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3000, chemin de la Côte-Sainte-Catherine
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Abstract : The modelling of linear quadratic Gaussian optimal control problems on large complex
networks is intractable computationally. Graphon theory provides an approach to overcome these issues
by defining limit objects for infinite sequences of graphs permitting one to approximate arbitrarily large
networks by infinite dimensional operators. This is extended to stochastic systems by the use of Q-
noise, a generalization of Wiener processes in finite dimensional spaces to processes in function spaces.
The optimal control of linear quadratic problems on graphon systems with Q-noise disturbances are
defined and shown to be the limit of the corresponding finite graph optimal control problem. The
theory is extended to low rank systems, and a fully worked special case is presented. In addition,
the worst-case long-range average and infinite horizon discounted optimal control performance with
respect to Q-noise distribution are computed for a small set of standard graphon limits.

Keywords: Graphon, Stochastic control, Infinite dimensional systems

Résumé : La modélisation des problèmes de contrôle optimal linéaire, quadratique et gaussien sur
de grands réseaux complexes est difficile à calculer. La théorie des graphes fournit une approche
pour surmonter ces problèmes en définissant des objets limites pour des séquences infinies de graphes
permettant d’approximer des réseaux arbitrairement grands par des opérateurs de dimension infinie.
Cette approche est étendue aux systèmes stochastiques par l’utilisation du bruit Q, une généralisation
des processus de Wiener dans les espaces de dimension finie aux processus dans les espaces de fonc-
tion. Le contrôle optimal des problèmes linéaires quadratiques sur les systèmes de graphes avec des
perturbations Q-bruit est défini et montré comme étant la limite du problème de contrôle optimal
correspondant sur les graphes finis. La théorie est étendue aux systèmes de rang inférieur et un cas
spécial entièrement fonctionnel est présenté. En outre, les performances de contrôle optimal actualisé
à long terme et à horizon infini les plus défavorables en ce qui concerne la distribution du bruit Q sont
calculées pour un petit ensemble de limites de graphes standard.

Mots clés : Graphon, contrôle stochastique, systèmes de dimension infinie
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1 Introduction

Large graphs are common objects in contemporary systems modelling and analysis, in particular

for the purposes of optimization and control. Indeed, from the internet to electrical generation and

distribution to social networks, complex networks have been a focus of research for decades. However,

global modelling and analysis problems are intractable with standard methods for all sufficiently large

networks.

One approach to handling large networks is to use the theory of graphons [21]. Informally, a graphon

is a function on the unit square which represents a limit of the adjacency matrices of a sequence of

graphs. Consequently, using graphons for modelling large systems allows for the approximation of very

large network within a functional analysis framework and hence enables their modelling, analysis and

design.

The use of graphons in system dynamics was initiated by Medvedev [23]. Previous work on control

via graphons has been primarily concerned with deterministic systems ([10, 11]), while stochastic

mean field games on graphons have been investigated in [4, 5, 13, 19, 25] and with Q-Wiener processes

in [20]. Graphon Mean Field Games have been extended in particular to the case of large sparse graphs

in [6, 18], and [3]. The use of Q-Wiener processes is an attempt to solve the measurability problem of

applying idiosyncratic Wiener processes at each node, which was addressed by Aurell et al. for linear

quadratic graphon mean field games using the Fubini extension in [2] and for epidemic games in [1].

In Dunyak and Caines [7], space-time Gaussian noise on the unit interval ([9, 14, 17]), termed

Q-noise, was introduced as a limit object for sequences of systems on graphs with Brownian distur-

bances. Medvedev and Simpson [24] presented a numerical method of simulating such systems. This

article demonstrates that linear quadratic Q-noise optimal control problems on large graphs can be

approximately solved by the graphon limit of their system. In this article, Linear Quadratic Gaus-

sian problem in Hilbert spaces are approximately solved are approximately solved by analysis of the

graphon limits. The analysis relies on the Hilbert space methods in Ichikawa [16] which is extended

here to long-range average and infinite discounted cost LQG problems, the former of which is derived

with a limit argument and the latter of which is solved via the corresponding algebraic Riccati equation

in the case of purely local controls.

In the following subsections, we provide the motivation for modelling linear quadratic Gaussian

systems on large networks with their graphon and Q-noise limits. In Section II, we define the notation

used in this article, as well as summarize relevant prior results for Q-noise systems. In Section III,

we present the formal proof that the finite dimensional linear quadratic Gaussian system converges

to the infinite dimensional linear quadratic Q-noise system, as well as presenting the long-range av-

erage and exponential discounting problems. Section IV extends the analysis of low rank graphons

presented in [12] to Q-noise systems. Section V demonstrates the utility of the Q-noise approach

in that the solution to an LQG system problems on large unweighted random graphs are shown to

be well-approximated by lower-order systems derived from the graphon limit of the original system.

Section VI provides some directions for future research.

1.1 Motivation: Networked systems and graphons

Define two graphs GN
A = (VN , EN

A ) and GN
B = (VN , EN

B ) with N < ∞ vertices, with associated

adjacency matrices AN and BN . Let xN : [0, T ]N → R be a vector of states, where the ith value is

associated with the ith vertex of the graph, and let uN : [0, T ]N → RN be the control input at each

vertex. For clarity of notation, systems where each node has a scalar state are considered below. The

theory extends to systems with vector states at each node in a straightforward manner. Let the (i, j)th

entry of the matrices AN and BN represent the impact of the state and control input at node i on

node j, respectively. For each node, define a Brownian motion such that the N -component Brownian

motion WN has strictly positive covariance matrix QN . Let aN and bN be constants describing the

impact of the state of a node and its control on itself.
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Finally define a network-averaged control system [11] on a graph with the following equation for

each node,

dxi
t =(aNxi

t +

N∑
j=1

AN
ijx

j
t

+ bNui
t +

N∑
j=1

BN
ij u

j
t )dt+ dWN

i (t),

(1)

or in vector form,

dxN
t = ((AN + aN )xN

t + (BN + bN )uN
t )dt+ dWN (t). (2)

Subject only to the assumption that the entries of AN and BN are uniformly bounded in N , the

sequences of adjacency matrices {AN} and {BN}, 1 ≤ N < ∞, defined on the unit square converge, as

N tends to infinity, to their (not necessarily unique) associated graphon limits [21], which are bounded

measurable functions mapping [0, 1]× [0, 1] → [0, 1]. These are denoted A and B (as in [11])1. When

the underlying graph is undirected, its graphon is also symmetric. Denote the graphon limit system as

dxt = ((A+ aI)xt + (B + bI)ut) + dwt, (3)

where xt and ut are square-integrable functions on the unit interval, A and B are graphons, a and b

are real constants, I is the identity operator, and wt is a Q-noise, a generalization of Gaussian noise

from finite-dimensional vectors to random time-varying functions the unit interval as defined in Section

2.2, together with the conditions in Theorem 2.3 for the existence of the limit in mean-square.

1.2 Linear quadratic Q-noise control

Let xN
t be the state of a networked control system on a graph GN as given in Equation (2). Suppose

that MN is an N × N positive matrix, and RN is an N × N strictly positive matrix. Then the

associated linear quadratic Gaussian optimal control problem for a control system with terminal time

T is defined via the infimization of the performance function:

inf
uT
0

J(x0, u) = inf
uT
0

E

[∫ T

0

xN∗
t MNxN

t + uN∗
t RNuN

t dt

]
. (4)

The solution of the limit problem takes the same form as the standard finite dimensional LQG

problem, but the equations have operator valued coefficients and the solutions are operator valued.

This work analyses the properties of the operator limits of such sequences of network averaged optimal

control problems and it is shown that the solutions of the limit problems are obtained via the operator

limits of the associated Riccati equations.

1.3 The ppecial case of finite rank systems

The systems described in the prior section are defined in the space of square-integrable functions

on the unit interval, L2[0, 1]. In general, it is not possible to find a closed form solution for such a

system. However, when a system’s associated graphon parameters and Q-noise covariance function

are finite-rank, then the state of the system evolves on a finite dimensional space. This is explored in

Section 4.

1In order to disambiguate the convergence of the adjacency matrix AN to the graphon A, the scaling term 1
N

is

omitted when AN is acting as an operator. This scaling is to ensure that the summation ANxN is bounded and converges
to the correct integral.
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2 Preliminaries

2.1 Notation

• The set of vectors of real numbers of dimension m is denoted Rm.

• Graphons (i.e. bounded symmetric [0, 1]2 functions used as the kernels of linear integral opera-

tors) are denoted in italicized bold capital letters, such as A, B, and M .

• L2[0, 1] denotes the Hilbert space of real square-integrable functions on the unit interval. In

addition, L2[0, 1] is equipped with the standard inner product, denoted ⟨u,v⟩. For any function

v, v∗ denotes the adjoint of v. As such, ⟨u,v⟩ is sometimes written as v∗u.

• The identity operator in both L2[0, 1] and finite dimensional spaces is denoted I.
• Operators of the form A and B have the structure A = A+ aI, where A is a graphon and a is a

real scalar. Let M denote the set of these operators.

• A linear integral operator with the kernel Q : [0, 1]2 → R acting on a function f ∈ L2[0, 1] is

defined by

(Qf)(x) =

∫ 1

0

Q(x, y)f(y)dy, ∀ x ∈ [0, 1]. (5)

• The operators Q are equipped with the standard operator norm ||Q||op. When unambiguous,

the argument is dropped.

• A symmetric function Q : [0, 1]2 → R is non-negative if the following inequality is satisfied for

every function f ∈ L2[0, 1],

0 ≤
∫ 1

0

∫ 1

0

Q(x, y)f∗(x)f(y)dxdy (6)

:= ⟨Qf ,f⟩ < ∞.

Additionally, denote Q to be the set of bounded symmetric non-negative functions. The set Q
serves as the set of valid covariance functions for the class of stochastic processes called Q-noise

processes.

• For a given linear system xt satisfying ẋt = Atxt, Φ(t, s) denotes the semigroup solution operator

solving xt = Φ(t, s)xs for any given initial condition xs.

• Q-noise processes (stochastic processes over the time interval [0, T ]) will be denoted as wt. For

each t ∈ [0, T ], wt is an L2[0, 1] function. The precise definition of a Q-noise process is given in

Section 2.2.

• A partition of the unit interval ofN increments is denoted PN = {P1, · · · , PN}, where P1 = [0, 1
N ]

and Pi = ( i−1
N , i

N ]. An L2[0, 1] function which is piece-wise constant on the unit interval is

denoted v[N ], and a self-adjoint L2[0, 1] operatorM which is piece-wise constant on the Cartesian

product PN × PN is denoted M [N ] (or M[N ], if it is of the form M[N ] = M [N ] + mI). This

formulation is necessary for mapping N ×N adjacency matrices of networks to functions on the

unit square, as in Section 2.5.

2.2 Q-noise axioms

Q-noise processes, first applied to graphon systems in [7], are L2[0, 1] valued random processes that

satisfy the following axioms.

1. Let Q ∈ Q, and let ([0, 1] × [0, T ] × Ω,B([0, 1] × [0, T ] × Ω),P) be a probability space with the

measurable random variable w(α, t, ω) : [0, 1]× [0, T ]×Ω → R for all t ∈ [0, T ], α ∈ [0, 1], ω ∈ Ω.

For notation, ω is suppressed when the meaning is clear.

2. For all α ∈ [0, 1], w(α, t)−w(α, s) is a Wiener process increment in time for all t, s ∈ [0, T ], with

w(α, t)−w(α, s) ∼ N (0, |t− s|Q(α, α)) where w(α, 0) = 0 for all α ∈ [0, 1].
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3. Let wt−t′(α) = w(α, t)−w(α, t′). Then,

E[wt−t′(α)ws−s′(β)] = |[t, t′] ∩ [s, s′]| ·Q(α, β).

4. For almost all s, t ∈ [0, T ], α, β ∈ [0, 1], and ω ∈ Ω, w(α, t, ω)−w(β, s, ω) is Bochner-integrable2

as a function taking values in the Banach space of a.s. piece-wise continuous functions of

[s, t] ∈ [0, T ].

An orthonormal basis example: Let {W1,W2, · · · } be a sequence of independent Brownian motions.

Let Q ∈ Q have a diagonalizing orthonormal basis {ϕk}∞k=1 with eigenvalues {λk}∞k=1. Then

g(α, t, ω) =

∞∑
k=1

√
λkϕk(α)Wk(t, ω) (7)

is a Q-noise process. The common name for this formulation in the literature is Q-Wiener process [9,

14].

2.3 Operators on Q-noise noise

Definition 2.1. M shall denote the set of operators of the formM = W+cI, whereW is a bounded self-

adjoint Hilbert-Schmidt integral operator (hence possessing square-summable eigenvalues) mapping

L2[0, 1] to L2[0, 1], c > 0 is a positive constant, and I is the identity operator on L2[0, 1].

Definition 2.2 (Operators on Q-Space Noise). Let Q ∈ Q and wt be a Q-space noise. Let M ∈ M,

and let s < t ∈ [0, T ]. Then the action of M on wt−s(·) := w(·, t)−w(·, s) is defined by the following

Lebesgue integral for s, t ∈ [0, T ], α ∈ [0, 1],

(Mwt−s(·))(α) =
∫ 1

0

M(α, z)wt−s(z)dz. (8)

Lemma 2.1. Let M = W + cI ∈ M. Then (Mwt−s)(α) is a centered random variable for all α ∈ [0, 1]

and s, t ∈ [0, T ].

Proof. As W is a bounded operator, E[wt−s] = 0 by Axiom 2, and since wt−s is assumed to be

Bochner-integrable by Axiom 4, the expected value is

E[Mwt−s](α) =E[Wwt−s](α) + cE[wt−s](α)

=(W + cI)E[wt−s](α) = 0. (9)

By associativity, an operator W acting on an operator M acting on a function x is denoted

(W(Mx))(α) = (WMx)(α) when the following iterated integral exists,

((WM)x)(α) =

∫ 1

0

W(α, z)

∫ 1

0

M(z, y)x(y)dydz. (10)

Theorem 2.2. Let wt−t′(·) = w(·, t)−w(·, t′) and ws−s′(·) = w(·, s)−w(·, s′) be two time increments

of a Q-space process, Q ∈ Q, and M ∈ M with MQM∗ ∈ Q. Then,

cov((Mwt−t′)(α), (Mws−s′)(β)) = |[t, t′] ∩ [s, s′]|(MQM∗)(α, β) (11)

2The Bochner integral of a random variable X : (Ω,B, µ) → E where E is a Banach space is defined as the limit of
the sum of simple functions taking a finite set of values Xn(ω), analogously to Lebesgue integration [9, Sec. 1.1.3].
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Proof. Recalling Lemma 2.1 the covariance is given by

cov((Mwt−t′)(α), (Mws−s′)(β)) = E[(Mwt−t′)(α)((ws−s′)
∗M∗)(β)] (12)

As wt−s is Bochner-integrable by Axiom 4 and M is a bounded self-adjoint operator, the operator M
can be exchanged with the expectation,

cov((Mwt−t′)(α), (Mws−s′)(β)) = (ME[wt−t′w
∗
s−s′ ]M∗)(α, β)

= |[t, t′] ∩ [s, s′]| ·
∫ 1

0

∫ 1

0

M(α, y)Q(y, z)M∗(z, β)dydz.
(13)

2.4 Linear dynamical control systems

Definition 2.3 (Q-noise Dynamical Systems). Let x : [0, 1]× [0, T ] → R be an L2[0, 1]× [0, T ] function

with a given initial condition x(·, 0) = x0. Let At,Bt ∈ M be bounded linear operators from L2[0, 1]

to L2[0, 1] such that AtQA∗
t ∈ Q. This defines a Q-noise denoted wt. Let a control input ut : [0, T ] →

L2[0, 1] be a function adapted to the filtration Ft, consisting of all measurable functions of the state

of the system xs, 0 ≤ s ≤ t.

Then, a linear dynamical system with Q-noise is an infinite dimensional differential system satisfying

the following equation,

dxt(α) = ((Atxt)(α) + (Btut)(α))dt+ dw(α, t), (14)

where for a partition of [0, t], [0, t2, · · · , tN−2, t],∫ t

0

dw(α, s) = lim
N→∞

N∑
k=1

(w(α, tk+1)−w(α, tk)) (15)

in the mean-squared convergence sense.

Definition 2.4 (Mild solution). A mild solution (see [14, Sec. 3.1]) to a system xt : [0, T ]×Ω → L2[0, 1]

satisfying

dxt = (Atxt + Btut)dt+ dwt, x0 ∈ L2[0, 1] (16)

on [0, T ] is given by

xt = Φ(t, 0)x0 +

∫ t

0

Φ(t, s)Btutds+

∫ t

0

Φ(t, s)dws. (17)

In the development of this paper, A and B will be taken to be bounded, time-invariant operators.

When At is constant, then Φ(t, s) = eA(t−s).

2.4.1 Motivation for Q-noise models

To demonstrate why the Q-noise framework is necessary for the modeling of very large linear systems,

consider two linear stochastic systems of dimensionN = 300. For each index i ∈ {1, ..., N}, the ith state

of both systems satisfies the following stochastic differential equation with Brownian disturbance W i
t ,

dxi
t =

1

N

N∑
j=1

cos

(
π

(
i

N
− j

N

))
xj
tdt+ dW i

t ,

xi
0 =1. (18)
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In the first system, assume that the covariance matrix Q of the Brownian motion disturbance

between state i and state j is given entry-wise by Qij = 1−max
(

i
N , j

N

)
. This system converges to a

Q-noise system in the L2[0, 1] norm as the number of nodes increases. In the second system, assume

that the Brownian motion disturbances W i
t are independent. The result is a system where the noise of

individual states overpowers the trajectory of the overall system. The sample trajectories of two such

systems with terminal time T = 1 can be seen in Figure 1.

In addition, there is the fundamental measurability consideration that for real α ∈ [0, 1] param-

eterized Wiener processes Bα(t) which are independent with respect to α ∈ [0, 1] do not exist as

well-defined stochastic processes.

Figure 1: Top: Trajectory of system (18) with independent noise at each node. Because the magnitude of the independent
noise is so high, there is no clear system structure in the state trajectory. Bottom: the state trajectory of system (18)
with a Q-noise disturbance. While there is clearly noise present in the system, there is an overall structure suggesting
that the limit will be continuous in both space and time.

2.5 Networks

Consider a network-averaged control system of the form (2),

dxt = ((ANxt +BNut) + αNxt + βNut)dt+ dWN (t). (19)

The finite dimensional system is mapped to piecewise constant functions on the unit square (see [11]).

Define the uniform partition on the unit interval as PN = {P1, · · · , PN}, where P1 = [0, 1
N ] and
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Pi = ( i−1
N , i

N ]. Then, the following step function graphon for N nodes corresponding to AN is defined

for all α, β ∈ [0, 1]:

A[N ](α, β) =

N∑
i=1

N∑
j=1

AN
ij1Pi(α)1Pj (β). (20)

A similar function can be defined for B[N ](·, ·). One can define the step function control u
[N ]
t :

[0, 1]× [0, T ] → R for such a graphon system using the control ut,

u
[N ]
t (α) =

N∑
i=1

1Pi
(α)ut(i) α ∈ [0, 1]. (21)

Finally, define the covariance of the disturbance as a piecewise constant function analogously to

the finite dimensional adjacency matrix. Let w[N ] : [0, 1] × [0, 1] → R be a Q-noise with covariance

defined by the following equation,

Q[N ](α, β) =

N∑
i=1

N∑
j=1

QN
ij1Pi

(α)1Pj
(β). (22)

A piecewise constant partition section of the unit interval {SNk }Nk=1 mapping [0, 1] → R is defined

via

SNk (α) := 1Pk
(α), α ∈ [0, 1]. (23)

This defines an orthogonal set corresponding to the standard RN basis {e1, e2, ..., eN}.

Then the corresponding systems in L2[0, 1] can be expressed as

dx
[N ]
t = ((A[N ] + αN I)xN

t + (B[N ] + βN I)u[N ]
t )dt+ dw

[N ]
t , (24)

where

wN
t (α) :=

N∑
k=1

SNk (α)

∞∑
r=1

cNk,rWr(t), (25)

in which {Wr}∞r=1 is a sequence of independent Brownian motions, and denote the L2[0, 1] limit by

w∞
t (α) := lim

N→∞
w

[N ]
t (α) =

∞∑
r=1

√
λrϕr(α)Wr(t). (26)

By Mercer’s Theorem (see, e.g. [15]), Q has the eigenvalue and basis representation:

Q(α, β)t =

∞∑
r=1

√
λrϕr(α)ϕr(β) = E[w∞

t (α)w∞
t (β)]. (27)

To ensure the existence of this limit, we explicitly require the processes constructed in (25) to be

Cauchy in the L2[0, 1] norm, i.e., for all ϵ > 0, there exists M > N > N0(ϵ) such that

E[||w[N ]
t −w[M ]||22] ≤

∞∑
r=1

∫ 1

0

 M∑
j=1

SMj (α)cMj,r −
N∑

k=1

SNk (α)cNk,r

2

dα < ϵ. (28)

Finally, we observe that as a result of the specifications above, the state process x
[N ]
t on partition Pi

has a one-to-one correspondence with the state of the ith node of xN
t given by

[xN
t ]i := x

[N ]
t (α) for α ∈ Pi, 1 ≤ i ≤ N. (29)
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2.5.1 Common graphons

There are a few common graphons that will be further investigated in Sec. V. In this subsection, a small

set of common graphons and their associated dynamical systems properties are further investigated. In

this paper, these are primarily used to generate random graphs using the W-random graph method [21].

Erdős-Renyi graphs are one of the most common methods of generating random graphs. In an

ER graph for every two vertices i and j in a graph of size N , an (undirected) edge ei,j exists with

probability p. That is,

P(AN
i,j = 1) = p, 1 ≤ i, j ≤ N. (30)

From this, it is clear that the graphon limit of an ER graph is simply the constant function W (α, β) =

p, α, β ∈ [0, 1].

Uniform Attachment Graphs [21] are a more sophisticated increasing random graph model which

possesses a smooth graphon limit. It is constructed inductively. Start with a single node graph G1

(with associated adjacency matrix A1 = 0). Then, given a UAG GN−1, add a node and connect each

pair of non-adjacent nodes with probability 1
N to create GN . This has the graphon limit:

W (α, β) = 1−max(α, β), α, β ∈ [0, 1]. (31)

Small World Graphs [26] model networks with a high level of local clustering, a low level of global

clustering, and a low graph diameter. Medvedev [23] presents one potential model of such graphs

called a W-small world graphon. Here, we propose a limit model of small world graphs where the node

connection probability is given by the sum of two truncated Gaussian functions of variance σ2 on each

horizontal in the unit square (32), these are shifted by an offset γ so that the resulting surface (33) is

symmetrically distributed with respect to the diagonal; it is normalized to have a maximum value of

one on the diagonal,

GSW (α, β) = exp

(
−1

2

(
α− β

σ

)2
)
, α, β ∈ [0, 1], (32)

W SW(α, β) = 0.5GSW (α− γ, β) + 0.5GSW (α, β − γ). (33)

Identifying 0 with the 0-degree position on a circle, 1 with the π location and invoking symmetry shows

this graphon shares some of the required SW network properties listed above.

Low rank graphons are a special class of graphons which possess a finite number of eigenfunctions.

These are explored further in Sec. 4.

The convergence of the finite order network system to the infinite limit graphon system can now

be analyzed.

Theorem 2.3. Let x
[N ]
t solve the following graphon stochastic differential equation,

dx
[N ]
t = A[N ]x

[N ]
t dt+ dw

[N ]
t , x

[N ]
0 ∈ L2[0, 1], (34)

where Q[N ] is the covariance operator of w[N ]. Let Φ[N ](t, s) and Φ[M ](t, s) refer to the semigroup

solutions to the state systems x
[N ]
t and x

[M ]
t respectively. Assume for each triple ϵ0, ϵ1, ϵ2 > 0 there

exists N0 such that for all N > M > N0,

||x[N ]
0 − x

[M ]
0 ||22 <ϵ0, (A0)

||Φ[N ](t, s)− Φ[M ](t, s)||2op <ϵ1, (A1)

E[||w[N ]
t −w

[M ]
t ||22] <ϵ2, (A2)
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Figure 2: Top row: An Erdős-Renyi graphon and sample graph. Middle row: A uniform attachment graphon and graph.
Bottom row: A small world graphon.

and there exist α,C < ∞, such that, for all N,

N∑
k=1

N∑
r=1

|cNk,r|2 ≤ C, (B0)∫ s

0

||Φ[N ](t, s)||2opds ≤ α, t ∈ [0, T ]. (B1)

Then, for each ϵ > 0, there exists N ′
0 such that for all N,M > N ′

0

E[||x[N ]
t − x

[M ]
t ||2] < ϵ. (35)

Hence, there exists an L2[0, 1] limit process x∞
t constituting the unique mild solution of (14) satisfying

E[||x[N ]
t − x∞

t ||2] → 0 as N goes to infinity, that is,

dxt = Axt + dwt, x0 ∈ L2[0, 1]. (36)

The proof relies on the convergence of the operator norms of Φ[N ](t, s) to Φ[N ](t, s) implying L2

convergence of Φ[N ](t, s)v for any v ∈ L2[0, 1] and is given in Appendix A.

Remark 1. This result was provided in [7] in the time-invariant operator case. When A[N ]
t = A[N ] and

A[M ]
t = A[M ] for all t ∈ [0, T ], assumption (A1) can be relaxed to

||A[N ] − A[M ]||2op < ϵ1, (37)

i.e., the piecewise constant graphons corresponding to the finite graphs AN and AM converge in the

L2 operator norm.
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3 Linear quadratic control

3.1 Finite time horizon

Given a linear stochastic dynamical system of type (43), a linear quadratic Gaussian optimal control

problem with Q-noise is given by the following performance function:

J(u,x0) =E[
∫ T

0

(x∗
tMxt + u∗

tRut)dt+ x∗
TMTxt], xt,ut ∈ L2[0, 1], (38)

where M = M + mI and R = R + rI are bounded functionals composed of a non-negative compact

operator M ≥ 0 and R > 0, with m ≥ 0 and r > 0 respectively. A control input ut is admissible

when it is adapted to the sigma algebra generated by wt and where
∫ T

0
|ut|2dt < ∞. Problems of this

variety will henceforth be referred to as Q-LQG problems, and denoted by their system parameters

{A,B,Q,M,MT ,R}.
Theorem 3.1. Suppose that M,R,MT are bounded positive self-adjoint L2[0, 1] operators, and that

R : L2[0, 1] → L2[0, 1] is invertible. Then, the performance function (38) is minimized with ut =

−R−1B∗Stxt, where S : [0, 1] × [0, 1] × [0, T ] → R is an L2[0, 1] linear operator for all t whose kernel

satisfies the following Riccati equation,

− d

dt
⟨Stv,v⟩ =2⟨Av, Stv⟩ − ⟨StBR−1B∗Stv,v⟩,+⟨Mv,v⟩, ∀v ∈ L2[0, 1]

ST =MT . (39)

See proof [16, Sec. 4] with F = I, D = 0, C = 0 (hence Γ(·) = 0 and ∆(St) = 0).

Corollary 3.1.1 ([16]). Given a Q-LQG problem with parameters {A,B,Q,M,MT ,R} where St is the

self-adjoint L2[0, 1] operator solving (39), St is unique in the space of L2[0, 1] non-negative operators.

In addition, the value function is given by

V (xt, t) = x∗
tStxt +

∫ T

t

trace(SrQ)dr. (40)

As expected, the intensity of the Q-noise does not change the optimal control ut, but does impact

the value function of the Q-LQG problem. In order to show that the finite dimensional linear quadratic

Gaussian problem on a network converges to an infinite-dimensional Q-LQG problem in the sense of

converging value functions, state, and control functions, it must first be shown that the solution S
[N ]
t

of the piece-wise constant Q-LQG problem is bounded in operator norm uniformly in N ∈ Z.

Lemma 3.2. Let AN and BN be bounded self-adjoint L2[0, 1] operators, MN and MN
T be bounded

positive L2[0, 1] operators, and RN be a bounded strictly positive L2[0, 1] operator converging to

A, B, M, MT , and R respectively in the operator norm sense for {AN , BN ,MN ,MN
T , RN}. Let SN

t

be a positive, self-adjoint L2 operator satisfying

−ṠN
t = ANSN

t + SN
t AN − SN

t BNR−1BNSN
t +MN

SN
T = MN

T . (41)

Then, there exists 0 < cN < ∞ such that

||SN
t ||op ≤ 2||MT ||op + (T − t)cN . (42)

See proof in Appendix B.

From Theorem 3.1, the minimizing controls to the limit Q-LQG problem and the piece-wise constant

Q-LQG problem are respectively ut = −R−1B∗Stxt and u
[N ]
t = −(R[N ])

−1B[N ]∗S
[N ]
t x

[N ]
t .
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Theorem 3.3 (Q-LQG Convergence). Let xt be a system of the form

dxt = (Axt + But)dt+ dwt, (43)

and let x
[N ]
t be a system of the form

dx
[N ]
t = (A[N ]x

[N ]
t + B[N ]u

[N ]
t )dt+ dw

[N ]
t , (44)

where A[N ] → A, B[N ] → B, and Q[N ] → Q in the L2 operator norm sense, and let assumptions (A0)–

(A2), (B0), and (B1) of Theorem 2.3 be satisfied. In addition, let R[N ], M[N ], and M[N ]
T be bounded,

positive, self-adjoint operators converging to R, M, and MT in the operator norm sense.

Let St and SN
t be the positive, bounded self-adjoint operators solving the functional Riccati equa-

tion 39 for (A,B,R,M,MT ) and (A[N ],B[N ],R[N ],M[N ],M[N ]
T ) respectively. Then, for every ϵ > 0,

there exists an N(ϵ) such that for all N > N(ϵ),

E[||x[N ]
t − xt||2] < ϵ. (45)

See proof in Appendix C.

As the control input and state trajectory converge in the L2 sense for all time, the optimally

controlled finite dimensional network performance function value

inf
uN
t

E

[∫ T

0

(xN
t )∗MNxN

t + (uN
t )∗RNuN

t dt

]
(46)

converges to the value of the infinite dimensional graphon system value

inf
u

E[
∫ T

0

(x∗
tMxt + u∗

tRut)dt+ x∗
TMTxt], (47)

x0,ut ∈ L2[0, 1].

3.2 Long-range average

In contrast to deterministic systems, the infinite time horizon optimal control problem does not have

a finite value. Hence, we consider the long-range average Q-LQG problem given by:

V∞(x0) := inf
u

lim
T→∞

JT (u,x0) (48)

= inf
u

lim
T→∞

1

T
E[
∫ T

0

(x∗
tMxt + u∗

tRut)dt],

= lim
T→∞

1

T
(x∗

0Stx0 +

∫ T

0

trace(SrQ)dr).

The solution to the long-range average Q-LQG problem is given via the unique positive solution S∞
to the algebraic Riccati equation:

0 =2⟨Av, S∞v⟩ − ⟨S∞BR−1B∗S∞v,v⟩ (49)

+ ⟨Mv,v⟩, ∀v ∈ L2[0, 1].

The solution St to Equation (39) converges to S∞ exponentially, yielding

V∞(x0) = V∞ := trace(S∞Q) ∀x0 ∈ L2[0, 1]. (50)

In particular, when B = R = I, and A is symmetric, this can be solved with

S∞ = A+ (A2 +M)
1
2 , (51)

where, for a positive operator M , (M)
1
2 is the positive operator solving (M)

1
2∗(M)

1
2 = M .
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Note that the rate of loss is given by trace(S∞Q) which is the Hilbert-Schmidt inner product.

Given an orthornormal basis of L2[01], {ϕk}∞k :

trace(S∞Q) =
∑
k

⟨S∞ϕk,Qϕk⟩. (52)

Restricting ourselves to the case where M = I, ||Q||HS = 1 and ||A||HS = 1, this is maximized for

the eigenfunction corresponding to the largest eigenvalue of A.

Lemma 3.4 (Maximum Trace Lemma). Let M = I, and let {ϕk}∞k=0 be the set of orthonormal eigenvec-

tors of A with eigenvalues {λk}∞k=0. Let λ = supk λk and λ = infk λk with associated eigenfunctions

ϕ and ϕ respectively if λ and λ are obtained for a finite k. Then, for systems driven by of the form

A = A+ aI,

sup
||Q||HS=1

trace(S∞Q) = sup
||Q||HS=1

∑
k

⟨S∞ϕk,Qϕk⟩ (53)

=(λ+ a) +

√
(λ+ a)2 + 1. (54)

and attains the supremum for Q = ⟨·, ϕ⟩ when λ is obtained for a finite k, and respectively obtains

the infimum for Q = ⟨·, ϕ⟩ when ϕ is attained for finite k.

Proof. Note that the operator (A2 + I) can be expressed as

A2 + I = A2 + 2aA+ (a2 + 1)I (55)

=

∞∑
k=1

λ2
k⟨·, ϕk⟩ϕk + 2aλk⟨·, ϕk⟩ϕk + (a2 + 1)⟨·, ϕk⟩ϕk

=

∞∑
k=1

(λ2
k + 2aλk + a2 + 1)⟨·, ϕk⟩ϕk

=

∞∑
k=1

((λk + a)2 + 1)⟨·, ϕk⟩ϕk.

Taking the positive root of the (necessarily positive) eigenvalues gives us the operator root,

(A2 + I)
1
2 =

∞∑
k=0

√
(λk + a)2 + 1⟨·, ϕk⟩, (56)

which then yields

S∞ =

∞∑
k=0

(
(λk + a) +

√
(λk + a)2 + 1

)
⟨·, ϕk⟩ϕk. (57)

First, suppose that ϕ is attained for a finite k. Then, setting Q = ⟨·, ϕ⟩ yields

trace(S∞Q) = (λ+ a) +

√
(λ+ a)2 + 1. (58)

As Q is constrained by ||Q||HS = 1 and the eigenbasis is orthonormal, assigning any positive value to

a different eigenfunction cannot increase this value.

Likewise, if the infimum λ is attained for finite k, the minimum value is attained for Q = ⟨·, ϕ⟩ and

trace(S∞Q) = (λ+ a) +
√
(λ+ a)2 + 1. (59)

If the supremum (or infimum, respectively) is not attained for finite k, then the limit λk→∞ = 0 implies

that the supremum (respectively infimum) value is

trace(S∞Q) = a+
√
a2 + 1 (60)

which can be made arbitrarily close by setting Q = ⟨·, ϕk⟩ for arbitrarily large k.
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3.3 Exponential discounting

The infinite time horizon problem with exponential discounting is presented below. Unlike the long-

term averaging problem, the value function is found by explicitly solving a Hamilton-Jacobi-Bellman

equation.

Lemma 3.5 (Infinite Horizon Discounting). Let ρ > 0. Then the infinite horizon discounted cost

performance functional is given by

Jρ(x0,u) = E[
∫ ∞

0

e−ρt(x∗
tMxt + u∗

tRut)dt]. (61)

This is minimized by ut = −R−1B∗S∞, where S∞ solves the discounted Algebraic Riccati equation

ρS∞ = S∞A∗ + AS∞ − S∞BR−1B∗S∞ +M. (62)

When B = R = I and A is symmetric, the unique positive symmetric solution is given by

Sρ
∞ = (A− ρ

2
I) + ((A− ρ

2
I)2 +M)

1
2 . (63)

Proof. For the existence and uniqueness of the solution, refer to [9, Section 2.6.1.3]. For a function

V : L2[0, 1] → R1, let DV be the Frechet derivative of V . Define the value function Vρ : L2[0, 1] → R1

Vρ(x) = ⟨x, Sρ
∞x⟩+ 1

ρ
trace(QSρ

∞), x ∈ L2[0, 1] (64)

be a classical solution of the Hamilton-Jacobi-Bellman equation of an infinite horizon discounted cost

performance problem, satisfying

ρVρ −
1

2
trace(QD2Vρ)− ⟨Ax, DVρ⟩ (65)

− inf
u
{⟨Bu, DVρ⟩+ ⟨x,Mx⟩+ ⟨u,Ru⟩} = 0.

After evaluating the Frechet derivatives DVρ = 2Sρ
∞x and D2Vρ = 2Sρ

∞, this is equivalent to

ρ(⟨x, Sρ
∞x⟩+ 1

ρ
trace(QSρ

∞)) (66)

− trace(QSρ
∞)− 2⟨Ax, Sρ

∞x⟩
− inf

u
{2⟨Bu, Sρ

∞x⟩+ ⟨x,Mx⟩+ ⟨u,Ru⟩} = 0.

Noting that the infimization holds for u = −RB∗Sρ
∞x, this is equivalent to

⟨x, ρSρ
∞x⟩ =2⟨Ax, Sρ

∞x⟩ − ⟨BR−1BSρ
∞x, Sρ

∞x⟩,
+ ⟨x,Mx⟩, ∀x ∈ L2[0, 1] (67)

and the result follows.

Remark 2. In the special case of B = R = M = I, the optimal discounted performance control decreases

the control input along all the direction of all eigenfunctions. This results in a weaker control input

for all actuators compared to the long-range averaging solution.

To illustrate Lemma 3.4 and Lemma 3.5, a selection of worst case scenarios are presented in

Table 1, comparing the S∞ value to the St value at T = 1 (with the local forcing term a = 0). In

each example, the underlying graphon A has only non-negative eigenvalues, and the best case scenario

has the same cost (namely, trace(S∞Q) = 1). Notably, the Erodos-Renyi Graphon A(α, β) = 0.5 and

A(α, β) = cos(2π(α − β)) have the same worst case value, due to the fact that they have the same

maximum eigenvalue.

When the relevant operators are infinite dimensional, the system cannot be fully simulated. How-

ever, when the operators are finite dimensional, the system can be fully analyzed as an N -dimensional

system.
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Graphon Max eigenvalue of A ||S∞Q||2H.S. ||Sρ
∞Q||2H.S., ρ = 1

A(x, y) = (x2 − 1)(y2 − 1) 0.533 1.666 1.034
A(x, y) = 0.5 (Erdos-Renyi) 0.5 1.618 1.000
A(x, y) = cos(2π(x− y)) 0.5 1.618 1.000
A(x, y) = 1−max(x, y) (UAG) 0.405 1.484 0.910
S.W. (σ = 0.1, γ = 0.3) 0.183 1.200 0.783

Table 1: A comparison of the worst case performance of various graphons with Hilbert-Schmidt norm bounded noise
covariance Q. Calculating the H.S. norm (trace(S∞Q))2 agrees with the maximum value calculated by Eq. (54). As
expected, the discounting problem with discount factor γ = 1 has a lower expected cost than the long-time averaging
problem.

4 Low rank graphons

Here, the theory described in [12] is extended to Q-noise systems. Define an invariant subspace of a

linear operator T by S ⊂ L2[0, 1] to be a subspace of L2[0, 1] such that, for all x ∈ S,

x ∈ S =⇒ Tx ∈ S. (68)

Denote the orthogonal complement of S to be the subspace S⊥, such that for all v ∈ S and all

v̆ ∈ S⊥, ⟨v, v̆⟩ = 0. This partitions L2[0, 1] into the two orthogonal spaces, S and S⊥, and hence

L2[0, 1] = S ⊕ S⊥. An operator T is said to be low rank (with respect to an invariant subspace S)
when, for all v̆ ∈ S⊥, Tv̆ = 0.

For a given linear Q-noise graphon process as generated by (14), with A = A + aI, B = B + bI,
and a Q-noise wt with covariance operator Q, make the following assumptions:

• (LRG1) S is spanned by a finite number of orthonormal L2[0, 1] functions denoted

f = (f1, ...fN ).

• (LRG2) The operators A and B are finite rank self-adjoint graphon operators which share the

non-trivial invariant subspace S. That is, for all v̆ ∈ S⊥, Av̆ = 0 and Bv̆ = 0.

• (LRG3) wt is finite dimensional, and has a representation of the form

wt =

N∑
k=1

√
λkfkW

k
t . (69)

Equivalently, the covariance operator Q is low rank with respect to S.

By (LRG1), the state process of a linear Q-noise graphon process as generated by (14) can be

decomposed into two orthogonal components

xt =: xf
t + x̆t, xf ∈ S, x̆ ∈ S⊥ (70)

where xf
t = (xt|S) is the orthogonal projection of xt into S and x̆t = (xt|S⊥) is the orthogonal

projection into S⊥. Hence, xf
t consists of a linear combination of elements of S and x̆ consists of a

linear combination of elements of S⊥. Similarly, decompose ut into

ut =: uf
t + ŭt. (71)

By the Q-noise axioms, wt is defined as a sum of weighted Wiener processes, each associated with

an eigenbasis of Q. Consequently, wt can also be decomposed into its orthogonal components with

respect to S and S⊥. This has the general form

wt =wf
t + w̆t, (72)
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where

wf
t :=(wt|S) (73)

=

N∑
r=1

⟨
∞∑
k=1

√
λkϕkW

k
t ,fr⟩fr

=

N∑
r=1

( ∞∑
k=1

√
λk⟨ϕk,fr⟩W k

t

)
fr,

w̆t :=(wt|S⊥) = wt −wf
t . (74)

By (LRG3), wt is low rank with respect to the common invariant subspace S of A and B, hence

wf
t = w, w̆t = 0, and x̆t is deterministic. Consequently, these processes evolve according to

dxf
t = ((A+ aI)xf

t + (B + bI)uf
t )dt+ dwt, (75)

dx̆t = (ax̆t + bŭt)dt, (76)

xf
0 ∈ RN , x̆0 ∈ L2[0, 1]. (77)

Notably, by the low rank assumptions on A and B, the orthogonal process x̆t is diagonal—each

point on the unit interval evolves as a single-dimensional linear differential equation. Because of this

decomposition, the system can be modelled as a finite dimensional system.

4.1 Projections onto the invariant subspace S

To project the low rank linear Q-noise graphon system to the finite dimensional invariant subspace S,
define the RN -valued state processes xf

t , u
f
t :

xf
t := [⟨xf

t ,f1⟩, ⟨x
f
t ,f2⟩, ..., ⟨fN ,xf

t ⟩], (78)

uf
t := [⟨uf

t ,f1⟩, ⟨u
f
t ,f2⟩, ..., ⟨fN ,uf

t ⟩], (79)

i.e., xf
t and uf

t are projections onto the coordinate space defined by f .

Similarly, define the following N ×N matrices

Aij := ⟨Af i,f j⟩, Bij := ⟨Bf i,f j⟩, (80)

Q = diag({λk}Nk=1), (81)

and let W f
t be an N dimensional Wiener process with covariance matrix Q. Then the state process

xf
t equivalently evolves according to the finite dimensional differential equation

dxf
t = ((A+ aI)xf

t + (B + bI)uf
t )dt+ dW f

t , (82)

xf
0 = [⟨xf

0 ,f1⟩, ⟨x
f
0 ,f2⟩, ..., ⟨fN ,xf

0 ⟩]. (83)

This construction allows for a low-dimensional analysis of xf
t and uf

t , which can then be mapped

back into the L2[0, 1] space by associating each element [uf
t ]k with its respective basis function fk,

uf
t =

∑
k=1

[uf
t ]kfk =: uf

t ◦ f . (84)

This approach is particularly useful for linear quadratic problems on low rank graphon systems.
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4.2 Low rank linear quadratic control

Consider a graphon Q-LQG optimal control problem with the operators A = A+ aI and B = B + bI,
and cost operators M, MT , and R.

As with the standard Q-LQG problem, the objective function is

J(u,x0) = E[
∫ T

0

(x∗
tMxt + u∗

tRut)dt+ x∗
TMTxT ]. (85)

By taking the orthogonal decomposition of xt and ut,

x∗
tMxt =(xf

t + x̆t)
∗M(xf

t + x̆t) (86)

=(xf
t )

∗Mxf
t + (x̆t)

∗Mx̆t

and

u∗
tRut =(uf

t )
∗R(uf

t ) + (ŭt)
∗R(ŭt). (87)

As with the A and B operators, the N ×N real matrices M and R can be defined as

Mij := ⟨Mf i,f j⟩, Rij := ⟨Rf i,f j⟩, (88)

MT ij = ⟨MTf i,f j⟩. (89)

Then, the optimal control problem can be decomposed into the following N -dimensional LQG opti-

mal control problem (which can be solved using standard Riccati equation methods) and an L2[0, 1]

deterministic orthogonal process,

J(u,x0) =Jf (uf , xf
0 ) + J̆(ŭ, x̆0), (90)

Jf (uf , xf
0 ) :=E[

∫ T

0

((xf
t )

∗Mxf
t + (uf

t )
∗Ruf

t )dt (91)

+ (xf
T )

∗MTx
f
T ],

dxf
t =((A+ aI)xf

t + (B + bI)uf
t )dt+ dCf

t , (92)

xf
0 =[⟨xf

0 ,f1⟩, ..., ⟨x
f
0 ,fN ⟩], xf

0 ∈ RN , (93)

J̆(ŭ, x̆0) =

∫ T

0

(x̆∗
tMx̆t + ŭ∗

tRŭt)dt+ x̆∗
TMT x̆T , (94)

dx̆t =(ax̆t + bŭt)dt. (95)

x̆0 ∈L2[0, 1] (96)

Further, when M, MT , and R are low rank with respect to f except for a diagonal constant, then the

minimizing solution to J̆(ŭ, x̆0) is effectively one-dimensional, as the feedback control is diagonal with

identical coefficients for each α ∈ [0, 1].

Theorem 4.1. Define a Q-LQG problem with coefficients {A+aI,B+bI,Q,M+mI,MT+mtI,R+rI}
where all operators are rank N with respect to an orthogonal subspace S, whose projections onto S
are denoted {A,B,Q,M,MT , R} respectively. Then, the optimizing control u0

t is given by

u0
t :=uf

t + ŭt, u0
t ∈ L2[0, 1], t ∈ [0, T ] (97)

uf
t :=

∑
k=1

[−(R+ rI)−1(B + bI)∗Ptx
f
t ]kfk, (98)

ŭt :=− b2

r
ptx̆t, (99)
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where Pt and pt are time-varying operators solving the following N -dimensional and one dimensional

Riccati equations respectively,

−Ṗt =(A+ aI)∗Pt + Pt(A+ aI) (100)

− Pt(B + bI)∗(R+ rI)−1(B + bI)Pt

+ (M +mI),

PT =(MT +mT I), Pt ∈ RN×N (101)

ṗt =2apt −
b2

r
p2t +m, (102)

pT =mT . (103)

Proof. This result is analogous to the deterministic finite dimensional graphon LQR solution shown

in [12]. The Riccati equations (100-101) give the standardN -dimensional and one-dimensional operator

solution Pt and pt respectively. Using the solution Pt, the optimizing controls for the finite-rank

subspace LQG problem (with respect to the N -dimensional state vector xf
t is given by

uf
t =− (R+ rI)−1(B + bI)∗Ptx

f
t . (104)

By associating the kth entry of the control vector with the corresponding basis function fk, the finite

dimensional controls can be mapped back to the original space.

Similarly, while the orthogonal state complement x̆t is infinite dimensional, the feedback gain is

one-dimensional due to the diagonal nature of the state process , and the optimal control can be found

with by solving the scalar Riccati equations (102-103).

This gives the optimal controls for uf
t and ŭt, and hence for u0

t .

5 Numerical examples

For the following numerical simulations, the unit interval [0, 1] is partitioned into N segments, and the

kth partition segment Ik is denoted as

I1 := [0,
1

N
], Ik := (

k − 1

N
,
k

N
]. (105)

In each example, N = 50, and the state of the simulated systems follow the form

dx
[N ]
t = (A[N ]x

[N ]
t + B[N ]u

[N ]
t )dt+ dw

[N ]
t , (106)

as in Equation (24). This discretized system is used as a approximate solution to the infinite dimen-

sional system.

In the following sections, A = A+0.1I and B = 0.1I, where A is a symmetric graphon and I is the
identity operator. To simulate the Q-LQG problems, we set a terminal time of T = 1 and implemented

Euler’s method with a time increment of ∆t = 0.001.

There are three key results to be presented: first, the convergence of a linear quadratic Gaussian

finite graph system to a graphon system. Next, that a graph system with a low rank graphon limit

can be efficiently represented by a low rank decomposition. Finally, we demonstrate that the finite

time horizon feedback solution converges to the infinite time horizon solution. In order to compare

trajectories, we introduce the root squared distance of two system trajectories xt and yt at time t,

rmd(xt,yt) =
√

⟨xt − yt,xt − yt⟩. (107)
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5.1 Low rank finite graph convergence

Consider a finite graph generated using the following W-random graph [21] kernel:

A(α, β) = (α2 − 1)(β2 − 1), α, β ∈ [0, 1]. (108)

Clearly, A is a rank one graphon, with a basis function given by

f(α) =
(α2 − 1)√∫ 1

0
(β2 − 1)2dβ

, α ∈ [0, 1] (109)

For each pair of gridpoints of the partition I, independently sample a Bernoulli random variable to

generate an edge between that pair, with edge probability given by

P(eij = 1) = A(αi, αj), αi, αj ∈ [0, 1], i, j ∈ {1, ..., N}. (110)

This creates a graph of 50 nodes, shown in Figure 3 along with its adjacency matrix. Despite having

a rank one limit, the finite adjacency matrix A[N ] is full rank.

Figure 3: Left: a fifty node W-random graph. Right: the associated adjacency matrix to be used for the numerical
simulations. Yellow squares represent an edge, blue squares represent a lack of an edge. The adjacency matrix is rank 49,
despite the limit system being rank one.

As with Section 3.2, to simulate the worst case scenario, the Q-noise disturbance is placed on the

basis function f ,

wt(α) = f(α)Wt, α ∈ [0, 1]. (111)

Then, the finite graph LQG problem can be solved with standard methods, and the limit system can

be solved with Theorem 3.3. The finite graph system trajectory is shown in Figure 4-I, and the low

rank system created by projecting A[N ] onto the normal basis function f is given by Figure 4-II. This

is accomplished by simulating the system

dxf
t =

(
(⟨A[N ]f ,f⟩+ 0.1)xf

t + 0.1uf
t

)
dt+ dW f

t , (112)

dx̆t = (0.1x̆t + 0.1ŭt)dt, t ∈ [0, 1], (113)

xf
0 ∈ R1, x̆0 ∈ L2[0, 1], (114)
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where ⟨A[N ]f ,f⟩+0.1 is simply equal to the constant 1.7251. Even though the finite graph’s adjacency

matrix is full rank, the (piecewise constant) system projected onto the eigenspace spanned by f

captures the behavior of the finite trajectory

Figure 4: Top: the system generated with the finite graph using the piecewise constant graphon A[N ]. Middle: The
system trajectory generated when A[N ] is projected onto the eigenspace spanned by f . Bottom: the root squared distance
of the finite graph system trajectory and the projected graph system trajectory. The root squared distance has a maximum
deviation of 0.023, showing that the two trajectory surfaces are very similar.

The limit system generated with A in place of A[N ] is shown in Figure 5-I, and the root squared

difference over time of the trajectory of the finite graph system and the limit system are shown in

Figure 5-II, calculated with
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Figure 5: Top: the trajectory of the system under the rank one limit control. Bottom: the positive root of the squared
distance between the finite graph system and the limit system over time.

5.2 Long-range average comparison

This can be found using the analysis of Section 3.2. We apply the infinite horizon control found

using the algebraic Riccati equation solution (51), and the resulting trajectory is shown for a terminal

time of T = 10 in Figure 6-I. A comparison of the Hilbert-Schmidt norms of both St, the time-varying

solution to the differential Riccati equation associated with the system and the infinite horizon solution

of the algebraic Riccati equation is shown in Figure 6-II. The time varying Riccati solution converges

exponentially to the algebraic Riccati solution in the interval t = [0, 8] as t tends to 0, and it diverges

from the infinite horizon solution as t approaches the terminal time.

6 Future directions

There are three immediate future directions for this work. First, the extension to graph systems where

each node has multiple states. Second, the extension to graphs which are embedded in metric spaces

using vertexon theory [3]. So long as the fundamental space the system is embedded in is a Hilbert

space, the Q-noise formalism holds. Third, the systems considered in this work have strictly linear

noise. This can be expanded into systems of the form of [22], where the noise intensity depends on the

state of the system.
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Figure 6: I: the trajectory of a system under infinite horizon control. II: The Hilbert-Schmidt norms of the infinite horizon
Riccati equation solution and the time-varying Riccati equation solution.

This paper concerned only centralized control with full observations. One extension would be to

apply the Kalman filter to systems with partial observations, and to define a separation principle of

the Q-LQG problem and the optimal filtration.

Appendix

A Proof of Theorem 2.3

Recall

x
[N ]
t =Φ[N ](t, 0)x0 +

∫ t

0

ΦN ](t, s)dw[N ]
s . (115)

Then,

E[||x[N ]
t − x

[M ]
t ||2] (116)
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≤ E[||Φ[N ](t, 0)x
[N ]
0 − Φ[M ](t, 0)x

[M ]
0 ||2]

+ E[||
∫ t

0

Φ[N ](t, s)dw[N ]
s −

∫ t

0

Φ[M ](t, s)dw[M ]
s ||2].

The Cauchy condition is established in two steps. To address the first expectation, eA
[N]tx[M ] is

added and subtracted inside the norm, which allows assumptions (A0),(B1) in conjunction with (A1)

to be invoked to bound the term by any ϵ′0 > 0 for sufficiently large N and M .

Next, define x̃
[N ]
t by:

x̃
[N ]
t =

∫ t

0

Φ[N ](t, s)dw[N ]
s . (117)

Then, the second expectation can be evaluated by using the Ito isometry for one-dimensional adapted

processes,

E[||
∫ T

0

Xtdwt||22] = E[
∫ T

0

||Xt||22dt]. (118)

Then, via the same approach of adding and subtracting
∑N

k=1 e
A[N]SMk cMk,r, the definition of the operator

norm gives

E[||
∫ t

0

Φ[N ](t, s)dw[N ]
s −

∫ t

0

Φ[M ](t, s)dw[M ]
s ||22] (119)

≤
∫ t

0

(
||Φ[N ](t, s)||2op·

M∑
r=1

||(
N∑
i=1

SNi cNi,r −
M∑
j=1

SMj cMj,r)||22
)
ds

+

∫ t

0

(
||Φ[N ](t, s)− Φ[M ](t, s)||2op·

M∑
j=1

M∑
r=1

||SMj cMj,r||22
)
ds

+

∫ t

0

||Φ[N ](t, s)||2opds
N∑

r=M+1

N∑
i=1

||SNi ||22|cNi,r|2.

Hence, by the Cauchy property assumptions (A2, A3), the boundedness assumption (B0), and noting

that for all i, ||SNi ||2 = 1
N2 , and by choosing a smaller ϵ2 if necessary, we see that for any ϵ′1 > 0, and

all sufficiently large N and M ,

E[||x̃[N ]
t − x̃

[M ]
t ||22] (120)

<

(∫ t

0

||Φ[N ](t, s)||2opds ϵ2 + ϵ1
C

N2

+

∫ t

0

||Φ[N ](t, s)||2opds
C

N2

)
< ϵ′1.

By the Cauchy-Schwartz inequality applied to the inner product ⟨X,Y ⟩ = E[XY ],

E[||x̃[N ] − x̃[M ]||2] =
√

E[1 · ||x̃[N ] − x̃[M ]||2] (121)

≤
√
E[12]

√
E[||x̃[N ] − x̃[M ]||22]

<
√
ϵ′1
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Hence for any ϵ > 0, there exists N and M sufficiently large such that
√
ϵ′1 < ϵ

2 and ϵ0 < ϵ
2 giving

E[||x[N ]
t −x

[M ]
t ||2] < ϵ. Then, by completeness of L2[0, 1], there exists x∞

t such that E[||x[N ]
t −x∞

t ||2] →
0 as N goes to infinity, yielding the desired result. □

B Proof of Lemma 3.2

This lemma is presented in [8] and is included here for completeness. Apply the operator norm to both

sides of Equation (41). As R (and hence R−1) is strictly positive, −SN
t BNR−1BNSN

t is negative, and

by assumption {AN , BN , QN ,MN ,MN
T , RN} converges to {A,B,Q,M,MT , R} in the operator norm

sense,

||SN
t ||op ≤ ||MN

T ||op +

∫ T

t

(||ANSN
t + SN

t AN

− SN
t BNR−1BNSN

t +MN ||op)dt (122)

≤ ||MN
T ||op +

∫ T

t

(4||A||op||SN
t ||op + 2||M||op)dt. (123)

Then, by Gronwall’s inequality, ||SN
t ||op satisfies

||SN
t ||op ≤(2||MT ||op + 2(T − t)||M||op)

· exp(4(T − t)||A||op). (124)

By assumption, A,M,MT ,R are bounded, and hence there exists 0 < cN < ∞ such that

||SN
t ||op ≤ 2||MT ||op + (T − t)cN , ∀t ∈ [0, T ], N > N0. (125)

□

C Proof of Theorem 3.3

This analysis is also presented in [8], but is included here for completeness. Recall that the linear

quadratic Q-noise problem is solved by

ut = −R−1B∗Stxt, t ∈ [0, T ], (126)

u
[N ]
t = −(R[N ])

−1
B[N ]∗S

[N ]
t x

[N ]
t , t ∈ [0, T ], (127)

which places the system in linear feedback form. Then, by Theorem 2.3, x
[N ]
t converges to xt if

lim
N→∞

S
[N ]
t = St, 0 ≤ t ≤ T (128)

in the operator norm sense. Let

∆N
t := St − S

[N ]
t , 0 ≤ t ≤ T. (129)

Define the evolution of ∆N
t in terms of the evolution of St and S

[N ]
t ,

∆̇N
t =Ṡt − Ṡ

[N ]
t (130)

=(A[N ]S
[N ]
t − ASt) + (S

[N ]
t A[N ]∗ − StA∗)

− (S
[N ]
t B[N ]R[N ]−1

B[N ]∗S
[N ]
t − StBR−1B∗St)

+ (M[N ] −M),
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∆N
T =MT −M[N ]

T , (131)

and hence

∆N
t =MT −M[N ]

T (132)

+

∫ T

t

(A[N ]S
[N ]
t − ASt) + (S

[N ]
t A[N ]∗ − StA∗)

− (S
[N ]
t B[N ]R[N ]−1

B[N ]∗S
[N ]
t − StBR−1B∗St)

+ (M[N ] −M)dt.

Focusing on the first term A[N ]S
[N ]
t − ASt:

A[N ]S
[N ]
t − ASt = A[N ]S

[N ]
t − ASt + A[N ]St − A[N ]St

= (A[N ] − A)St − A[N ]∆N
t . (133)

Similarly,

S
[N ]
t A[N ]∗ − StA∗ = St(A[N ]∗ − A∗)−∆N

t A[N ]∗ (134)

For the quadratic term, let

H = BR− 1
2 , (135)

H [N ] = B[N ]R[N ]−
1
2 , (136)

where R−1 = R− 1
2R− 1

2∗.

Then,

StHH∗St = StBR−1B∗St, (137)

S
[N ]
t H [N ]H [N ]∗S

[N ]
t = S

[N ]
t B[N ]R[N ]−1

B[N ]∗S
[N ]
t , (138)

S
[N ]
t H [N ]H [N ]∗S

[N ]
t − StHH∗St (139)

= S
[N ]
t H [N ]H [N ]∗S

[N ]
t − StHH∗St

+ StHH [N ]∗S
[N ]
t − StHH [N ]∗S

[N ]
t

+ StH(H [N ]∗S
[N ]
t −H∗St)

Employing the identities of the form used in (133) and (134) with A = H and A[N ] = H [N ], this is

equal to

S
[N ]
t H [N ]H [N ]∗S

[N ]
t − StHH∗St

=
(
St(H

[N ] −H)−∆N
t H [N ]

)
H [N ]∗S

[N ]
t

+ StH
(
(H∗ −H [N ]∗)St −H [N ]∗∆N

t

)
. (140)

Using equations (133), (134), (140), define the operator valued functions PN , Y N ,

PN (t) :=(M[N ] −M) + (A[N ] − A)St (141)

+ St(A[N ]∗ − A∗)

+ St(H
[N ] −H)H [N ]∗S

[N ]
t

+ StH(H∗ −H [N ]∗)St,
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Y N (t,∆N
t ) :=− (A[N ]∆N

t +∆N
t A[N ]∗ (142)

+ ∆N
t H [N ]H [N ]∗S

[N ]
t + StHH [N ]∗∆N

t ),

in terms of which (94) yields

∆N
t = (MT −M[N ]

T ) +

∫ T

t

PN (t) + Y N (t,∆N
t )dt. (143)

Then,

||∆N
t ||op ≤

∫ T

t

||PN (s) + Y N (s,∆N
s )||opds (144)

+ ||MT −M[N ]
T ||op

≤
∫ T

t

||PN (s)||opds+
∫ T

t

||Y N (s,∆N
s )||opds

+ ||MT −M[N ]
T ||op. (145)

Further, define the time process ZN (t) : [0, T ] → R,

||Y N (t,∆N
t )||op ≤(2||A[N ]||op + ||H [N ]H [N ]∗S

[N ]
t ||op

+ ||StHH [N ]∗||op)||∆N
t ||op

=:ZN (t)||∆N
t ||op. (146)

Then, by applying Gronwall’s inequality to ||∆N
t ||op in (146),

||∆N
t ||op ≤(||MT −M[N ]

T ||op (147)

+

∫ T

t

||PN (s)||opds) exp(
∫ T

t

||ZN (s)||opds).

By assumption A[N ] → A, H [N ] → H, M[N ] → M, M[N ]
T → MT in operator norm, and as St, S

[N ]
t are

uniformly bounded operators for all N, t,

||PN (t)||op (148)

= ||(M[N ] −M) + (A[N ] − A)St

+ St(A[N ]∗ − A∗)

+ St(H
[N ] −H)H [N ]∗S

[N ]
t

+ StH(H∗ −H [N ]∗)St||op
≤||(M[N ] −M)||op + ||(A[N ] − A)||op||St||op (149)

+ ||St||op||(A[N ]∗ − A∗)||op
+ ||St||op||(H [N ] −H)||op||H [N ]∗||op||S[N ]

t ||op
+ ||St||op||H||op||(H∗ −H [N ]∗)||op||St||op.

Hence, by the convergence of M[N ]
T → MT and Equation (149), as N → ∞,

(||MT −M[N ]
T ||op +

∫ T

t

||PN (s)||opds) → 0 (150)

and ||Z(t)||op < ∞ =⇒ exp(

∫ T

t

||Z(s)||opds) < ∞. (151)
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Hence, by (147)

||∆N
t ||op → 0. (152)

As ||∆N
t ||op converges to zero, S

[N ]
t converges to St in the operator norm sense as N increases to

infinity. Then the finite dimensional network operator (A[N ] −B[N ]K[N ]
t ) converges to the operator on

the graphon system (A− BKt) and Theorem 2.3 can be applied, yielding

E[||x[N ]
t − xt||2] < ϵ, (153)

as required. □
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