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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2024-61
https://www.gerad.ca/en/papers/G-2024-61
https://www.gerad.ca/en/papers/G-2024-61


Classical solutions to graphon MFG equations with affine
control: Lipschitz mappings on Hölder spaces
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H3T 2A7
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Abstract : The solution of a graphon mean field game (GMFG) is characterized by a Hamilton-
Jacobi-Bellman (HJB) equation and a Fokker-Planck-Kolmogorov (FPK) equation linked together via
a graphon coupling function. We analyze the classical solution of the GMFG equation system on
Hölder spaces. We study the best response control problem and specify the operator that regenerates
the graphon coupling function. This operator is shown to be a Lipschitz mapping and is contractive
under some conditions, which leads to the existence and uniqueness of the solution of the GMFG
equation system.

Résumé : La solution de l’équation du jeu de champ moyen du graphon (GMFG) est caractérisée
par une équation HJB et une équation FPK couplées via un champ moyen de graphon. Une analyse
de la solution classique du système d’équations GMFG sur des espaces Holder sont prévus. Dans ce
cadre, une solution au problème de contrôle de la meilleure réponse est dérivée, donnant un opérateur
qui régénère le terme de champ moyen du graphon. Cet opérateur se révèle être une application
Lipschitzienne contractive dans des conditions spécifiées qui donnent par conséquent l’existence et
l’unicité de la solution du système d’équations GMFG.

Mots clés : Grands réseaux, jeux de champ moyen
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1 Introduction and the infinite population model

Graphon mean field games provide a significant generalization of the standard mean field game frame-

work [15, 19] by incorporating heterogeneity of spatially distributed agents. General nonlinear GMFG

models have been introduced in the previous work [5]. For further references, see [3, 13].

Consider the state equation of a representative agent at node α (to be called the α-agent):

dXα
t = [a(Xα

t ) + but + c(Xα
t )z

α(t)]dt+
√
2dWα

t , (1)

where Xα
t ∈ R is the state, ut ∈ R the control, and Wα

t ∈ R a standard Brownian motion. The initial

state Xα
0 has probability density function pα(x). The control gain b is nonzero. For simplicity, we

consider a scalar state Xα
t , and will discuss later the extension to the vector state case. The graphon

network coupling term is given by

zα(t) =

∫ 1

0

∫
R
g(α, β)χ(x)µβ(t, dx)dβ, (2)

where g : [0, 1]2 → [0, 1] is the graphon function, and µβ(t, dx) the distribution of Xβ
t . The averaging

in the right hand side of (2) is based on a function χ of the state. In the subsequent analysis, z as a

function of (t, α) will be called the graphon coupling function. The cost of the α-agent is

Jα = E

∫ T

0

[
L(t,Xα

t , z
α(t)) + ru2t

]
dt, (3)

where the control penalty parameter r > 0 is a constant.

The above graphon interaction model may be interpreted according to the limit of a finite population

of agents distributed over dense networks. Consider a network of vertices {1/N, · · · , (N − 1)/N, 1}.
The agent at node i/N has the state process

dXi
t = [a(Xi

t) + buit + c(Xi
t)z

N,i(t)]dt+
√
2dW i

t , 1 ≤ i ≤ N,

where the coupling term zN,i is given by

zN,i(t) =
1

N

N∑
j=1

gNijχ(X
j(t)).

Similarly, an individual cost can be specified using L(t,Xi
t , z

N,i(t)). The N × N dimensional matrix

gN := (gNij )1≤i,j≤N is symmetric with gNij ∈ [0, 1], and is interpreted as the adjacency matrix of an

undirected graph. The matrix gN may be represented as a step function defined on the unit square

[0, 1]2. Suppose when N → ∞, the sequence of step functions converges in a suitable sense to the

graphon g while i/N approaches α ∈ [0, 1]. Subsequently, zN,i(t) is further approximated by zα(t)

in (2). Accordingly, Xi
t is approximated by Xα

t which is labelled by α taken from the continuum [0, 1]

as the vertex set.

Our previous work [5] introduces a general nonlinear GMFG model with control taking its value

from a compact set, and the existence and uniqueness of a solution is established if certain parameters

fulfill a contraction condition when the graphon weighted mean field term is iterated. It further

establishes an ϵ-Nash equilibrium property for the resulting decentralized strategies applied by a large

but finite population. For a GMFG model with affine dynamics, the existence and uniqueness of a

solution is established in [3] for the graphon coupled HJB-FPK equation system by extending the

Schauder fixed point method with symmetric players in [8]. More recently, ref. [13] analyzes a linear-

quadratic GMFG and develops subspace-based numerical computation techniques. The reader may

refer to [2] for the analysis of stochastic mean field dynamics with graphon coupling, [9, 22] for static

graphon games, [17] for general dynamic games with agents distributed over sparse networks, [6, 7, 11]
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for extension of graphon mean field game modeling to sparse networks, and [23] for learning algorithms

in graphon mean field games.

Note that the contraction condition in [5] is generally difficult to verify while [3] requires the state

to be from a torus. In this paper we allow the state lying in a Euclidean space. By considering

nonlinear state dynamics and linear control with quadratic penalty, we will be able to exploit the

analytical property of the operator governing the mean field iterations. More specifically, we will prove

a Lipschitz property of such a mapping, which so far has not been well explored in the literature.

In our current setup, we may identify nontrivial models to verify the contraction condition and get

existence and uniqueness without the monotonicity condition for MFGs [8] and GMFGs [3].

1.1 The best response control problem

Let zα(·) be fixed. The α-agent solves its best response control problem with dynamics and cost given

by (1) and (3). Let V α(t, x) denote the value function of the α-agent. The HJB equation takes the

form:

0 =V α
t (t, x) + V α

xx +min
u∈R

{
V α
x [a(x) + bu+ c(x)zα(t)] + ru2

}
(4)

+ L(t, x, zα(t)),

where V α(T, x) = 0. The minimizer is û = −bV α
x /(2r). Denote

b0 =
b2

4r
.

Equation (4) is written as{
0 = V α

t + V α
xx + V α

x [a(x) + c(x)zα(t)]− b0(V
α
x )2 + L(t, x, zα(t)),

V α(T, x) = 0.
(5)

Given the control law u = −bV α
x /(2r), we have the closed-loop state process

dXα
t = [a(Xα

t )− 2b0V
α
x (t,Xα

t ) + c(Xα
t )z

α(t)]dt+
√
2dWα

t . (6)

Let mα(t, x) denote the probability density of Xα
t . The FPK equation of mα is given by{

mα
t = mα

xx − ∂x
{
mα(t, x)[a(x)− 2b0V

α
x (t, x) + c(x)zα(t)]

}
,

mα(0, x) = pα(x).
(7)

In the derivation of the above HJB equation and FPK equation, we have assumed that zα is given.

To find a solution to the GMFG, we need to determine zα by imposing condition (2).

1.2 The GMFG equation system

The solution of the GMFG is described by the equation system:

0 =V α
t + V α

xx + V α
x [a(x) + c(x)zα(t)]− b0(V

α
x )2 + L(t, x, zα(t)), (8)

mα
t =mα

xx − ∂x
{
mα(t, x)[a(x)− 2b0V

α
x (t, x) + c(x)zα(t)]

}
, (9)

where V α(T, x) = 0 and mα(0, x) = pα(x), α ∈ [0, 1] and

zα(t) =

∫ 1

0

∫
R
g(α, β)χ(x)mβ(t, x)dxdβ. (10)
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We call (10) the consistency condition, where the right hand side is interpreted as the graphon weighted

nonlinear average of the states of all agents distributed over the network.

Our existence analysis will employ a fixed point argument. We regard zα(t) as a continuous

function of two variables (t, α) ∈ [0, T ] × [0, 1], and call it the graphon coupling function. Given z

from a suitably selected set Z (to be specified subsequently), for each α, we solve Equation (5) and

determine the feedback control law û for the α-agent. Next, we obtain mα from the FPK Equation (7).

Finally, we determine z1 ∈ Z by the rule:

zα1 (t) =

∫ 1

0

∫
R
g(α, β)χ(x)mβ(t, x)dxdβ, ∀α ∈ [0, 1], (11)

which is equivalently written using an operator Φ:

z1 = Φz.

Note that the right hand side of (11) depends on z, which has been used to determine (V α)0≤α≤1 and

subsequently (mβ(t, x))0≤β≤1. So the GMFG solution is formulated as solving the fixed point problem

z = Φz, z ∈ Z.

We make the following assumptions:

(A1) The functions a(x), ax(x), c(x), and cx(x) are bounded continuous functions, and ax, cx are both

in the Hölder space Cγ(R) with Hölder exponent γ ∈ (0, 1).

(A2) L is nonnegative, bounded and continuous in (t, x, z) ∈ [0, T ]× R2, and

sup
t,x,z

L(t, x, z) ≤ L0.

The partial derivatives Lt, Lx, Lz, Lzt, Lzx, Lzz exist and are bounded and continuous on

[0, T ]×R2.

(A3) The initial probability density function pα(x) is continuous in (α, x) ∈ [0, 1] × R and pα(·) ∈
C2+γ(R).

(A4) χ is bounded, Lipschitz continuous (with Lipschitz constant Lip(χ)), and∫
R
|χ(x)|dx =: Cχ <∞.

(A5) g : [0, 1]2 → [0, 1] is a measurable function, and g maps C([0, 1]) to C([0, 1]), i.e., given h ∈
C([0, T ]), the mapping

α 7→
∫ 1

0

g(α, β)h(β)dβ, α ∈ [0, 1],

is a continuous function defined on [0, 1].

In the above, we use C([0, T ]) to denote the set of R-valued continuous functions defined on [0, T ].

The Hölder spaces Cγ(R) and C2+γ(R) are defined below.

1.3 Notation

If the function h(x) is defined on a set Q ⊂ Rn, we denote the norm |h|0;Q = supx∈Q |g(x)| and the

Hölder semi-norm [h]γ;Q = supx,x′ |h(x)− h(x′)|/|x− x′|γ for γ ∈ (0, 1). If f(t, x) is defined on the set

QT = [0, T ]×Q, define the Hölder semi-norms (see [16])

[f ]γ/2,γ;QT
= sup

(t,x),(s,y)∈QT

|f(t, x)− f(s, y)|
(|t− s|1/2 + |x− y|)γ

,
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and

[f ]1+γ/2,2+γ,QT
= [ft]γ/2,γ;QT

+
∑
i,j

[fxixj ]γ/2,γ;QT
.

Denote the Hölder norms

|h|γ;Q =|h|0;Q + [h]γ;Q,

|f |γ/2,γ;QT
=|f |0;QT

+ [f ]γ/2,γ;QT
,

|f |1+γ/2,2+γ;QT
=|f |0;QT

+ |ft|0;QT
+
∑
i

|fxi |0;QT

+
∑
i,j

|fxixj
|0;QT

+ [f ]1+γ/2,2+γ;QT
.

The subscript Q or QT in the norm/semi-norm may be omitted if it is clear from the context. The

Hölder space Cγ/2,γ(QT ) (resp., C
1+γ/2,2+γ(QT )) consists of all functions with |f |γ/2,γ;QT

<∞ (resp.,

|f |1+γ/2,2+γ;QT
< ∞). The Hölder space C2+γ(Q) is similarly defined with the norm |h|2+γ;Q =

|f |0;Q +
∑

i |fxi
|0;Q +

∑
i,j |fxixj

|0;Q +
∑

i,j [fxixj
]γ;Q. We will solve the HJB Equation (5) and the

FPK Equation (7) in the Hölder space C1+γ/2,2+γ([0, T ] × R). We consider the case with x being a

scalar. The general case may be treated similarly.

2 The HJB equation and FPK equation with a given z

Consider the following parabolic equation

∂tu(t, x)−∆u(t, x) + ⟨a1(t, x), ∂xu(t, x)⟩+ a0(t, x)u(t, x) = f(t, x), (12)

where ∆ is the Laplacian operator, u(0, x) = ψ(x), and t ∈ [0, T ], x ∈ Rn. The function a1 is Rn-valued

with its k-th component denoted by a1,k.

Theorem 1. ([18, 21]) Suppose a1,k, a0, f ∈ Cγ/2,γ([0, T ] × Rn), and ψ ∈ C2+γ(Rn). Then Equa-

tion (12) has a unique solution u from the class C1+γ/2,2+γ([0, T ]× Rn) and for some constant K0,

|u|1+γ/2,2+γ ≤ K0(|f |γ/2,γ + |ψ|2+γ). (13)

Remark 1. When the coefficients a0 and a1 are allowed to change within two given sets, the constant

K0 can be selected depending only on the upper bound of the Hölder norms of a0 and a1.

2.1 The Hopf-Cole transformation

Fix α and consider zα(·) as a Hölder continuous function of t ∈ [0, T ]. We apply the Hopf-Cole

transformation w = e−b0V
α

with b0 = b2/(4r) and rewrite Equation (5) in the following form:

0 =wt + wxx + wx[a(x) + c(x)zα(t)]− b0wL(t, x, z
α(t)), (t, x) ∈ (0, T )× R, (14)

where w(T, x) = 1.

Theorem 2. Suppose that Assumptions (A1)–(A2) hold with ax, cx ∈ Cγ(R), and that zα ∈ Cγ/2([0, T ])

is given. Then the following holds: (i) Equation (14) has a unique solution w in the class

C1+γ/2,2+γ([0, T ]× R) and moreover e−b0L0T ≤ w ≤ 1; (ii) Equation (5) has a unique solution V α in

the class C1+γ/2,2+γ([0, T ]× R).

Proof. Under Assumption (A1), a(x) + c(x)zα(t) and L(t, x, zα(t)) are both in Cγ/2,γ([0, T ]×R). By
Theorem 1 we obtain a unique solution w for (14) from the class C1+γ/2,2+γ([0, T ]×R). Moreover, by

the maximum principle of the Cauchy problem [18, Chapter II, Theorem 2.5], we can show

|w(t, x)| ≤ sup
x

|w(T, x)| = 1, ∀t ∈ [0, T ], x ∈ R. (15)
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Note that Equation (14) alone does not immediately yield the property w > 0, which is needed for using

the transformation V α = −b−1
0 lnw to determine a solution of (5). Below we will develop an iterative

procedure to construct a solution for Equation (5). The idea is to repeatedly raise a conservative lower

bound of w so that the magnitude of the lower bound is maintained.

Step 1. By Theorem 1, for some fixed constant C0, we have

|w|1+γ/2,2+γ ≤ C0|w(T, ·)|2+γ = C0. (16)

Take some fixed η0 < T such that

e−b0L0T

2|η0|
≥ C0 + 1. (17)

We claim that w(t, x) ≥ 1
2e

−b0L0T holds for all t ∈ [T − η0, T ] and x ∈ R. Otherwise, by using

the terminal condition at T and by the mean value theorem, there would exist at least one point

(t0, x0) with t0 ∈ [T − η0, T ] such that |wt(t0, x0)| ≥ C0 + 1, which contradicts (16).

Now on [T − η0, T ]×R, we take V α(t, x) = −b−1
0 lnw(t, x). Accordingly, with t ≥ T − η0, we get

boundedness of V α, V α
t , V α

x and V α
xx on [T − η0, T ]× R.

Step 2. Given the boundedness of V α and of its derivatives on [T − η0, T ] × R, we may interpret

V α as the value function of an optimal control problem (see e.g. [12, Chapter VI]) that has

dynamics (1) and cost (3) redefined on time horizon [T − η0, T ]. Hence 0 ≤ V α(t, x) ≤ L0T for

t ∈ [T − η0, T ]. (We do not attempt to make the upper bound tight.) Subsequently, we have the

updated estimate e−b0L0T ≤ w(t, x) ≤ 1 for t ∈ [T − η0, T ], x ∈ R.
Step 3. Consider [T−2η0, T ]. We similarly have 1

2e
−b0L0T ≤ w(T−t, x) ≤ 1 for all t ∈ [T−2η0, T−η0].

Then by relating to an optimal control problem on [T − 2η0, T ] as in step 2, we show w(t, x) ≥
e−b0TL0 for t ∈ [T − 2η0, T − η0]. After a finite number of iterations, we can cover the whole

interval [0, T ], where the last step treats an interval of the form [0, T−kη0] with 0 < T−kη0 ≤ η0.

Finally, we conclude that e−b0L0T ≤ w(t, x) ≤ 1 for all t ∈ [0, T ] and x ∈ R. This accordingly

determines a solution V α = −b−1
0 lnw for (5) on [0, T ] × R. The solution V α from the class

C1+γ/2,2+γ([0, T ]× R) is unique by the uniqueness result of w.

Remark 2. If the model has a vector stateXα
t ∈ Rn, and ut is Rn1-valued, the Hopf-Cole transformation

still works as long as we take the control as but with b ∈ R, but will not work if b is replaced by a

general matrix B.

2.2 Solution of the FPK equation

Let V α be given by Theorem 2. We rewrite (7) in the form

mα
t =mα

xx −mα
x [a(x)− 2b0V

α
x (t, x) + c(x)zα(t)]

−mα∂x[a(x)− 2b0V
α
x (t, x) + c(x)zα(t)],

(18)

which is a linear equation with coefficients in the Hölder space Cγ/2,γ([0, T ] × R). The following

proposition results from Theorem 1.

Proposition 1. Under Assumptions (A1), (A2) and (A3), for Equation (7) there exists a unique

solution mα from the class C1+γ/2,2+γ([0, T ]× R).

2.3 A priori gradient estimate in (5)

Although Theorem 2 shows that |V α
x | is bounded, it does not give an explicit upper bound in terms

of parameters and bounds of known functions in (5). We will estimate the x-gradient of the value
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function using a comparison argument ([12, Appendix E], [8]). Let Jα(t, x, u(·)) be the cost with

initial condition (t, x) on [t, T ] in place of (3). Denote

V α(t, x) = Jα(t, x, ux), V α(t, y) = Jα(t, y, uy).

Here ux(s, ω) := −V α
x (s,Xα

s )/(2r), s ∈ [t, T ], is the progressively measurable control process generated

by the closed-loop dynamics

dXα
s =[a(Xα

s )− 2b0V
α
x (s,Xα

s ) + c(Xα
s )z

α(s)]ds+
√
2dWα

s , s ≥ t, (19)

where Xα
t = x. Without loss of generality, suppose V α(t, x) ≤ V α(t, y). Note that ux(s, ω) is

suboptimal for the control problem with initial condition (t, y). Then

|V α(t, x)− V α(t, y)| ≤ |Jα(t, x, ux)− Jα(t, y, ux)|. (20)

Now we consider the two state processes

dXx
s = [a(Xx

s ) + bux(s, ω) + c(Xx
s )z

α(s)]ds+
√
2dWs,

dXy
s = [a(Xy

s ) + bux(s, ω) + c(Xy
s )z

α(s)]ds+
√
2dWs,

where Xx
t = x and Xy

t = y and the same Brownian motion Ws is used. Note that the GMFG

equation system will eventually be solved subject to condition (2). Here we consider a general function

zα(·) ∈ Cγ/2([0, T ]) by merely requiring sup0≤t≤T |zα(t)| ≤ |χ|0, which is relaxed from (2). We use

Grönwall’s inequality to show

|Xx
s −Xy

s | ≤ C∗
T |x− y|,

with C∗
T := exp([|ax|0+|cx|0 ·|χ|0]T ). We further use (3) with initial time t and the Lipschitz continuity

of L to get the bound

|Jα(t, x, ux)− Jα(t, y, ux)| ≤ Lipx(L)C
∗
TT |x− y|, (21)

where Lipx(L) := supt,x,z |Lx(t, x, z)|. Therefore, it follows from (20) and (21) that

|V α
x | ≤ Lipx(L)C

∗
TT =: C∗

1 .

Remark 3. If b depends on x, the above method of gradient estimates does not work.

Remark 4. The bound of the gradient does not depend on r.

2.4 Selection of the set Z

We need to specify a set Z for z. Recall that we have

dXα
t =[a(Xα

t )− 2b0V
α
x (t,Xα

t ) + c(Xα
t )z

α(t)]dt+
√
2dWα

t , 0 ≤ t ≤ T.

By Assumption (A4), we have

E|χ(Xα
t )| ≤ |χ|0.

Now we consider z satisfying supt,α |zα(t)| ≤ |χ|0. Since

E|Xα
t −Xα

s | =E
∫ t

s

|a(Xα
τ )− 2b0V

α
x (τ,Xα

τ ) + c(Xα
τ )z

α(τ)|dτ

+
√
2E|Wα

t −Wα
s |,
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it follows that

E|χ(Xα
t )− χ(Xα

s )| ≤ Lip(χ)E|Xα
t −Xα

s |

≤ Lip(χ)[C∗
2 |t− s|+

√
2|t− s|1/2],

where C∗
2 := |a|0 + 2b0C

∗
1 + |c|0 · |χ|0, for all α ∈ [0, 1].

We take γ ∈ (0, 1) as in Assumption (A1). Then

E|χ(Xα
t )− χ(Xα

s )|
|t− s|γ/2

≤ Lip(χ)(C∗
2T

1−γ/2 +
√
2T (1−γ)/2) := C∗

3 . (22)

Define

zα1 (t) =

∫ 1

0

g(α, β)Eχ(Xβ
t )dβ.

By (22), we have

|zα1 (t)− zα1 (s)| = |
∫ 1

0

g(α, β)|Eχ(Xβ
t )− Eχ(Xβ

s )|dβ

≤ C∗
3 |t− s|γ/2.

We need to choose Z to ensure that z1 remains in Z.

Now we are ready to specify the following set Z consisting of all z satisfying the two conditions:

(i) z a continuous function of (t, α) defined on [0, T ]× [0, 1]; (ii)

|zα(t)| ≤ |χ|0, |zα(t)− zα(s)| ≤ C∗
3 |t− s|γ/2, ∀t, s ∈ [0, T ], α ∈ [0, 1]. (23)

In all subsequent analysis, we always consider Z satisfying the above conditions (i) and (ii).

3 The sensitivity analysis

Throughout this section we suppose that Assumptions (A1), (A2), (A3) and (A4) hold.

3.1 The HJB equation

For z, ẑ ∈ Z, let V α and V̂ α be solved from (5) using zα and ẑα, respectively. Applying the Hopf-Cole

transformation

w = e−b0V
α

, ŵ = e−b0V̂
α

,

we derive two equations

0 = wt + wxx + wx[a(x) + c(x)zα(t)]− b0wL(t, x, z
α(t)),

0 = ŵt + ŵxx + ŵx[a(x) + c(x)ẑα(t)]− b0ŵL(t, x, ẑ
α(t)),

where w(T, x) = ŵ(T, 0) = 1.

For fixed α, we view zα and ẑα as two functions in Cγ/2([0, T ]).

Lemma 1. For some constant C∗
4 , we have

|w − ŵ|1+γ/2,2+γ;QT
≤ C∗

4 |zα − ẑα|γ/2;[0,T ]

for all ẑ, z ∈ Z, where QT = [0, T ]× R.
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Proof. We write

0 =ŵt + ŵxx + ŵx[a(x) + c(x)zα(t)]− b0ŵL(t, x, z
α(t))

+ ŵxc(x)(ẑ
α(t)− zα(t))− b0ŵ[L(t, x, ẑ

α(t))− L(t, x, zα(t))].

Define ϕ = w − ŵ. Then we have

0 =ϕt + ϕxx + ϕx[a(x) + c(x)zα(t)]− b0ϕL(t, x, z
α(t))

− ŵxc(x)(ẑ
α(t)− zα(t)) + b0ŵ[L(t, x, ẑ

α(t))− L(t, x, zα(t))].
(24)

Denote

q1(t, x) = −ŵx(t, x)c(x)(ẑ
α(t)− zα(t)),

q2(t, x) = b0ŵ(t)[L(t, x, ẑ
α(t))− L(t, x, zα(t))].

Now (24) is rewritten as

0 =ϕt + ϕxx + ϕx[a(x) + c(x)zα(t)]− b0ϕL(t, x, z
α(t)) (25)

+ q1(t, x) + q2(t, x),

where ϕ(T, x) = 0.

We proceed to estimate the Hölder norm of q1 and q2. We have

|q1(t, x)| ≤ |ŵxc|0 · |ẑα − zα|0, ∀t, x. (26)

Next we have (see e.g. [16])

[q1]γ/2,γ ≤ |ŵxc|0 · [ẑα − zα]γ/2 + |ẑα − zα|0 · [ŵxc]γ/2,γ . (27)

By (26) and (27), it follows that

|q1|γ/2,γ = |ŵxc(ẑ
α − zα)|γ/2,γ ≤ |ŵxc|γ/2,γ · |ẑα − zα|γ/2.

We continue to check q2. Denote

L̃(t, x) = L(t, x, ẑα(t))− L(t, x, zα(t)).

Then we have

|L̃(t, x)| ≤ |Lz(t, x, z̄)| · |ẑα(t)− zα(t)|, (28)

where z̄ is some point between ẑα(t) and zα(t). We have

|q2(t, x)| ≤ b0|ŵ(t)| · |Lz(t, x, z̄)| · |ẑα(t)− zα(t)|,

so that

|q2|0 ≤ b0|ŵ|0 · |ẑα − zα|0 · sup
t,x,z

|Lz(t, x, z)|. (29)

We further have

[q2]γ/2,γ ≤ b0|L̃|0 · [ŵ]γ/2,γ + b0|ŵ|0 · |L̃|γ/2,γ . (30)

Next we estimate the Hölder norm of L̃. We have

|L̃(t1, x1)− L̃(t2, x2)| ≤ |L̃(t1, x1)− L̃(t2, x1) + L̃(t2, x1)− L̃(t2, x2)|.
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By Corollary 2, for fixed x1, we have

|L̃(t1, x1)− L̃(t2, x1)|
|t1 − t2|γ/2

≤ [L̃(·, x1)]γ/2 ≤ Ĉ1|ẑα − zα|γ/2, ∀ẑ, z ∈ Z. (31)

The above estimate has used the bounds in (23) for ẑ, z ∈ Z and the local Lipschitz property of

the Nemytskij operator L(t, x, ·) acting on zα(·) ∈ Cγ/2([0, T ]). The constant Ĉ1 depends only on

|χ|0, T, supt,x,z(|Lt|+ |Lz|+ |Lzt|+ |Lzz|) (see the selection of the parameters ka, kb, k
′ in Corollary 2).

Next we have

L̃(t, x1)− L̃(t, x2) = L(t, x1, ẑ
α(t))− L(t, x1, z

α(t))− L(t, x2, ẑ
α(t)) + L(t, x2, z

α(t))

= L̂(t, x1, x2, ẑ
α(t))− L̂(t, x1, x2, z

α(t))

= L̂z(t, x1, x2, z̄)(ẑ
α(t)− zα(t))

= [Lz(t, x1, z̄)− Lz(t, x2, z̄)](ẑ
α(t)− zα(t))

where L̂(t, x1, x2, z) := L(t, x1, z)− L(t, x2, z). Hence we have

|L̃(t, x1)− L̃(t, x2)|
|x1 − x2|γ

≤ sup
t,x,z

|Lzx(t, x, z)|γ · sup
t,x,z

(2|Lz(t, x, z|)1−γ · |ẑα − zα|0. (32)

Subsequently, by (28), (31) and (32), for some constant Ĉ2, we have

|L̃|γ/2,γ ≤ Ĉ2|ẑα − zα|γ/2. (33)

Finally, by (29) and (33) we conclude

|q2|γ/2,γ ≤ Ĉ3|ẑα − zα|γ/2, ∀z, ẑ ∈ Z.

The constant Ĉ3 depends only on |χ|0, T, γ, supt,x,z(|Lt| + |Lz| + |Lzt| + |Lzx| + |Lzz|). The lemma

then follows from an application of Theorem 1.

3.2 The FPK equation

For comparing two solutions, we take ẑ ∈ Z and introduce another equation

m̂α
t (t, x) =m̂

α
xx(t, x)− m̂α

x [a(x)− 2b0V̂
α
x (t, x) + c(x)ẑα(t)]

− m̂α∂x[a(x)− 2b0V̂
α
x (t, x) + c(x)ẑα(t)],

(34)

where m̂α(0, x) = pα(x). By Proposition 1, there is a unique solution m̂α.

Lemma 2. There exists a constant C∗
5 such that for all z, ẑ ∈ Z, we have

|mα − m̂α|1+γ/2,2+γ;QT
≤ C∗

5 |zα − ẑα|γ/2;[0,T ].

Proof. Denote ϕ = mα − m̂α. Then we have

∂tϕ(t, x) =∂xxϕ− ∂xϕ · [a(x)− 2b0V
α
x (t, x) + c(x)zα(t)]

− ϕ · ∂x[a(x)− 2b0V
α
x (t, x) + c(x)zα(t)]

+ m̂x · [2b0(V̂ α
x − V α

x )− c(x)(ẑα(t)− zα(t))]

+ m̂ · ∂x[2b0(V̂ α
x − V α

x )− c(x)(ẑα(t)− zα(t))],

(35)

where ϕ(0, x) = 0. Denote

κ1(t, x) = a(x)− 2b0V
α
x + c(x)zα(t),
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κ2(t, x) = ∂x[a(x)− 2b0V
α
x (t, x) + c(x)zα(t)],

κ3(t, x) = m̂x · [2b0(V̂ α
x − V α

x )− c(x)(ẑα(t)− zα(t))],

κ4(t, x) = m̂ · ∂x[2b0(V̂ α
x − V α

x )− c(x)(ẑα(t)− zα(t))].

We first have

[κ1(t, x)]γ/2,γ ≤ [a]γ + 2b0[V
α
x ]γ/2,γ + [czα]γ/2,γ .

We further use the interpolation inequality in [16] to estimate [V α
x ]γ/2,γ and get

|κ1|γ/2,γ ≤ |a|γ + 2Ĉ4b0|V α|1+γ/2,2+γ + |c|γ |zα|γ/2.

We note that the constant Ĉ4 above depends on T but not on (a(·), b, c(·), L(·)) in the model of the

GMFG. It gets larger when T becomes smaller. We write

κ2 = ax(x)− 2b0V
α
xx + cx(x)z

α(t).

Then

|κ2(t, x)| ≤ |ax(x)|+ 2b0|V α
xx|+ |cx(x)| · |zα(t)|.

Next we have

[κ2]γ/2,γ ≤ [ax]γ + 2b0[V
α
xx]γ/2,γ + [cxz

α]γ/2,γ .

Now it follows that

|κ2|γ/2,γ ≤ |a|1+γ + 2b0|V α|1+γ/2,2+γ + |c|1+γ · |zα|γ/2.

We have

|κ3(t, x)| ≤ |m̂x(t, x)| · (2b0|V α
x − V̂ α

x |+ |c(x)| · |ẑα(t)− zα(t)|),

where we use the relation V α = − lnwα/b0 to get

|V α
x − V̂ α

x | ≤ Ĉ5(|w(t, x)− ŵ(t, x)|+ |wx − ŵx|)

≤ Ĉ5C
∗
4 |zα − ẑα|γ/2 ∀t ∈ [0, T ], x ∈ R,

by Lemma 1. Next we have

[κ3]γ/2,γ ≤|m̂x|0;QT
· [2b0(V α

x − V̂ α
x ) + c(ẑα − zα)]γ/2,γ;QT

+ [m̂x]γ/2,γ;QT
|2b0(V α

x − V̂ α
x ) + c(ẑα − zα)|0;QT

,

where we estimate

|V α
x − V̂ α

x |γ/2,γ ≤ Ĉ6(|w − ŵ|γ/2,γ + |wx − ŵx|γ/2,γ) (36)

using Lemma 3 by writing Vx = G(w,wx). The form of G can be easily determined. The constant

Ĉ6 is determined only using the upper bound Cw for |w|γ/2,γ and sup|x|,|y|≤Cw
(|Gx|+ |Gy|+ |Gxx|+

|Gyy|+ |Gxy|) for G(x, y). By the interpolation inequality [16] and Lemma 1, we find an upper bound

for the right hand side of (36) in terms of |ẑα − zα|γ/2, which further leads to the estimate

|κ3|γ/2,γ ≤ Ĉ7|ẑα − zα|γ/2.

Finally, by writing V α
xx in terms of (w,wx, wxx) and using Lemma 3 and the interpolation inequality,

we similarly get

|κ4|γ/2,γ ≤ Ĉ8|ẑα − zα|γ/2,

for some constant Ĉ8. The lemma follows from applying Theorem 1 to (35).
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4 Perturbation estimate of the graphon coupling function

Throughout this section we suppose that Assumptions (A1), (A2), (A3), (A4) and (A5) hold.

Given z ∈ Z, we use Theorem 2 and Proposition 1 to determine (V α,mα) in (5) and (7) for each

α ∈ [0, 1]. Define the new graphon coupling function

zα1 (t) = (Φz)α(t) :=

∫ 1

0

∫
R
g(α, β)χ(x)mβ(t, x)dxdβ,

Since mβ ∈ C1+γ/2,2+γ([0, T ] × R), zα1 (t) is Hölder continuous in t. For ẑ ∈ Z, we similarly obtain

m̂α, β ∈ [0, 1] and denote

ẑα1 (t) =

∫ 1

0

∫
R
g(α, β)χ(x)m̂β(t, x)dxdβ,

By the interpolation inequality [16], there exists a constant Ĉ9 (which depends on (T, γ)) such that

for each f ∈ Cγ/2,γ([0, T ]× R) we have

[f ]γ,γ/2;QT
≤ Ĉ9|f |1+γ/2,2+γ;QT

, QT = [0, T ]× R. (37)

We state the key result on Lipschitz continuity of the operator Φ.

Theorem 3. For all z, ẑ ∈ Z, we have

sup
α

|zα1 − ẑα1 |γ/2;[0,T ] ≤ (Ĉ9 + 1)CgCχC
∗
5 sup

α
|zα − ẑα|γ/2;[0,T ],

where Cg = supα
∫ 1

0
|g(α, β)|dβ and Cχ =

∫
R |χ(x)|dx.

Proof. Denote

z̃α1 = zα1 − ẑα1 , m̃α = mα − m̂α.

We have

|z̃α1 (t)− z̃α1 (s)|
|t− s|γ/2

≤
∫ 1

0

∫
R
g(α, β)|χ(x)| |m̃

β(t, x)− m̃β(s, x)|
|t− s|γ/2

dxdβ

≤ Cg

∫
R
|χ(x)|dx · sup

β
[m̃β ]γ,γ/2

= CgCχ sup
β
[m̃β ]γ,γ/2. (38)

On the other hand, it is easily seen that

|zα1 − ẑα1 |0;[0,T ] ≤ CgCχ sup
β

|mβ − m̂β |0;QT
.

Now applying inequality (37) to m̃, we have

[m̃α]γ,γ/2 ≤ Ĉ9|m̃α|1+γ/2,2+γ;QT
, ∀α ∈ [0, 1].

We conclude that

sup
α

|zα1 − ẑα1 |γ/2;[0,T ] ≤ (Ĉ9 + 1)CgCχ sup
α

|mα − m̂α|1+γ/2,2+γ;QT
. (39)

By Lemma 2 and (39), we have

sup
α

|zα1 − ẑα1 |γ/2;[0,T ] ≤ (Ĉ9 + 1)CgCχC
∗
5 sup

α
|zα − ẑα|γ/2;[0,T ],

which gives the required Lipschitz property of the operator Φ.

If the coefficient (Ĉ9+1)CgCχC
∗
5 is less than 1, we obtain a contraction, which implies the existence

and uniqueness of a solution to the GMFG equation system.
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Corollary 1. If (Ĉ9 + 1)CgCχC
∗
5 < 1, the GMFG equation system (8)–(10) has a unique solution

(V α,mα)0≤α≤1 with V α,mα ∈ C1+γ/2,2+γ([0, T ]× R).

Remark 5. If χ is only bounded without the integrability property, the above estimate in (38) is not

valid.

Remark 6. If either |c|1+γ + b0 (where |c|1+γ := |c|0 + |cx|0 + [cx]γ) or CgCχ is sufficiently small, the

contraction condition in Corollary 1 is satisfied.

We illustrate how to construct a concrete model to verify the contraction condition in Corollary 1.

We start with any reference model (Mref) consisting of

(a(x), b, c(x), g, χ(x), L(·), r, T )

and determine the parameters (|χ|0, C∗
3 ) in (23). Now we specify Z with the two fixed parameters

(|χ|0, C∗
3 ). We next construct a new model (Mnew) by replacing (c(x), r) by (ϵc(x), r/ϵ) with a small

positive number ϵ while all other entries in model (Mref) remain unchanged. We still use the same

set Z in model (Mnew) for which we can make C∗
4 and C∗

5 sufficiently close to zero if ϵ is sufficiently

close to zero. Thus the new model can verify the contraction condition with a small ϵ, indicating weak

dynamical coupling and expensive control.

Appendix

For the reader’s convenience, we provide some standard materials on the Nemytskij operator. The

reader may see more systematic development of the subject in [1, 10, 14]. Consider two Hölder spaces

Hγ
n := Cγ([a, b];Rn) and Hγ

1 := Cγ([a, b];R), where γ ∈ (0, 1). For a function f : [a, b] × Rn → R, its
Nemytskij operator is defined by

(Fh)(t) = f(t, h(t)), h ∈ Hγ
n .

We summarize results on F as a mapping between Hölder spaces. Following [14], we introduce the

following conditions for a function ϕ:

Condition (A) – For each compact set S ⊂ Rn, there exists a constant kA := kA(ϕ, S) such that

|ϕ(t, y)− ϕ(s, y)| ≤ kA|t− s|γ , ∀t, s ∈ [a, b], ∀y ∈ S. (A.1)

Condition (B) – For each compact set S ⊂ Rn, there exists a constant kB := kB(ϕ, S) such that

|ϕ(t, y)− ϕ(s, z)| ≤ kB(|t− s|γ + |y − z|), ∀t, s ∈ [a, b], ∀y, z ∈ S. (A.2)

Clearly, condition (B) for ϕ implies condition (A) for ϕ.

Fix any constant k0 > 0. Let B̄(0, k0) ⊂ Rn be the closed ball centered at the origin with radius

k0, and define

Cf,k0 = max
a≤t≤b,|x|≤k0

|fx(t, x)|,

Mf,k0
= (

n∑
i=1

l2f,k0,i)
1/2, lf,k0,i = kB(fxi

, B̄(0, k0)).

Theorem A.1. [14, Theorem 3] Suppose that f(t, x) satisfies condition (A), and each partial deriva-

tive fxi
(t, x) satisfies condition (B). Then the operator F is from Hγ

n to Hγ
1 and is locally Lipschitz

continuous, i.e., for any given constant k0 and any h1, h2 with ∥hk∥Hγ
0
≤ k0, we have

∥Fh1 − Fh2∥Hγ
1
≤ Cf

0 ∥h1 − h2∥Hγ
n
,

where

Cf
0 = Cf,k0

+Mf,k0
(1 + 2k0).
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Ref. [14] proved the local Lipschitz property of the operator F. The constant Cf
0 does not use

kA in condition (A), which is only used to show that F maps h ∈ Hγ
n to the Hölder space Hγ

1 . The

constant Cf
0 here is determined by keeping track of the estimates in [14]. Specifically, we have

|Fh1(t)− Fh2(t)| ≤ Cf,k0
sup
t

|h2(t)− h1(t)|. (A.3)

Let d(t) = F(h1)(t)−F(h2)(t). Let [h]γ denote the Hölder semi-norm of h ∈ Hγ
n . Then by the method

in [14, p. 114],

|d(t)− d(s)| · |t− s|−γ ≤Cf,k0
[h2 − h1]γ (A.4)

+Mf,k0
(1 + [h1]γ + [h2]γ) sup

t
|h2(t)− h1(t)|.

By (A.3) and (A.4), we have

∥F(h1)− F(h2)∥Hγ
1
≤ Cf,k0

∥h2 − h1∥Hγ
n
+Mf,k0

(1 + 2k0) sup
t

|h2(t)− h1(t)|

≤ [Cf,k0 +Mf,k0(1 + 2k0)] · ∥h1 − h2∥Hγ
n

for all h1, h2 satisfying ∥hi∥Hγ
n
≤ k0. The last inequality shows the choice of Cf

0 in Theorem A.1.

A.1 Application to the graphon model

Now consider the function L(t, x, z) defined on [0, T ]×R×R. Suppose that for some constants ka, kb, k
′,

there hold the inequalities

|L(t, x, z)− L(s, x, z)| ≤ ka|t− s|γ/2,
|Lz(t, x, z1)− Lz(s, x, z2)| ≤ kb(|t− s|γ/2 + |z1 − z2|),

|Lz(t, x, z)| ≤ k′, ∀t ∈ [0, T ], x, z, z1, z2.

Denote Fh(t) = L(t, x, h(t)) for h ∈ Cγ/2([0, T ]), where x is regarded as a fixed value. The Hölder

norm (resp., semi-norm) of h is simply written as |h|γ/2 (resp., [h]γ/2).

Corollary 2. Suppose h1, h2 ∈ Cγ/2([0, T ]), and |hi|γ/2 ≤ k0. Then

|F(h1)− F(h2)|γ/2 ≤ [k′ + kb(1 + 2k0)] · |h1 − h2|γ .

Proof. In analogue to (A.3), for fixed x, we have

|Fh1(t)− Fh2(t)| ≤ k′ sup
t

|h2(t)− h1(t)|.

Let d(t) = F(h1)(t)− F(h2)(t). By the method in (A.4), we have

|d(t)− d(s)| · |t− s|−γ/2 ≤k′[h2 − h1]γ/2

+ kb(1 + [h1]γ/2 + [h2]γ/2) sup
t

|h2(t)− h1(t)|.

Hence for fixed x, we have

|F(h1)− F(h2)|γ/2 ≤ k′|h2 − h1|γ/2 + kb(1 + 2k0) sup
t

|h2(t)− h1(t)|

≤ [k′ + kb(1 + 2k0)] · |h1 − h2|γ/2

for all h1, h2 satisfying |hi|γ/2 ≤ k0.
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A.2 Operator acting on functions of time and space

In the following we make an extension to vector-valued Hölder continuous functions v defined on

[0, T ]×Rn. Let G : Rk → R be a function with continuous partial derivatives Gξi(ξ), and Gξiξj (ξ) for

1 ≤ i, j ≤ k. Denote Hγ/2,γ = Cγ/2,γ([0, T ]× Rn;Rk) with γ ∈ (0, 1).

Denote the operator

(Gv)(t, x) =G(v(t, x)), v ∈ Hγ/2,γ .

Lemma 3. The operator G maps Hγ/2,γ to Cγ/2,γ([0, T ]×Rn;R), and is locally Lipschitz continuous.

Proof. Take any positive constants C1 and C2. The Hölder norm of h ∈ Hγ/2,γ will be simply written

as |h|γ/2,γ . Denote the set

HC1,C2
= {v ∈ Hγ/2,γ : |v|0 ≤ C1, |v|γ/2,γ ≤ C2}.

Take v, v̂ ∈ HC1,C2
. We have

|G(v(t, x))−G(v(s, y))| ≤ l1|v(t, x)− v(s, y)|.

where l1 = max|ξ|≤C1
|Gξ(ξ)|. Next, we use the Hölder seminorm of v to get

|G(v(t, x))−G(v(s, y))| ≤ l1[v]γ/2,γ(|t− s|1/2 + |x− y|)γ .

It follows that

|Gv|γ/2,γ ≤ max
|ξ|≤C1

|G(ξ)|+ l1[v]γ/2,γ . (A.5)

So G is a mapping from Hγ/2,γ to Cγ/2,γ([0, T ]× Rn;R).

We proceed to estimate the Hölder norm of v1 := Gv −Gv̂. We have

|v1|0 ≤ l1|v − v̂|0.

We further write

v1(t, x) = (v(t, x)− v̂(t, x))

∫ 1

0

Gy(v̂(t, x) + τ [v(t, x)− v̂(t, x)])dτ,

v1(s, y) = (v(s, y)− v̂(s, y))

∫ 1

0

Gy(v̂(s, y) + τ [v(s, y)− v̂(s, y)])dτ.

Now we have

v1(t, x)− v1(s, y)

= [v(t, x)− v̂(t, x)− (v(s, y)− v̂(s, y))]

∫ 1

0

Gy(v̂(t, x) + τ [v(t, x)− v̂(t, x)])dτ

+ (v(s, y)− v̂(s, y))

∫ 1

0

{Gy(v̂(t, x) + τ [v(t, x)− v̂(t, x)])

−Gy(v̂(s, y) + τ [v(s, y)− v̂(s, y)])}dτ

Denote λG,1 = max|ξ|≤C1
(
∑

i,j |Gξiξj (ξ)|2)1/2. Hence we have

|v1(t, x)− v1(s, y)| ≤ [v − v̂]γ/2,γ l1(|t− s|1/2 + |x− y|)γ

+ |v(s, y)− v̂(s, y)|λG,1
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·
∫ 1

0

[τ |v(t, x)− v(s, y)|+ (1− τ)|v̂(t, x)− v̂(s, y)|]dτ

≤ [v − v̂]γ/2,γ l1(|t− s|1/2 + |x− y|)γ

+ |v − v̂|0λG,1C2(|t− s|1/2 + |x− y|)γ .

Therefore, we have

|Gv −Gv̂|γ/2,γ ≤ (l1 + λG,1C2)|v − v̂|0 + l1[v − v̂]γ/2,γ

≤ (l1 + λG,1C2)|v − v̂|γ/2,γ .

This completes the proof.
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