or more transportation modes interact.

A non-hub node may be a bus, taxi, car/bike share station or urban district. The flows are ridership or

users travelling between the multiple OD pairs in one or more modes such as train, metro, or subway

(Martins de Sá et al., 2015).

In the classical HLLP, the demand is assumed to be inelastic and independent of the design of

the resulting hub-line system. Recently, Cobeña et al. (2023) introduced the profit-oriented hub line

location problem with elastic demand (ED-HLLP). They use gravity models to incorporate demand

elasticity into an optimization model. ED-HLLP aims to maximize revenue that in turn depends of

the time savings obtained when using the hub-line system with respect to the existing network. It is

only natural to try to capture the fact that increased time savings will result in higher demands in the

new system. Hence, considering the elasticity of demand in ED-HLLP makes the model more realistic.

The HLLP and the ED-HLLP give raise to difficult optimization models. In Cobeña et al. (2023)

the authors model the ED-HLLP as a mixed-integer nonlinear optimization problem. A commercial

off-the-shelf solver is shown to be able to scale and solve very small instances of the nonlinear model.

To better cope with the nonlinear nature of the problem, the same authors reformulate the problem as

a mixed-integer linear problem (MILP) using a very large number of variables, one for every possible

OD-path in the network, including or not nodes in the new hub-line system. Via a smart enumeration

mechanism, the authors can solve to proven optimality larger problems when compared to solving the

nonlinear models. The combinatorial nature of their enumeration algorithm, however, only pushes

but does not get rid of the combinatorial explosion. Small problems only (with up to 25 total nodes)
remain tractable for their method.

We address the problem of solving the ED-HLLP for larger problem sizes. Since the number of

feasible OD-paths grows exponentially with the problem size, an enumeration of all possible paths

is not practicable. In this article, we investigate the development of a novel variable enumeration

mechanism based on the column generation (CG) paradigm to generate promising paths dynamically.

This dynamic generation leads to a significantly reduced solution space, expediting the solution process

and allows for a better scalability to be able to address real-world problems.

This paper presents several significant contributions to the field of urban planning and optimization.

The key contributions are as follows:

1. We introduce a novel column generation method that uses dynamic programming for efficient

path selection for the ED-HLLP. Its efficiency depends on the ability to identify promising OD-

paths, incorporating extension and dominance rules to avoid the generation of non-promising

ones. The strategy used in the path extension step is a label-setting algorithm. The proposed

method allows us to compute primal and dual bounds efficiently.

2. We provide a thorough comparison between the path enumeration method of Cobeña et al. (2023)

and the new CG-based method using the classical CAB dataset. In particular, our method is
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compared against the sequential and parallel implementations of the path enumeration mecha-

nism of Cobeña et al. (2023).

3. We conduct a case study using data from the metropolitan area of Montreal to show the appli-

cability and relevance of the proposed method on a real-world context. This study offers insights

for city planners, urban planners and public transport managers on the design of urban mobility

systems.

The remainder of this article is structured as follows. In Section 2 we provide a the literature review

on hub-line location and related problems. In Section 3 we provide a formal definition of the problem.

In Section 4 we describe in full detail the CG method to address the solution of the linear relaxation of

ED-HLLP and the computation of primal and dual solutions. Section 5 is dedicated to presenting the

results of extensive computational experiments designed to evaluate the performance of the proposed

methodology. It includes a detailed examination of the application of the proposed method using the

CAB dataset and a case study focused on the metropolitan area of Montreal, Canada. This case study

demonstrates the application of the new method to tackle real instances. It quantifies the benefits

of implementing mobility hubs, including the percentage reduction in travel time facilitated by the

hub-line system and an assessment of spatial coverage. The paper culminates in Section 6, where we

conclude our study, highlighting the significant contributions and potential avenues for future research.

2 Literature review

The first mathematical model for Hub location problems (HLPs) is introduced by O’kelly (1986). HLPs

are pivotal in designing hub-and-spoke networks by locating a set of hub facilities and selecting a set

of links to route flows between OD pairs. One main assumption of a classical hub location problem is

that hubs are fully interconnected and that direct connections between non-hub nodes are not allowed;

however, for applications in public transport planning, the hub-level network is an incomplete hub

network (Alumur and Kara, 2008).

Nickel et al. (2001) made a notable contribution by introducing HLPs in urban public transportation

networks. Their models introduced the concept of HLPs, where the hubs are not fully interconnected,

and direct connections between pairs of non-hub nodes are allowed. Afterwards, Gelareh and Nickel

(2011) proposed hub location problems in urban transportation and liner shipping network design. In

this problem, the complete interconnection assumption is relaxed, but no specific topology is required;

multiple allocations and direct connections between non-hub nodes are allowed.

Zhong et al. (2018) design a multi-level hub and spoke (H&S) network to determine the location of

integration of rural and public transport hubs; Another concrete example of applying HLPs in public

transportation planning is the Hub Line Location Problems (HLLPs). It fits in the multiple-allocation

HLP with incomplete hub-level networks in which direct connections between pairs of non-hub nodes

are allowed. Particularly, HLLP is applied in designing rapid transit systems and highway networks

to enhance users’ travel times.

HLLP was first introduced by Martins de Sá et al. (2015). The authors introduce mathematical

models to address the problem of locating p special facilities known as hubs and p−1 hub edges to form

a path network. The HLLP incorporates a service-based objective that minimizes the total travel time

between OD pairs. The flows represent passengers traveling between OD pairs who wish to minimize

their commute time. Users will use the hub-line whenever time savings are perceived, otherwise,

they will use a direct link. The models introduced in that article capture other aspects relevant to

model travel times, such as the access and exit times incurred when using the hub network. To solve

the resulting model, the authors propose an exact algorithm based on Benders decomposition. They

provide computational evidence of their method by considering two standard benchmark instances

from the hub location literature: the data set of the U.S. Civil Aeronautics Board (CAB) (see, O’kelly,

1987) and the Australian Post data set (see, Ernst and Krishnamoorthy, 1996).
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In the previous works in HLPs applied in public transportation, the demand is assumed to be static

and independent from the location of the hub facility; however, this is not a reasonable assumption.

According to Alumur et al. (2021), the nature of the demand and how it affects the resulting hub

network is a key aspect of better modelling HLPs. The authors emphasize the importance of incorpo-

rating the elasticity of demand to price or quality of service, including the location of hubs and the

opportunities to serve only some of the demand, especially within a profit maximization model.

Location problems with demand elasticities have already been studied in the past. In competitive

facility location problems, a decision maker seeks to minimize lost demand or maximize the market

share captured considering elastic demand. Solution algorithms and extensions of these can be found

Marianov et al. (1999), Eiselt and Marianov (2009), Marianov et al. (2005), and Marianov et al. (2008).

In network design problems, Aboolian et al. (2012) introduced the profit-maximizing service network

design problem and Zetina et al. (2019) introduced profit-oriented multi-commodity network design,

both incorporating elastic demands.

Furthermore, the concept of demand elasticity has been integrated into gravity-type models used

in transportation planning models (see, De Dios Ortúzar and Willumsen, 1991; Tamin and Willumsen,

1989). Traffic assignment problems (TAPs) were among the earliest to incorporate elastic demands into

transportation planning problems. The TAP is a sub-class of transit network design problems in which

high-level decisions such as adding road capacity, deciding vehicle passing frequency (mostly for public

transit), or vehicle capacities must be determined (Newell, 1979). The TAP with elastic demands

induces a bi-level optimization structure that is very hard to address computationally. Because of this,

the majority of solution algorithms for these problems have been heuristics (Cipriani et al., 2012).

These studies demonstrate the importance and impact of accounting for elastic demands in strategic

hub network design problems in public transportation. To the best of our knowledge, ED-HLLP is

the only problem that addresses the design of the hub line system using gravity models to incorporate

demand elasticity within an optimization framework. In the ED-HLLP the authors Cobeña et al. (2023)

present two mixed-integer nonlinear programming formulations (MINLP) using arc-based variables

to model OD paths and capture the nonlinear components. Furthermore, given how difficult these

nonlinear formulations are to optimize using state-of-the-art MINLP solvers, the authors also propose

mixed-integer linear programming formulations (MILP) using path-based variables to model OD paths.

They introduce an a priori enumeration algorithm to generate all candidate OD paths to used in the

MILP formulations. In their computational study, they report that the MINLP formulations require

very high solving times, often much higher than enumerating the paths and solving the MILP models.

Significant efforts have been made to develop algorithms to achieve superior solutions for a range

of HLPs. The use of column generation approaches to address HLPs remains rather limited (see,

Farahani et al., 2013; Alumur and Kara, 2008; Alumur et al., 2021; Contreras and O’Kelly, 2019).

In Rothenbächer et al. (2016), the authors propose an exact branch-and-price-and-cut algorithm for

the service network design and hub location problem. They consider a path-based formulation for

the problem where the subproblems resort to shortest paths with resource constraints (SPPRC), and

solved by means of a labeling algorithm.

To address the SPPRC, the vehicle routing community has made significant progress in the past

thirty years. Recent surveys in the subject explain in great detail the different existing algorithmic

refinements for the SPPRC (see, Baldacci et al., 2012; Costa et al., 2019). The state-of-the-art solution

methods for multiple classes of SPPRCs involve dynamic programming-based labeling algorithms, a

technique first introduced by Aneja et al. (1983), setting a foundational precedent. The field continues

to evolve, with recent research focusing on the comparative analysis of mono- and bi-directional exten-

sions of these algorithms and their integration into branch-and-price-and-cut, as discussed in Righini

and Salani (2006) and Zhu and Wilhelm (2013), reflecting ongoing advancements in algorithmic devel-

opments.
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3 Problem definition and mathematical formulation

Let us consider the linear model of Cobeña et al. (2023) for the ED-HLLP. Let G̃ = (N,A) be a directed

graph for the ED-HLLP model, derived from the undirected graph G = (N,E) where N is the set of

nodes and E the set of edges e := [k,m] with k < m. Here A = {(k,m)∪(m, k) : e = [k,m] ∈ E} is the

set of arcs induced by E. Furthermore, let C be the collection of OD pairs whose demands must be

routed either through a hub line or directly from origin to destination. Each OD pair will be referred

to as commodity c ∈ C and its origin and destination nodes denoted oc and dc, respectively.

For each commodity c ∈ C, tocdc ≥ 0 denotes the optimal (minimum) travel time required to travel

from oc to dc in the absence of the hub line. Without loss of generality, tocdc
also incorporates any

average transfer time required when changing modes of transportation from oc to dc. When a hub arc

is located between hub nodes (k,m) ∈ A, the travel time between k and m is computed as αkmtij ,

where αkm (0 ≤ αij ≤ 1) is a reduction factor that models the use of a faster transport technology to

connect oc and dc. Also, the access and exit times to the hub line through node i ∈ N respectively are

incorporated, denoted as t̃ai ≥ 0 and t̃ei ≥ 0 respectively.

The demand of a commodity c ∈ C, denoted by wc, is modeled with a gravity-like attraction that

depends on the attraction between oc and dc, as well as the travel time. It satisfies the equation:

wc =
PocPdc

(tc)r
, (1)

where Poc and Pdc are weights associated to the populations of oc and dc, respectively. Moreover, we

denote Rc ≥ 0 the revenue for each unit of time reduction for c ∈ C when using the hub line system.

Because of the triangle inequality property of the travel times tocdc
, there exists a solution of

the HLLP that routes the demands wc either with a direct connection between OD or with a path

containing at most two access arcs and at least two hub nodes and one hub arc. Thus, once a commodity

leaves the hub-line, it cannot access the hub-line again.

Let Pc denote the set of all possible paths using a hub-line of p hubs with an associated travel time

smaller than or equal to tocdc
. Each path π ∈ Pc can be expressed as: π = [oc, h1, . . . , hk, dc], where

hm, for m = 1, . . . k with k ≤ p, denote the hub nodes that the path π traverses in its correct order.

In particular, h1 and hk represent the access-to and exit-from nodes in the hub-line, respectively. We

can recognize four types of paths π ∈ Pc:

(ODHc)-paths. Corresponding to paths in which all the nodes are hubs. In particular, oc and dc
must be hubs.

(DHc)-paths. Corresponding to paths whose origin node (oc) is not a hub node, but the destination

node (dc) is.

(OHc)-paths. Correspnding to paths whose destination node (dc) is not a hub node, but the origin

node (oc) is.

(ODNHc)-paths. Corresponding to paths in which neither oc nor dc are hub nodes.

Then, the travel time for routing commodity c ∈ C via a path π ∈ Pc, and denoted τπc is:

τπc = toch1 + t̃ah1
+

k−1∑
m=1

αthmhm+1 + t̃ehk
+ thkdc .

Therefore, if all the links of a path π ∈ Pc are known and fixed, its associated travel time τπc is

also known and, consequently, associated with a profit of:

gπc = Rc
PocPdc

(τπc)r
(tocdc − τπc).
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The previous two observations regarding the travel times and profits of the paths give raise to the

following MILP formulation of the ED-HLLP.

We use binary hub-line variables vπc, π ∈ Pc, c ∈ C, equal to 1 if and only if commodity c is

delivered using path π. Also, the following binary variables are used: zk, k ∈ N , equal to 1 if and

only if a hub is located at node k and ykm, (k,m) ∈ A equal to 1 if and only if a hub arc is located

between hubs k and m, enabling flows to be routed in both directions. Finally, for every node k ∈ N

we consider integer variables lk representing the order in which nodes are traversed in the hub-line.

Besides the variable set, we also make use of parameters hπc
e equal to 1 if and only if path π ∈ Pc

contains the arc (k,m) or (m, k) defined by edge e = [k,m] ∈ E. The ED-HLLP is stated as the

following MILP:

(P ) max
∑
c∈C

∑
π∈Pc

gπcvπc∑
i∈N

zk = p (2)∑
k∈N

∑
m∈N

(k,m)∈A

ykm = p− 1, (3)

∑
m∈N

(k,m)∈A

ykm +
∑
m∈N

(m,k)∈A

ymk ≤ 2zk, k ∈ N. (4)

∑
l∈N

(k,l)∈A

ykl ≥ zk + zm − 1, k ∈ N \ {n},m = k + 1, . . . , n. (5)

lk − lm + nykm ≤ n− 1 (k,m) ∈ A, (6)∑
π∈Pc

hπc
[k,m]vπc ≤ ykm + ymk, [k,m] ∈ E, c ∈ C, (7)

∑
π∈Pc

vπc ≤ 1, c ∈ C, (8)

∑
π∈(ODHc)-paths

vπc +
∑

π∈(DHc)-paths

vπc ≤ zdc , c ∈ C. (9)

∑
π∈(ODHc)-paths

vπc +
∑

π∈(OHc)-paths

vπc ≤ zoc , c ∈ C. (10)

ykm ∈ {0, 1}, (k,m) ∈ A. (11)

zk ∈ {0, 1}, k ∈ N. (12)

vπc ∈ {0, 1}, π ∈ Pc, c ∈ C. (13)

The objective function maximizes the total time savings obtained from using the hub-line system.

Constraints (2) and (3) strictly define the number of hubs and inter-hub links to be installed. The

series of constraints from (4) through (6) are crafted to uphold the design of the hub-line. Specifically,

constraints (4) limit each hub to a maximum of two links to other hubs, while constraints (5) dictate

that there must be at least one outgoing arc from each hub node on the path, excluding the hub

node with the largest index to mitigate the appearance of symmetric solutions. The constraints (6),

also referred to as Miller-Tucker-Zemlin (MTZ) constraints, act as sub-tour elimination constraints

(SECs), ensuring uninterrupted connectivity of the hub-line. By enforcing these constraints, we seek

to establish an oriented path where the highest indexed hub does not have an outgoing arc, hence

removing feasible solution symmetries.

Furthermore, constraints (8) restrict that each commodity is transported using the hub line, and

constraints (7) enforce the exclusive use of paths where hub arcs are opened. Constraints (9) and (10)

delineate between different path types. In particular, constraints (9) apply when all candidate paths
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of types (ODHc) and (DHc) are identified for a specific commodity c, thus requiring dc to be a hub.

Conversely, constraints (10) apply when paths of types (ODHc) and (OHc) confirm that oc is a hub

for a specific commodity c. The decision variables’ domain is defined by constraints (11)–(13).

The number of feasible hub line paths can be huge, so an enumeration of all possible paths is not

practicable. Instead, we use column generation to dynamically generate promising paths, as described

next.

4 Column generation

We now address the problem of solving the linear relaxation of problem ED-HLLP (see Section 3) via

column generation. We describe next the different components of this method, namely the restricted

master problem (RMP), the pricing sub-problem (SP), and a labeling algorithm for the solution of SP.

4.1 Restricted master problem

The restricted master problem (RMP) is obtained from the linear relaxation of the problem (P) by

restricting it to a subset Pc of paths for each commodity c ∈ C, which leads to a problem that we

denote RMP(P). Upon solving the linear programming relaxation of RMP(P), its dual variables are

employed to construct a subsequent problem, the pricing subproblem. The aim of this problem is

to identify new paths with the potential to enhance the value of the objective function for the LP-

relaxation, thereby bringing it closer to the optimal value of the master problem MP = RMP(P),

which contains exponentially many variables.

Let, Pc ⊆ Pc, the current subset of feasible paths under consideration. RMP(P) consists in the

following linear program:

(RMP ) max
∑
c∈C

∑
π∈Pc

gπcvπc

s.t. (2)− (6),

[β]
∑
π∈Pc

hπc
[k,m]vπc ≤ ykm + ymk, [k,m] ∈ E, c ∈ C. (14)

[σ]
∑
π∈Pc

vπc ≤ 1, c ∈ C. (15)

[ρ]
∑

π∈(ODHc)-paths

vπc +
∑

π∈(DHc)-paths

vπc ≤ zdc
, c ∈ C. (16)

[ω]
∑

π∈(ODHc)-paths

vπc +
∑

π∈(OHc)-paths

vπc ≤ zoc , c ∈ C. (17)

ykm ≥ 0, (k,m) ∈ A. (18)

zk ≥ 0, k ∈ N. (19)

vπc ≥ 0, π ∈ Pc, c ∈ C. (20)

Here β to ω are dual values from constraints (14) to (17).

4.2 The pricing sub-problem

In this section, we present the pricing sub-problem used to generate positive reduced-cost columns

when solving the problem defined in section 4.1. We first present the exact pricing algorithm. Then,

we present a heuristic implementation of the algorithm to speed up the search for columns, especially

useful on the more challenging problem instances.
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4.2.1 Exact pricing sub-problem

Because of the different types of (ODHc, DHc, OHc and ODNHc)-paths, the pricing sub-problem is

performed for each c ∈ C and type of path π. An initial set of columns must be provided to initialize

the CG algorithm. In Appendix A we describe the heuristic applied to obtain an initial set of feasible

paths. The pricing problem searches the variable’s hub line paths with positive reduced cost to add

them to the current set of columns of the RMP. The reduced cost for a path πc can be computed as

follows:

p̄(vπc
) =


gπc − σc − ρc −

∑
e∈E βc

e if c ∈ C, π ∈ (ODHc and DHc)-paths

gπc − σc − ωc −
∑

e∈E βc
e if c ∈ C, π ∈ (ODHc and OHc)-paths

gπc − σc −
∑

e∈E βc
e if c ∈ C, π ∈ (ODNHc)-paths

Finding a new path of positive reduced cost can be performed separately for every c ∈ C and type

of path via the solution of a shortest path problem with resource constraints (SPPRC). We address

the solution of the SPPRC using dynamic programming. We refer the reader to Irnich and Desaulniers

(2005), Ropke and Cordeau (2009), Costa et al. (2019) for overviews of constrained shortest-path

problems and appropriate solution techniques. The dynamic programming algorithm can be explored

according to different search strategies, and the order in which the labels are extended may be very

important for the effectiveness of the overall algorithm.

In label-setting algorithms, labels become permanent as soon as they are deemed as not dominated

by labels created previously. Once a label is set, it cannot change. On the other hand, label-correcting

algorithms allow labels to be updated multiple times as new, potentially shorter paths are discovered.

Label-setting algorithms are generally more efficient because they avoid re-processing labels multiple

times. Label-correcting algorithms can be less efficient due to their iterative updating of labels. Label-

setting is often preferred for problems such as the shortest path in network routing (where edge weights

are non-negative). We refer the reader to Zhan and Noon (2000), Desrochers and Soumis (1988) for a

more in-depth discussion on this subject.

In this work, we use a label-setting algorithm to solve the shortest path problem. The pricing

sub-problem is performed independently for each c ∈ C and the dual values in RMP are then used to

update the profit of each commodity c ∈ C. The following section describes the labeling algorithm for

identifying potential optimal paths and removing labels through the use of dominance rules.

Labeling algorithm. Labeling algorithms are employed to solve the SPPRC that commonly arise in CG

approaches for routing problems. The objective is to find the shortest path for each origin-destination

(OD) pair in the graph G=(N,A). The paths must satisfy conditions on resources used between OD,

for instance time and the number of hub arcs represent examples of resources consumed along the

path.

Labeling algorithms build partial paths in the graph G; paths are built from the origin (oc) to the

destination (dc) for each commodity c. Each path starts with an initial label that holds the information

about the resource consumption, and the labels are updated as the forward partial paths are extended

toward the destination of the commodity c.

Given the different types of paths between OD (see Section 3), which implies different varieties of

arcs between those nodes, a path cannot be represented merely as a sequence of nodes. Therefore, a

path is defined as π = [oc, h1, . . . , hk, dc], where h1 to hk with k ≤ p denote the hubs that the path π

traverses in its correct order.

Irnich and Desaulniers, 2005 provide an overview of techniques for addressing the SPPRC and

their potential solutions; however, in the SPPRC proposed by them, there are no constraints on the

structure of the paths. Thus, all paths are feasible. This work introduces a path structure constraint

to obtain the shortest paths using the hub line of p hubs and p − 1 hub arcs while ensuring a travel

time smaller than the direct times obtained by the labeling algorithm.
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A label L is a tuple that associates the set of information for a partial path starting at the origin

oc and ending at the destination dc: the final node η of the label, τ - the cumulative time at the node,

the cumulative β dual value, Π - the set of the nodes visited, HA - the accumulated number of hubs

arcs. Our resources are τ , ρ̄, Π and HA. The notation τ(L) is used to refer to the cumulate time in

label L, and a similar notation is used for the rest of the resources (e.g. η(L), β(L)). Thus, the label

of each forward partial path is denoted by L = (η, τ, β,Π, HA).

The dynamic programming recursion starts from a label Li
0 = ({oc}, 0, 0, ∅, 0). It is based on a

label extension rule to create paths π and a dominance rule to discard nonpromising labels.

Label extension. The label extension process is performed until the destination dc is reached. Paths

are extended, and resource usage is accumulated during path construction. Then, for each resource

HA, type of path, and commodity c, if extension along the arc (η, j) is feasible, a new label L′ is

created at node j. The information in label L′ is set as follows:

η(L′) = j (21)

τ(L′) =

{
τ(L) + (α ∗ τη(L),j) if (η(L), j) ∈ A

τ(L) + τη(L),j otherwise
(22)

β(L′) =

{
β(L) + βη(L),j if (η(L), j) ∈ A

β(L) otherwise
(23)

Π(L′) =

{
Π(L) ∪ {j} if j is a node visited, j ∈ N

Π(L) otherwise
(24)

HA(L
′) =

{
HA(L) + {j} 1 if j is selected as a hub node, j ∈ N

HA(L) otherwise .
(25)

Equations (21)–(23) set the current node, the time, and the cumulative β dual value associated

of the constraint whose hub edges are opened of the new label, respectively. Equation (24) updates

the set of visited nodes, this ensures that the paths are simple, meaning they do not contain a cycle.

Equation (25) updates the total of open hub edges.

In the path-searching process, to efficiently select the next adjacent nodes to explore, we employ

the resource of the number of hub arcs (HA) as a referential dimension in the partial paths process.

To preserve feasibility, paths are checked for travel time when extending a label L along an arc (η, j),

the extension is valid only if path times are less than direct times (tocdc).

Dominance criterion. In addition to the infeasible labels rejected by the extending rule, unpromising

labels are also eliminated by the dominance rule. Let L1 and L2 be two labels sharing the same

terminal node η. We say that L1 dominates L2 if:

η(L1) = η(L2), τ(L1) ≤ τ(L2),

β(L1) ≥ β(L2), HA(L1) ≤ HA(L2),

Π(L1) ⊆ Π(L2).

(26)

The dominance rule is correct in the sense that it allows to discard the label L2 when every feasible

extension of it also is feasible for L1, leading to a larger value of p.

Acceleration of the dominance processes. To reduce computational time in the dominance processes,

we store the label list as an ordered list, which means that the set of the non-dominated labels is sorted

by descending order of cumulative β dual values. Furthermore, the rule of dominance is applied to

labels sharing the same destination node and having less or equal hub arcs. Then, the time complexity
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of the dominance process is linear. Once the destination of the commodity dc is reached, dominance

and extension rules are not applied any further, and the labels are stored.

The pricing sub-problem is solved sequentially. Algorithm 1 summarizes the label-setting applied

to get new columns (paths) for each commodity c and type of path. We omit the outer loop and

concentrate on the labeling algorithm. There are two main restrictions on every path this procedure

must ensure: Firstly, the travel time must not exceed the current travel time, and secondly, paths must

not exceed the number of hub edges (p-1 hubs) until the destination (dc) of the commodity is reached.

In general terms, Algorithm 1 returns new paths with a positively reduced cost for each OD pair

and path type. Finally, to solve the ED-HLLP, we solve the RMP as an integer program to obtain a

heuristic solution.

Algorithm 1: Dynamic programming algorithm for the solution of the pricing sub-problem (Li
0 = ({oc}, 0, 0, ∅, 0)).

Input: Li
0, t̃

a
oc
, t̃edc , tocdc

Output: L // (ODHc, DHc, OHc and ODNHc)-paths for c ∈ C

1 Initialize Q← Li
0,L ← ∅

2 repeat
3 Take label L from Q and set Q← Q\{L}
4 for all r ∈ R s.t. τ(L) + t̃aoc + t̃edc < tocdc do

5 for all j ∈ N\Π(L) do
6 Extend L to j to create a new label L′ // 4.2.1

7 Apply dominance rule L′ // 4.2.1

8 if L′ has not been discarded and η(L′) ̸= dc then
9 Q← Q ∪ {L′}

10 else
11 L ← L ∪ {L′} // set label by desc order

12 end

13 end

14 end

15 until Q = ∅
16 return {L ∈ L | p̄ > 0}

4.2.2 Heuristic pricing algorithm

The exact solution of the pricing sub-problem can be complex in the presence of a large set of paths.

Therefore, before executing the exact pricing method described before, we consider a truncated labeling
algorithm as a heuristic. In this truncated labeling method, only the 5 nearest neighbors of every node

are considered for the extension step.

4.3 Computing primal and dual bounds

The CG described before naturally leads to the calculation of a dual bound. To compute a primal

bound, we proceed by enforcing integrality on the path variables vπc. This is a known technique in

the scientific literature (see for instance Ceselli et al., 2009; Joncour et al., 2010; Yuan et al., 2021). A

feasible solution to the resulting MILP provides a primal bound of the problem, however not necessarily

an optimal solution, which could only achieved if the CG was repeated on every node of the branching

tree, thus leading to a branch-and-price method (Barnhart et al., 1998).

5 Computational experiments

In order to assess the performance of the methodology described in Section 4, we have conducted a

series of tests for which we present computational results in this section. The algorithm has been

coded in Python v3.9.14. IBM CPLEX 22.1.1 has been used to solve the linear and integer programs
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associated with our method. All experiments has been executed on an Intel Xeon Gold 6258R CPU

@ 2.70GHz with a 512GB RAM computer and given a time limit of 48 hours.

This section is divided in two, as follows. In Section 5.1 we compare the performance of our

proposed method in this paper against Cobeña et al. (2023), using the same CAB data instances that

the authors used. Then, in Section 5.2, we present the effectiveness of the proposed methodology

employing a real data set from the metropolitan area of Montreal.

5.1 Computational analysis and comparison

We test the computational efficiency of the proposed methodology to solve ED-HLLP and solution

algorithm using the well-known Civil Aeronautics Board (CAB) (see, O’kelly, 1987) as the basis of

our testbed. The population weights of each node Pi are calculated as the sum of all inbound and

outbound demand in each node. Moreover, the results applying the methodology proposed in this

paper are compared with the methodology applied for the authors Cobeña et al. (2023) to solve the

linear formulation of ED-HLLP (For the parallel processes, the maximum number of simultaneous

sub-processes is fixed to 4 CPUs).

We considered instances with n = 10, 15, 20, 25; these instances have symmetric OD demand matri-

ces. In addition, regarding the parameters of the problem, we use Rc = (1+γc)tocdc selecting γc ∈ [0, 1]

randomly, r = 1.7, α ∈ {0.2, 0.5, 0.8} and p ∈ {3, 5, 7} (see, Fotheringham and O’Kelly, 1989; Zetina

et al., 2019). Similarly to Martins de Sá et al. (2015), the access and exit times do not depend on the

node, i.e., t̃ak = t̃a and t̃ek = t̃e for all k ∈ N . Additionally, the access and exit times are defined as a

proportion of the average travel time:

t̃a = t̃e = ϑ

∑
(i,j)∈A tij

n · (n− 1)
,

where ϑ is fixed to 0.1 for these computational results.

For the presentation of our results, we sometimes report mean values. Please note that in all

cases, the averages are computed using a geometric mean. For a collection X = {x1, . . . , xn} of n real

numbers (not necessarily unique), the geometric mean is defined as:

gm(X) = n

√√√√ n∏
i=1

xi.

The geometric mean is less sensitive to outliers when compared to the arithmetic mean. However,

it may be biased when the set X contains numbers close to zero. In those cases, it may be convenient

to consider the shifted geometric mean that, for X and a shift value t ∈ R, is defined as

gm(X, t) = n

√√√√ n∏
i=1

(xi + t)− t.

In this manuscript we consider geometric means for all the averages reported, except for the average

computing times that are reported using a shifted geometric mean with shift value t = 1.0, and for

the average gaps that are computed using a shift value of t = 0.01. Since all problems are given a

time limit of two days, timeouts are given a time of 86, 400 × 7 = 604, 800 seconds for the effect of

computing the means of the CPU times. Memory limits are not given any specific time, but instead

are ignored from the computation of the means across all methods. In this way we make sure that all

the means reported are comparable.
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5.1.1 Performance analysis of proposed methodology

This section shows the results of the proposed methodology to solve the ED-HLLP. In Tables 1 and 2,

the first column presents the number of nodes (n), the second column reports the number of open

hubs (p), then the used values of the parameters ϑ, r and α are specified. The proposed methodology’s

performance is presented under columns labeled “This paper”. The number of paths is displayed in

column | P |, the total time in seconds to generate paths and time to solve the integer model are

reported in columns tCG, tMIP respectively. Columns zLB and zUB represents the primal and dual

bound respectively. The percentage of paths that are not enumerated by the proposed CG is reported

un column “%del”. The column labeled ttot represents the total CPU time (in seconds) spent by the

exact method proposed by Cobeña et al. (2023); this time is the time to generate all paths using the

parallel process that the authors used plus time to solve the MIP. Columns labeled “LB” and “UB”

represent the best solutions within the time limit under the methodology proposed by Cobeña et al.

(2023). The value “gap1” is calculated zUB−LB
LB × 100, and “gap2” is calculated as LB−zLB

zLB
× 100.

Tables 1 and 2 show the performance of our proposed methodology against the method used in

Cobeña et al. (2023). We can see in Table 1 that for small instances with n ∈ {10, 15} our method

is effective in generating good primal solutions (zLB), with most instances achieving the optimal or

near-optimal solutions and a significant percentage of deleted paths (% del). For example, we can see

that for the instances with n = 15 and for different values of p and α that our method can solve them

in less than 1 hour in a sequential way, often faster to Cobena’s method that solves them in a parallel

way to find all paths in usually longer computing times. Furthermore, on average, our method in these

instances solves them in less than 1 minute with a gap1 of 0.25% and a gap2 of 0.87%, demonstrating

that our method remains competitive for these small problems.

Table 1: Comparison of performance and solution: Proposed methodology (heuristic and exact) vs. Cobeña et al. (2023)
procedure, for n ∈ {10, 15} with CAB instances.

n p ϑ r α
This paper

gap1 % del
Cobeña et al. (2023)

gap2

| P | tCG tMIP zLB zUB | P | ttot LB UB

10 3 0.1 1.7
0.2 3556 0.1 0.1 190104 190788 0.36% 9.05% 3910 0.4 190104 190104 0.00%
0.5 1098 2.0 0.0 35001 35001 0.00% 17.07% 1324 0.1 35001 35001 0.00%
0.8 188 1.4 0.0 1767 1767 0.00% 4.08% 196 0.1 1767 1767 0.00%

10 5 0.1 1.7
0.2 20134 108.2 1.5 314993 327751 3.00% 67.36% 61692 16.0 318197 318197 1.02%
0.5 3296 30.0 1.4 51761 55083 5.10% 43.91% 5876 4.6 52411 52411 1.26%
0.8 210 2.0 0.0 3032 3071 1.29% 31.82% 308 0.5 3032 3032 0.00%

10 7 0.1 1.7
0.2 26766 249.4 41.5 361535 401746 3.91% 93.78% 430314 1668.6 386645 386667 6.95%
0.5 3052 52.4 9.5 63031 70739 8.92% 72.76% 11206 34.9 64946 64946 3.04%
0.8 208 4.0 0.1 3985 4163 4.47% 32.90% 310 5.6 3985 3985 0.00%

15 3 0.1 1.7
0.2 8246 14.1 0.1 1364045 1364045 0.00% 59.12% 20172 1.3 1364050 1364050 0.00%
0.5 3402 7.4 0.1 250647 250647 0.00% 42.22% 5888 0.8 250647 250647 0.00%
0.8 670 2.7 0.0 27510 27510 0.00% 16.87% 806 0.3 27510 27510 0.00%

15 5 0.1 1.7
0.2 61048 318.8 26.4 1798981 1908211 0.10% 93.27% 906590 4158.6 1906210 1906210 5.96%
0.5 13932 194.6 0.2 341080 351007 1.20% 77.28% 61330 107.4 346829 346829 1.69%
0.8 774 27.9 0.1 34012 34012 0.00% 65.93% 2272 12.3 34012 34012 0.00%

15 7 0.1 1.7
0.2 110148 2615.1 91.8 1848060 2106849 - 99.62% 28999594 mem -
0.5 19608 2002.5 81.7 417624 445284 1.66% 93.81% 316966 4145.5 438034 438034 4.89%
0.8 774 39.3 0.3 37400 38185 0.58% 72.08% 2772 883.5 37964 37964 1.51%

Mean 2767 23.3 1.6 0.25% 40.1% 7895 18.8 0.87%

Table 2 presents results for larger instances n ∈ {20, 25}. Even with larger problem sizes, our

methodology consistently finds reasonable primal solutions, maintaining gaps on average lower than

a 6% from the optimal solutions found with Cobeña et al.’s method. The time required to generate

paths using the column generation method is also competitive, particularly on instances where the

method proposed by Cobeña et al. (2023) is not capable to generate feasible solutions within the
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allocated resources (time or memory). Additionally, the high percentage of non generated paths (%

del) supports our claim that our approach effectively narrows down the search space, leading to an

efficient path generation.

Table 2: Comparison of performance and solution: Proposed methodology (heuristic and exact) vs. Cobeña et al. (2023)
procedure, for n ∈ {20, 25} with CAB instances.

n p ϑ r α
This paper

gap1 % del
Cobeña et al. (2023)

gap2

| P | tCG tMIP zLB zUB | P | ttot LB UB

20 3 0.1 1.7
0.2 65184 201.5 3.1 7520167 8681283 5.66% 35.84% 101600 6.1 8215970 8215970 9.25%
0.5 24406 47.1 0.4 1378229 1590003 9.20% 17.54% 29596 3.8 1456080 1456080 5.65%
0.8 3530 13.8 0.1 144485 144485 0.00% 9.16% 3886 1.1 144485 144485 0.00%

20 5 0.1 1.7
0.2 318222 3910.7 673.2 11063604 12309935 2.30% 96.71% 9683748 15335.3 12032900 12032900 8.76%
0.5 151562 2789.0 124.7 1892184 2207708 6.67% 78.11% 692466 651.1 2069720 2069720 9.38%
0.8 4680 91.7 0.3 174727 189417 3.20% 80.16% 23592 126.06 183535 183535 5.04%

20 7 0.1 1.7
0.2 337616 6475.0 1144.7 8764050 9955766 - - time -
0.5 103380 7973.6 311.1 1991589 2084199 - 98.70% 7977830 mem -
0.8 8464 783.5 36.5 197314 212704 2.43% 82.59% 48622 21909.8 207659 207659 5.24%

25 3 0.1 1.7
0.2 213792 473.3 9.9 15821095 18346406 7.50% 31.99% 314344 20.4 17066500 17066500 7.87%
0.5 53826 104.0 0.5 2800596 3213313 6.45% 34.59% 82296 11.2 3018560 3018560 7.78%
0.8 3842 24.8 0.3 269573 298545 6.77% 53.13% 8198 2.9 279628 279628 3.73%

25 5 0.1 1.7
0.2 422908 1674.5 860.0 18310039 20265806 - 99.20% 53008052 mem -
0.5 164652 5001.9 75.5 3705786 4195470 4.32% 94.78% 3154792 32648.8 4021640 4021640 8.52%
0.8 12496 999.5 16.2 377178 396779 1.58% 80.98% 65684 853.6 390592 390592 3.56%

25 7 0.1 1.7
0.2 785430 16929.8 6044.8 17163561 19750300 - - time -
0.5 39900 9272.3 187.5 3340542 3549913 - - time -
0.8 13040 12255.2 52.5 437827 466640 - - time -

Mean 42961 744.8 25.3 3.84% 47.44% 112129 1133.9 5.33%

In our next experiment we assess the performance of our method when the exact pricing algorithm

is ignored, as opposed to the baseline that includes both an heuristic and an exact pricing procedure

to generate feasible paths. In Table 3 we report the comparison between a variant of our method

that includes only a heuristic pricing algorithm (under column “Only heuristic”) against the baseline

approach (under column “Heuristic + exact”). We restrict this comparison to the most difficult

problems from the previous two tables, namely those in which the method of Cobeña et al. (2023) runs

out of resources. The results show that while the heuristic pricing approach is efficient, complementing

it with the exact pricing further improves the quality of the solutions (zLB) for complex instances, at

the expense of much higher computing times. This observation reveals the practicality of our proposed

methodology, making it a valuable tool for solving real-world problems for the ED-HLLP. It also puts

in evidence the trade-off between computing times and solution quality, showing that no approach

dominates the other.

Table 3: Comparison of performance and solution of proposed methodology using only heuristic pricing approach vs. using
heuristic + exact pricing.

n p ϑ r α
Only heuristic Heuristic+exact

gap
| P | tCG tMIP zLB | P | tCG tMIP zLB

15 7 0.1 1.7 0.2 19394 1037.7 0.9 1734847 110148 2615.1 91.85 1848060 6.53%
20 7 0.1 1.7 0.2 22390 1253.6 0.9 7880089 337616 6475.0 1144.7 8764050 11.22%
25 5 0.1 1.7 0.2 180490 446.0 8.2 18218877 422908 1674.5 860.0 18310039 0.50%
25 7 0.1 1.7 0.2 251990 5883.3 532.6 15660565 785430 16929.8 6044.8 17163561 9.60%
25 7 0.1 1.7 0.5 20006 836.2 150.6 3279147 39900 9272.3 187.5 3340542 1.87%
25 7 0.1 1.7 0.8 2794 249.7 0.12 422853 13040 12255.2 52.5 437827 3.54%
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5.2 Montreal case study: Performance of the proposed heuristic pricing method-
ology

We now apply our proposed methodology to a case study involving data from the City of Montreal,

Canada. More specifically, we consider data from the 2018 Origin-Destination (OD) survey of Montreal,

as utilized by Cobeña et al. (2023), building on the analysis conducted with the CAB instances in the

previous section. This analysis employs heuristics in the pricing problem, leveraging the five nearest

neighbours to enhance computational efficiency and solution quality, and ignores the use of the exact

pricing routine.

5.2.1 Analysis of Montreal case results

In this section, we conduct a detailed comparative analysis using a test-bed of 36 instances derived

from the Montreal OD survey, ranging from small to large scale. These instances are divided into three

sets based on size: the first set includes 12 small instances with n ∈ {10, 15}; the second set comprises

medium-sized instances with n ∈ {20, 25}; and the third set contains large instances with n ∈ {30, 39}.
The classification into small, medium, and large scales follows the criteria established in the previous

analysis. For these experiments, we adopted the parameters r = 2.68 (see, Goh et al., 2012), ϑ = 0.1,

and different discount factors α ∈ {0.2, 0.5} are considered. The time limit was set to 48 hours for all

problem instances. Tables 4–6 report the same type of data also reported in Tables 1–2 except that

we do not report zUB for the proposed method since it is powered only with a heuristic pricing.

In Table 4, we observe that the proposed method remains competitive with the method of Cobeña

et al. (2023), taking about the same time, with a difference in solution quality of only a 0.22% with

respect to the best feasible solution. Moreover, it also shos to be more robust as it never runs out of

resources, as opposed to Cobeña et al.’s method that runs out of memory in one instance.

Table 4: Comparison between “This paper” and Cobeña et al. (2023) for n ∈ {10, 15} on MTL instances.

n p ϑ r α
This paper

% dom
Cobeña et al. (2023)

gap2

| P | tCG tMIP zLB | P | ttot LB UB

10 3 0.1 2.68
0.2 880 2.3 0.2 15222 29.71% 1252 0.3 15270 15270 0.31%
0.5 268 0.6 0.0 1480 8.22% 292 0.1 1480 1480 0.00%

10 5 0.1 2.68
0.2 6314 58.4 2.1 27096 70.34% 21288 5.7 27096 27096 0.00%
0.5 282 1.5 0.1 2442 21.23% 358 0.5 2442 2442 0.00%

10 7 0.1 2.68
0.2 14536 253.8 60.9 34456 83.28% 86956 127.9 35106 35106 1.85%
0.5 284 2.1 0.2 3161 20.67% 358 4.9 3161 3161 0.00%

15 3 0.1 2.68
0.2 2526 8.3 1.2 18890 67.16% 7692 9.2 18960 18960 0.37%
0.5 804 3.3 0.1 1881 34.42% 1226 0.3 1881 1881 0.00%

15 5 0.1 2.68
0.2 15810 305.2 26.4 32577 94.08% 266882 169.5 32729 32729 0.47%
0.5 832 5.6 0.6 3016 58.65% 2012 10.1 3016 3016 0.00%

15 7 0.1 2.68
0.2 38508 1657.9 155.5 40339 99.12% 4367192 mem -
0.5 838 9.3 1.7 3871 58.47% 2018 608.2 3879 3879 0.21%

Mean 1395 10.6 1.8 40.4% 3473 9.5 0.22%

For the medium-sized instances with n ∈ {20, 25}, the results reported in Table 5 show a clear edge

in favor of our method, leading to computing times one order of magnitude lower than Cobeña et al.’s

on average (80 seconds vs 19 minutes), while ensuring solutions that are no farther than 0.74% on

average. The robustness of the proposed method is confirmed, as it is efficient to address all problems,

while Cobeña et al. (2023)’s method runs out of resources in four of them.

For the instances with n ∈ {30, 39} reported in Table 6, our method again shows robustness; in spite

of the considerable computational challenges posed by these instances, our method efficiently generates

promising paths, providing solutions with very small gaps (below 0.1% on average). The percentage
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Table 5: Comparison between “This paper” and Cobeña et al. (2023) for n ∈ {20, 25} on MTL instances.

n p ϑ r α
This paper

% del
Cobeña et al. (2023)

gap2

| P | tCG tMIP zLB | P | ttot LB UB

20 3 0.1 2.68
0.2 4790 17.5 5.2 26998 80.27% 24276 354.0 27078 27078 0.29%
0.5 1584 8.8 0.3 2596 46.52% 2962 0.9 2596 2596 0.00%

20 5 0.1 2.68
0.2 28676 1716.3 208.7 45160 97.96% 1404644 2170.6 47871 47871 5.66%
0.5 1610 12.6 5.4 4259 76.00% 6708 101.7 4259 4259 0.00%

20 7 0.1 2.68
0.2 88994 4179.9 1767.0 62429 99.83% 51308490 mem -
0.5 1608 21.2 15.5 5617 76.20% 6756 14410.2 5724 5724 1.88%

25 3 0.1 2.68
0.2 9276 49.0 9.3 28406 88.85% 83198 2087.1 28486 28486 0.28%
0.5 3176 20.2 0.7 2754 64.39% 8920 2.6 2754 2754 0.00%

25 5 0.1 2.68
0.2 61494 1414.8 474.7 46809 99.23% 8014748 mem -
0.5 3818 30.4 15.4 4533 90.49% 40146 719.7 4609 4609 1.64%

25 7 0.1 2.68
0.2 368784 6133.7 5226.2 64302 - time -
0.5 3812 37.8 39.8 6111 - time -

Mean 6237 60.3 19.1 76% 24651 1155.9 0.74%

of non generated paths (%del) is now even higher than for the smaller problems, showing that the

robustness of our method across all instance sizes comes mainly from being efficient at identifying

promising paths and highlights the practical applicability of the proposed methodology to address

real-world hub line location problems.

Table 6: Comparison between “This paper” and Cobeña et al. (2023) for n ∈ {30, 39} on MTL instances.

n p ϑ r α
This paper

% del
Cobeña et al. (2023)

gap2

| P | tCG tMIP zLB | P | ttot LB UB

30 3 0.1 2.68
0.2 14268 59.8 542.2 29984 91.85% 175142 4156.4 30066 30066 0.27%
0.5 4940 40.4 1.1 2935 69.13% 16000 6.2 2935 2935 0.00%

30 5 0.1 2.68
0.2 93552 1335.4 1494.9 50831 99.61% 23985418 mem -
0.5 6066 54.6 21.9 4864 92.85% 84798 2907.0 4864 4864 0.00%

30 7 0.1 2.68
0.2 671004 3724.7 18914.0 68303 - time -
0.5 6068 69.6 57.6 6332 - time -

39 3 0.1 2.68
0.2 25424 148.2 589.9 30374 95.29% 539280 86511.1 30451 33564 0.25%
0.5 8598 158.1 3.0 3036 79.36% 41652 31.2 3036 3036 0.00%

39 5 0.1 2.68
0.2 179780 1665.6 20225.5 51026 - time -
0.5 10878 144.8 80.6 4907 96.90% 350788 time -

39 7 0.1 2.68
0.2 1532202 11743.2 86401.0 66008 - time -
0.5 10878 199.7 495.0 6234 - time -

Mean 29044 266.5 327.7 86.9% 239280 28926.1 0.1%

5.2.2 Sensitivity analysis of r, p and α

Now we analyze how parameters r, p and α impact the topology of the resulting hub network in

Montreal using the methodology proposed in Section 4. The metrics used to do the sensitivity analysis

are similar to Cobeña et al. (2023) proposed; they are as follows:

Spatial Distributions. The % of served demand measures the proportion of total demand that ben-

efits from the hub network, highlighting the spatial impact of different parameter configurations.

Total Travel Time. The % of saved time assesses the average reduction in travel time resulting from

the hub network’s implementation, providing insights into the efficiency gains achievable through

an optimal hub placement.
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Figures 1a and 1b show the percentage of demand served and the average time saved after the

establishment of the hub line and different number of hubs for n = 39 | ϑ = 0.1 | r = 2.68 | α = 0.2, 0.5.

The demand increases with the installation of more hubs in the city, and the average saved time after

establishing the hub line decreases as the values of hubs increase and the values of α decrease. Figures 1a

and 1b show the impact between the number of hubs (p) and the discount factor (α) on the percentage

of demand served and the average time saved after establishing the hub line for n = 39, ϑ = 0.1, and

r = 2.68.

(a) % served demand by p and α. (b) % saved time by p and α.

Figure 1: Results of changing α and p.

Observe that, an increase the number of hubs correlates positively with an increase in the percentage

of demand served, particularly at a high discount factor (α = 0.2). This shows that a high discount

factor (1 - α), improves the utilization of the hub line system (see Figure 1a). We can also see in

Figure 1b that the average time saved decreases when the number of hubs increases and the discount

factor decreases. The increase in hubs may enhance demand coverage but may also increase travel

times.

Table 7: Sensitivity analysis of # hubs(p) and discount factor(α).

n p ϑ r α % served demand % saved time

25

3 0.1 2.68
0.2 18% 34%
0.5 4% 26%

5 0.1 2.68
0.2 39% 25%
0.5 9% 24%

7 0.1 2.68
0.2 53% 21%
0.5 12% 21%

30

3 0.1 2.68
0.2 16% 27%
0.5 4% 25%

5 0.1 2.68
0.2 35% 22%
0.5 7% 21%

7 0.1 2.68
0.2 54% 20%
0.5 10% 20%

39

3 0.1 2.68
0.2 13% 23%
0.5 3% 24%

5 0.1 2.68
0.2 27% 18%
0.5 6% 23%

7 0.1 2.68
0.2 42% 17%
0.5 7% 24%

Furthermore, Table 7 shows the % of served demand and % of saved time for different values of n.

We can see that as the values of α decrease and p increases, the spatial distribution tend to increases

too; moreover, the average time saved is higher for a small number of hubs (p).
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5.2.3 Hub line configuration of metropolitan area of Montreal

Now, we analyze the different hub line configurations and the metrics presented above for different

values of n and r. Figures 2a and 2b show the hub lines obtained for n = 30, p = 5, α = 0.2, and

r ∈ {2.68, 1.7}. Note that although the selected hub nodes are similar in both configurations, the

resulting hub lines differ, which brings to light the sensitivity of the resulting hub line network to

changes in the parameter r. This variation shows the importance of fine-tuning r to balance efficiency

and connectivity.

(a) n = 30, p = 5, α = 0.2, r = 2.68.

(b) n = 30, p = 5, α = 0.5, r = 1.7.

Figure 2: Hub line configuration for the study case with n = 30, p = 5, ϑ = 0.1.

Figures 3a and 3b show the differences in the hub selections that reflect the model’s strategic

response to varying hub line network configurations. In Figure 3a (n = 39, p = 5), one of the hubs

chosen is “Villeray,” a neighbourhood centrally located in the metropolitan area of Montreal. Its

selection is likely driven by the high density around it, its proximity to important Points of Interest

(POI) such as the Jean-Talon Market and Little Italy, and its closeness to shopping areas like Rockland
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Center and Marché Central. This hub line configuration aligns with the model’s focus on maximizing

profit by reducing travel times and capturing high demand, as outlined in the ED-HLLP framework.

(a) n = 39, p = 5, α = 0.2, r = 2.68.

(b) n = 39, p = 6, α = 0.2, r = 2.68.

Figure 3: Hub line configuration for the study case with n = 39, p = 5, 6, ϑ = 0.1, α = 0.2, r = 2.68.

Conversely, in Figure 3b (n = 39, p = 6), the addition of a sixth hub leads to the selection of

“Plateau Mont-Royal” and the “Saint-Laurent” neighbourhood as hubs, thereby extending the hub

line network’s reach to under-served areas. This adjustment increases demand coverage and enhances

network connectivity, demonstrating the model’s adaptability in optimizing service distribution and

accessibility as the network expands.

6 Conclusions

We have introduced an efficient column generation-based algorithm to address the ED-HLLP for high-

sized problems. The proposed method is based upon the solution of a linear program with a very large
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number of variables (columns), from which only a subset of promising ones is identified. The proposed

method is shown to be more robust and provide near-optimal solutions when compared to the method

introduced in Cobeña et al. (2023), providing valuable insights into the modeling of profit-oriented

hub line location problems with elastic demands. Moreover, our method is also capable of providing

dual bounds, which are shown to be small (less than 5% on average) for medium-sized problems.

We have also conducted an analysis on a real network, namely that of the city of Montreal, and

performed a thorough sensitivity analysis to assess the behavior of the resulting solutions to different

parameters. The proposed method can address the ED-HLLP effectively for problems with up to

n = 39 nodes, higher than the reach of Cobeña et al.’s method. This shows our approach’s practical

applicability in real-world instances of the ED-HLLP, particularly in complex urban settings such as

those of a city like Montreal.

Finally, our work provides a valuable tool for decision-makers such as city or transport planners,

allowing them to design more effective and efficient transit networks, improving the accessibility of the

citizens and reducing their travel times through the use of the hub line system, primarily to address

the continuous increase of the demand of urban mobility, ensuring that urban public transportation

systems can meet the needs of expanding urban areas and their surroundings.

Future research would incorporate additional service levels at the hub stations, particularly at the

hub line’s access and exit hubs, to enhance their attractiveness by integrating services such as car/bike

share stations or POIs.

A Heuristic approach: Starting feasible solution

Algorithm 2 details the procedure to obtain an initial feasible solution to be used in the RMP; it gets

the shortest paths in a hub line composed of p hubs, by commodity and type of path. As mentioned in

section 3, the objective of the problem is to maximize the total revenue for the time saving using the

hub line. Here, fc(t
′
c) corresponds to the profit obtained for each commodity c ∈ C, for each OD pair.

fc(t
′
c) = Rc

PocPdc

(t′c)
r

(tocdc − t′c) .

Algorithm 2: Obtaining feasible paths for a commodity c ∈ C and type of type of (ODHc, DHc, OHc and
ODNHc)-paths.

Data: Graph G = (N,E) with tij for e = [i, j] ∈ E and c ∈ C.
Result: Shortest paths (ODHc, DHc, OHc and ODNHc)-paths for a commodity c ∈ C.

1 Build auxiliary graph Gc = (Nc, Ac) and travel times tc (See, algorithm 1 to define type of paths by authors
Cobeña et al. (2023)).

2 for c ∈ C do
3 for path in shortest simple paths(Gc,oc,dc,tc) do
4 Search for the paths, πc, associated to c
5 if πc is a valid path (tc < tocdc) and (2 ≤ #arcs(πc) ≤ p) then
6 Calculate the cost fc as:

fc = Rc
PocPdc

time(path)
(tocdc − time(path))

if number of nodes in path −2 ≤ p then
7 break;
8 end

9 end

10 end

11 end
12 return Shortest Paths for c and type of path (π).

To obtain an initial solution, we look for the smallest value of t′c, i.e., the shortest path by type

between oc and dc using the hub line; We use the function shortest simple paths from Python package
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Networkx. If the obtained path is valid, it means that it has a smaller time than the current time

tocdc , the length of the path is greater and equal to 2 and smaller than or equal to p, then the resulting

path is the shortest path of commodity c and type of path using a hub line.

To use the function shortest simple paths, we create an auxiliary directed graph Gc as a Cobeña

et al. (2023) did; it allows us to build paths by type between oc and dc using the hub line with an

associated travel time smaller than or equal to tocdc .
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