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Citation suggérée : F. Fan, B. Yi, D. Rye, G. Shi, I. R. Manch-
ester (September 2024). Learning stable Koopman embeddings
for identification and control, Rapport technique, Les Cahiers du
GERAD G– 2024–63, GERAD, HEC Montréal, Canada.
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Abstract : This paper introduces new model parameterizations for learning dynamical systems
from data via the Koopman operator, and studies their properties. Whereas most existing works
on Koopman learning do not take into account the stability or stabilizability of the model – two
fundamental pieces of prior knowledge about a given system to be identified – in this paper, we
propose new classes of Koopman models that have built-in guarantees of these properties. These
models are guaranteed to be stable or stabilizable via a novel direct parameterization approach that
leads to unconstrained optimization problems with respect to their parameter sets. To explore the
representational flexibility of these model sets, we establish novel theoretical connections between
the stability of discrete-time Koopman embedding and contraction-based forms of nonlinear stability
and stabilizability. The proposed approach is illustrated in applications to stable nonlinear system
identification and imitation learning via stabilizable models. Simulation results empirically show that
the learning approaches based on the proposed models outperform prior methods lacking stability
guarantees.

Keywords : Nonlinear systems, Koopman operator, contraction analysis, system identification, data-
driven control
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1 Introduction

Many fundamental phenomena in engineering and science can be described by dynamical systems,

making the modeling of dynamical systems a ubiquitous problem across various domains. These models

can not only be used to predict future behavior but have also proven effective in planning, estimation,

and designing a controller to interact with the real physical world. In general, deriving a model of

a dynamical system from first principles may be challenging or even intractable for cases involving

complex tasks, such as imitating human behavior. This is where system identification approaches that

learn a model from data become useful.

A central consideration for learning algorithms is the model structure. For identifying memoryless

input-output mappings, deep neural networks have achieved state-of-the-art results in many domains,

such as image classification [26] and playing strategy games [42]. In contrast, learning dynamical

models introduces additional challenges due to the presence of internal memory and feedback. In

particular, ensuring the behavioural properties of dynamical models during learning, including stability

and stabilizability, is an important aspect that is non-trivial even for linear systems. For example, even

if a physical system is known to be stable, a model learned from data might exhibit instability due to

the unavoidable effects of measurement noise, under-modeling, and the challenges of optimization.

To address this, some recent works aim to impose constraints in terms of prior physical knowl-

edge, specifically using stability constraints as a control-theoretic regularizer for model learning. As

summarized in [13], there are two main categories for learning dynamical models with stability guar-

antees: 1) constrained optimization, and 2) learning potential functions via diffeomorphism. Learning

algorithms for stable systems have been comprehensively studied for linear systems (see, for example

[15, 18, 27, 50]); in constrast, the nonlinear couterpart is more techinically challenging, necessitating

universal fitting tools to address nonlinearity. Most approaches for nonlinear stable systems employ

the Lyapunov method [22] and contraction analysis [45, 46, 49], which yield constrained optimization

that limits scalability to large models. More recently, research has focused on directly parameterizing

stable nonlinear systems to achieve unconstrained optimization problems [6, 33, 35, 39]. These are

more general than the second category outlined in [13].

In recent years, there has been a growing interest in the Koopman operator for the analysis, control,

and learning of nonlinear systems [36, 44]. It is a composition operator that characterizes the evolution

of scalar observables from a spectral decomposition perspective [24]. Despite its infinite-dimensional

nature, the Koopman operator itself exhibits linearity and proves powerful in addressing various data-
driven analysis and prediction problems [17, 25, 44]. Through Koopman theory, nonlinear systems

can be studied via a spectral decomposition of the Koopman operator, akin to linear systems analysis.

This has huge potential in applying tools from linear systems theory to nonlinear systems, including

global stability analysis [36, 52] and a number of linear control methodologies.

In this paper, we focus on Koopman models – a recently emerging class of models that are both

flexible and interpretable – and Koopman learning frameworks. When learning a Koopman model from

data, one attempts to find a finite-dimensional (usually approximate) representation of the Koopman

operator, which amounts to a linear matrix along with a mapping that transforms the original state

space of the system to a so-called Koopman-invariant subspace. As mentioned above, it can be impor-

tant to consider model stability and stabilizability during learning, which has not been fully addressed

in earlier work on Koopman learning. The paper aims to address the aforementioned challenges with

the main contributions below:

1. We provide a novel parameterization to the stable Koopman model set, which is unconstrained

in its parameters, allowing for efficient and “plug-and-play” optimization by leveraging software

tools for automatic differentiation.

2. For nonlinear discrete-time systems, we prove the equivalence between the Koopman and con-
traction criteria for stability analysis, extending our earlier work [52] to the discrete-time context.
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Such an equivalence is practically useful in proposing a novel Koopman learning framework that

is capable of learning most stable autonomous systems under some mild technical assumptions.

3. The proposed Koopman model set is extended to the generalized feedback linearizable systems,

for which we also develop unconstrained optimization but simultaneously impose the stabiliz-

ability constraint to the model set. These results are applied to a problem of imitation learning

(i.e. learning a control policy from demonstrations) incorporating regularization to guaranteejg

closed-loop stability.

Compared to the preliminary conference version [12], this paper provides the full proof of Theorem 1.

In addition, we extend the main idea to nonlinear control, which forms the basis for introducing the

stabilizable Koopman model and outlining the imitation learning framework in Section 5.

Notation. All mappings and functions are assumed sufficiently smooth. λmin(·) and λmax(·) re-

spectively represent the smallest and largest eigenvalues of a symmetric matrix. Given a matrix

A ∈ Rn×m (n > m), we use A⊥ ∈ R(n−m)×n to represent a full-rank left annihilator such that

A⊥A = 0. We use | · | to denote the standard Euclidean norm, i.e. |x| =
√
x⊤x. When clear from

context, we may simply write x(t) as xt, omitting the arguments of mappings and functions, and use

x̃t to represent the measured data corresponding to the true state xt at time t.

2 Preliminaries

This section presents some preliminaries on the Koopman operator and contraction analysis. Consider

the discrete-time autonomous system in the form

xt+1 = f(xt) (1)

with the state x ∈ Rn, and a smooth vector field f : Rn → Rn.

The Koopman operator, originally proposed in [24], provides a simple and effective way to analyze

nonlinear systems. Its discrete-time version is defined as follows.

Definition 1. Let F be the observable space of scalar functions Rn → C. For the system (1), the

Koopman operator K : F → F is defined by

K[φ] := φ ◦ f (2)

for φ ∈ F , where ◦ represents function composition.

Since the Koopman operator is defined on the functional space, it is infinite-dimensional. It is easy

to verify the linearity of the Koopman operator, which leads to many useful methods for the analysis,

control, and learning of nonlinear systems. Despite its infinite dimensionality, one can sometimes obtain

a computationally tractable expression of the Koopman operator by finding a finite set of observables

that span an invariant subspace. This allows us to represent the action of the operator with a matrix

using the chosen bases on the invariant subspace.

Definition 2. A Koopman-invariant subspace is defined as G ⊂ F such that K[φ] ∈ G, ∀φ ∈ G.

If a Koopman-invariant subspace G is spanned by a finite set of observables {φk}Nk=1 with N ∈ N+,

any function f ∈ G can be represented as f(x) =
∑N

j=1 kjφ1 with some scalars kj . In some works,

this is referred to as the mapping ϕ = col(φ1, . . . ,φN ) as a Koopman embedding of the system (1).1

Furthermore, if ϕ is a surjection, then the original nonlinear system (1) is topologically semiconjugate

to a linear system via the coordinate transformation x 7→ z = ϕ(x). More specifically, if ϕ is a

homeomorphism, it becomes topologically conjugate [9, Ch. 10]. In the topological sense, an injective

1This is a restrictive assumption for general nonlinear systems, and thus in the literature the Koopman embedding
is often approximated on a non-invariant set and can be learned using deep models [44].
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continuous map ϕ is an embedding if ϕ yields a homeomorphism between Rn and ϕ(Rn) ⊂ RN . In this

paper, we employ the term of “Koopman embedding” in the topological sense rather than in reference

to a linear combination of observables. Hence, we do not need to study the invariance of the space

spanned by observables; instead, we will use the left inverse of the Koopman embedding ϕ to pull the

lift dynamics back to the original coordinate.

Contraction, also known as incremental exponential stability (IES), is a strong form of stability:

if a given system is contracting, any two trajectories will ultimately converge to each other [30].

Contraction analysis provides another “exact and global linearization” way to study nonlinear stability

by analyzing the stability of the linear time-varying (LTV) differential system

δxt+1 =
∂f

∂x
(xt)δxt (3)

along all feasible trajectories. The new variable δx, living on the tangent space of the original sys-

tem (1), represents the infinitesimal displacement among trajectories. It has shown success in a series

of constructive problems for nonlinear systems, including controller synthesis [32], observer design [53],

and learning algorithms [39, 43].

We briefly recall the discrete-time definition of contraction as follows.

Definition 3. Given the nonlinear system (1), if there exists a uniformly bounded metric M(x), i.e.

a1In ⪯M(x) ⪯ a2In for some a2 ≥ a1 > 0, guaranteeing

∂f

∂x
(xt)

⊤M(xt+1)
∂f

∂x
(xt)−M(xt) ⪯ −βM(xt), (4)

with 0 < β < 1, then the given system is contracting.

Intuitively, the inequality (4) can guarantee the quadratic Lyapunov-like function δx⊤M(x)δx on

tangent bundles decreases over time, uniformly across all feasible trajectories of xt. A central result of

contraction analysis is that, for contracting systems, all trajectories converge exponentially to a single

trajectory. That is, for any trajectories xa and xb and for some a0 > 0

|xat − xbt | ≤ a0β
t|xa0 − xb0|. (5)

Considering the similarity between the contraction and Koopman approaches, our recent paper [52]

shows the equivalence between them for nonlinear stability analysis but focuses on continuous-time

systems.

3 Motivations and problem set

In this paper, we are concerned with the discrete-time nonlinear autonomous system (1) and the control

system

xt+1 = f(xt) + g(xt)ut, (6)

but the dynamics is assumed unknown, where the state x ∈ Rn, the input u ∈ Rm, and the vector

fields f : Rn → Rn and g : Rn → Rn×m. When there is no external input, i.e. u ≡ 0, the control

model (6) degrades into the autonomous system as introduced in (1).

Suppose Ntraj data samples ED := {x̃t, ũt}
Ntraj

t=1 are used for model identification and learning

a stabilizing controller, in which x̃, ũ represents the measured noisy data of x,u generated by the

system (6) over time. The fundamental question in system identification is to use the dataset ED to

approximate the vector fields f , g, denoted as f̂ , ĝ, in some optimal sense. Sometimes, it is necessary

to impose additional constraints based on prior physical knowledge, such as stability, stabilizability,
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and controllability [34, 45]. We may compactly write as (f̂ , ĝ) ∈ EM with the set EM characterizing these

constraints. The system identification problem is generally based on minimizing a cost function

min
(f̂ ,ĝ)∈EM

J(ED, f̂ , ĝ). (7)

Given a data set, the main considerations of nonlinear system identification are the parameterization

of nonlinear functions f̂ , ĝ, the selection of the cost function J , and specific optimization algorithms.

In this paper, we propose two novel model parameterizations: the stable Koopman model and the

stabilizable Koopman model. The main theoretical problem we are interested in is how to parameterize

these model sets that are unconstrained in parameters. This endeavor is motivated by and finds

practical applications in the following.

Motivating Applications: Given the dataset ED and a cost function J(ED, f̂ , ĝ), solve the following two

problems.

P1: (Learning stable autonomous systems) Consider a contracting system for the case u ≡ 0, learn

an approximate model f̂ from the dataset ED generated by the system, and guarantee that the

identified dynamics xt+1 = f̂(xt) is contracting.

P2: (Imitation learning) Considering the dataset ED generated from an asymptotically stabilizable

system (6) via smooth static feedback, learn a static feedback u = ρ(x) approximating the

demonstration data and concurrently guaranteeing that the closed loop xt+1 = f(xt)+g(xt)ρ(xt)

is contracting.

We will address the above motivating applications in Sections 4 and 5, respectively. Note that

determining the functions f and g requires solving an infinite-dimensional optimization problem. To

make this tractable, we parameterize the functions, i.e. f̂(x, θ), ĝ(x, θ) using some basis functions that

may be selected as polynomials, neural networks or many others. The theoretical question therein is

how to introduce parameterizations to guarantee stability and stabilizability properties for the proposed

model sets.

4 Learning stable Koopman embeddings

In this section, we focus on the autonomous case, introducing a novel stable model class that covers all

contracting systems under some technical assumptions and studying its equivalent parameterization.

Based on them, we propose an algorithm to learn stable Koopman embeddings.

4.1 Stable Koopman model class: Covering all contracting systems

Let us consider a Koopman model class for discrete-time autonomous systems in the form of (1). We

define a Koopman model for this system as follows. 2

M1. Stable Koopman Model (A,ϕ,ϕL):

z0 = ϕ(x0)

zt+1 = Azt

xt = ϕL(zt),

(8)

in which 1) z ∈ RN (N ≥ n) is a lifted internal variable; 2) A is Schur stable; and 3) ϕ has a left
inverse satisfying ϕL(ϕ(x)) = x, ∀x.

2The left invertibility of ϕ implies xt = ϕL(zt).
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4.1.1 Stability criterion for Koopman models

The following theorem is a discrete-time version of the main results in [52], showing the equivalence

between the Koopman and contraction approaches. As a consequence, it illustrates the Koopman

model class M1 covers all the contracting discrete-time autonomous systems under some technical

assumptions of f below.

Assumption 1. The vector field f is invertible and its inverse f−1 is continuous satisfying |x| ≤
c1 + c2|f(x)| for some c1, c2 ∈ R+ and ∥∂f

∂x (x)∥ < min{1, c−1
2 }.

Thus, the model class is capable of providing sufficient degrees of freedom for learning discrete-time

nonlinear systems. We have the following.

Theorem 1. For the system (1), suppose that there exists a C1-continuous mapping ϕ : Rn → RN

with N ≥ n such that

D1: There exists a Schur stable matrix A ∈ RN×N satisfying the algebraic equation

ϕ ◦ f −Aϕ = 0, ∀x ∈ Rn. (9)

D2: ∂ϕ
∂x has full column rank, and (∂ϕ∂x )

⊤ ∂ϕ
∂x is uniformly bounded.

Then, the system is contracting with the contraction metric M(x) := ∂ϕ
∂x (x)

⊤P ∂ϕ
∂x (x), where P is any

positive-definite matrix satisfying P − A⊤PA ≻ 0. Conversely, if the system (1) is contracting and

satisfies Assumption 1, then in any forward invariant3 compact set X ⊂ Rn for the dynamics (1), there

exists a C1-continuous mapping ϕ : Rn → RN verifying D1-D2.

Proof. (=⇒) In this part of the proof, we need to verify the contraction condition (3) from the

Koopman conditions D1 and D2.

From D1 (Schur stability of A), there exists a matrix P = P⊤ ≻ 0 satisfying the Lyapunov condition

P −A⊤PA ≻ I ⪰ ρI, (10)

for some scalar ρ ∈ (0, 1]. Considering the C1-continuity of ϕ and f , we calculate the partial derivative

of (9), obtaining
∂ϕ

∂x
(f(x))

∂f

∂x
(x) = A

∂ϕ

∂x
(x) (11)

Invoking xt+1 = f(xk), the above can be rewritten as

∂ϕ

∂x
(xt+1)

∂f

∂x
(xt) = A

∂ϕ

∂x
(xt). (12)

Due to the full rank of ∂ϕ
∂x and (10), it follows that

∂ϕ

∂x
(x)⊤(P −A⊤PA)

∂ϕ

∂x
(x) ≻ ∂ϕ

∂x
(x)⊤ρI

∂ϕ

∂x
(x). (13)

Then, by substituting (12), we have

∂ϕ

∂x
(xt)

⊤P
∂ϕ

∂x
(xt)−

∂f

∂x
(xt)

⊤ ∂ϕ

∂x
(xt+1)

⊤P
∂ϕ

∂x
(xt+1)

∂f

∂x
(xt)

≻ ρ
∂ϕ

∂x
(xt)

⊤ ∂ϕ

∂x
(xt)

⪰ β
∂ϕ

∂x
(xt)

⊤P
∂ϕ

∂x
(xt),

(14)

3For a complete system (1) with the solution X(x, k), a set X is said to be a forward invariant set if whenever x0 ∈ X
and j ∈ Z+, we have X(x0, j) ∈ X [40, pp. 198].
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with β := ρ
λmax(P ) . We choose M(x) := ∂ϕ

∂x (x)
⊤P ∂ϕ

∂x (x), which is uniformly bounded due to D2 and

P ≻ 0. Substituting into (14) leads to

M(xt)−
∂f

∂x
(xt)

⊤M(xt+1)
∂f

∂x
(xt) ≻ βM(xt). (15)

By selecting ρ ∈ (0, 1] sufficiently small, we can guarantee that β ∈ (0, 1). This is exactly the contrac-

tion condition for the system (1) with the contraction metric M .

(⇐=) The second part of the proof is to show that a contracting system satisfies the Koopman

conditions D1 and D2 in any invariant compact set X ⊂ Rn. The key step for D1 is to construct a

feasible solution to the algebraic equation (9), and this part is motivited by the technical results in [5].

For the given discrete-time system, we directly apply the Banach fixed-point theorem, concluding

the existence of a unique fixed-point x⋆ ∈ X , i.e. f(x⋆) = x⋆.
4 To construct a Koopman embedding

ϕ, we parameterize it as ϕ(x) := x + T (x), for the particular case N = n, with a new mapping

T : Rn → Rn to be searched for. Then, the equation (9) becomes

T (f(x)) + f(x) = Ax+AT (x). (16)

Let us fix A = ∂f
∂x (x⋆). From the contraction assumption, we have M⋆ − A⊤M⋆A ⪰ βM(x⋆) with

M⋆ := M(x⋆) ≻ 0, and thus A is Schur stable. By defining H(x) := Ax − f(x), the algebraic

equation (16) becomes

T (f(x)) = AT (x) +H(x). (17)

We make the key observation that (17) exactly coincides with the algebraic equation in the for-

mulation of the Kazantzis-Kravaris-Luenberger (KKL) observer for nonlinear discrete-time systems

in [5, Eq. (7)]. In our case, the function H is continuous and, following [5, Thm. 2], we have a feasible

solution to (17):

T (x) =

+∞∑
j=0

AjH(X(x,−j + 1)), (18)

which is well-defined due to ∥∂f
∂x (x⋆)∥ < min{1, c−1

2 }, with the definition for j ∈ N+

X(x, j) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
j times

(x), X(x,−j) = (f†)j(x).

Note that the calculation of X(x,−j) requires backward completness and invariance in X . Since

contracting systems generally cannot guarantee such invariance, we modify the backwards map f−1

as f†(x) = µ(x)f−1(x) + [1− µ(x)]x with

µ(x) =


1, if x ∈ X + k1

µf (x), if x ∈ X + k2\X + k1

0, if x /∈ X + k2

for some k2 > k1 > 0, where X + k1 represents the set of points that lie whthin in the distance k1 > 0,

and µf (x) is any locally Lipschitz function such that µ is C1-continuous [47].

Now, we consider a candidate Koopman embedding ϕ0(x) := x+T (x) with T defined above satisfies

D1 in the entire set X . However, the condition D2 does not necessarily hold, and we need to modify

ϕ0. By considering the evolution of the trajectories in the x-coordinate and a lifted coordinate defined

as z := ϕ(x), respectively, we have

z(tx) = ϕ0(x(tx)) = ϕ0(X(x, tx)) = Atxϕ0(x),

4The incremental exponential stability condition (4) implies that for any xa,xb ∈ X we have dM (f(xa), f(xb))
2 ≤

βdM (xa,xb)
2, with β ∈ (0, 1) and dM (·, ·) the distance associated with the metric M(x). Therefore, the mapping f is a

contraction mapping in a Banach space, and we may then apply [21, Appendix B].
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with tx ∈ N+, thus satisfying ϕ0(x) = A−txϕ0(X(x, tx)). Then, we modify the candidate embedding

ϕ0 into

ϕ(x) := A−tx [X(x, tx) + T (X(x, tx))] (19)

with a sufficiently large tx ∈ N+.

Finally, let us check conditions D1 and D2. For the algebraic condition, we have

ϕ ◦ f(x) = A−txϕ0 ◦X(f(x), tx)

= A−txϕ0 ◦ f ◦X(x, tx)

= A−tx ·Aϕ0 ◦X(x, tx)

= Aϕ(x)

where in the second equation we have used the fact

X(f(x), tx) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
(tx+1) times

= f(X(x, tx)).

Therefore, ϕ defined in (19) satisfies D1. Regarding D2, the Jacobian of ϕ is given by

∂ϕ

∂x
(x) = A−tx

[
I +

∂T

∂x
(X(x, tx))

]
∂X

∂x
(x, tx).

On the other hand, we have that ∂X
∂x is full rank and

H(x⋆) = 0,
∂H

∂x
(x⋆) = 0,

as a result ∂T
∂x (x⋆) = 0. If tx ∈ N+ is sufficiently large, the largest singular value of ∂T

∂x (X(x, tx)) would

be very small, and then the identity part of ϕ will dominate ∂ϕ
∂x . Hence, ϕ satisfies the condition D2

that ∂ϕ
∂x has full column rank, and the uniform boundedness can be directly obtained in a compact set.

We complete the proof.

Remark 1. The above shows the equivalence between Koopman and contraction approaches (i.e. the

theoretical conditions) for stability analysis of discrete-time systems. This resembles the results for

continuous-time systems in [52], which also includes the results for time-varying systems. In contrast,

we limit ourselves to discrete-time time-invariant systems in this paper.5 Intuitively, the proposed

equivalence implies the generality and flexibility of the proposed model class M1, i.e., it covers all con-

tracting nonlinear systems under some technical assumptions. While the construction of the Koopman

mapping ϕ is an existence result, this shows the potential to use linear system identification techniques

to learn a nonlinear model; see Fig. 1 for its basic idea. We will pursue it in the next subsection.

Koopman
Embedding

ϕ

Linear System
Identification
zt+1 = Azt

Left
Inverse
ϕL

Figure 1: The proposed model class M1: Use linear system identification approaches to learn nonlinear models.

Remark 2. The above theorem shows that in theory, lifting with excessive coordinates (N > n) is un-

necessary to obtain a linear system for a particular class of nonlinear systems, i.e. contracting systems.

Similar results are also obtained in [28] for Schur stable systems. However, overparameterizing with

N ≥ n may still be useful for black-box learning as we show empirically via simulations. The condi-

tion D2 makes ϕ locally injective, thus being an embedding that allows us to lift the given nonlinear

system to a linear stable dynamics. Therefore, we use the terminology “Koopman embedding” for the

proposed approach in the paper.
5Note that for autonomous (i.e. time-invariant unforced) systems, contraction is equivalent to exponential stability

within any compact invariant subset of the domain of attraction. The paper [36] proposes a similar equivalence between
global asymptotic stability and the Koopman stability criteria in the context of continuous-time autonomous systems.
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4.2 Parameterization of stable Koopman models

In the proposed Koopman model M1, we need to identify three components: the stable matrix A,

the mapping ϕ, and its left inverse ϕL. It is necessary to parameterize them to make the approach

computationally tractable.

A key feature of the matrix A is Schur stability, for which there are several equivalent conditions,

including the well-known Lyapunov inequality P − A⊤PA ≻ 0 for some P ≻ 0, and the recent

parameterization in [15]. However, these constraints are non-convex thus yielding heavy computational

burden. To address this, we introduce an unconstrained parameterization of stable A, which is a special

case of the direct parameterization in [39].

Proposition 1. Consider an N ×N matrix A parameterized as A(L,R)6

A(L,R) = 2(M11 +M22 +R−R⊤)−1M21, (20)

where Mij (i, j = 1, 2) are blocks in

M :=

[
M11 M12

M21 M22

]
= LL⊤ + ϵI, (21)

with ϵ a positive scalar, L ∈ R2N×2N , and R ∈ RN×N . Then, the matrix A(L,R) is Schur stable.

Conversely, for any Schur stable matrix A, we can always find L,R and ϵ to parameterize it in the

form of (20).

Proof. (Sufficiency) Let E = 1
2 (M11 + M22 + R − R⊤), F = M21 and P = M22. Then, we have

A(L,R) = E−1F and

M =

[
E + E⊤ − P F⊤

F P

]
. (22)

It is shown in [46, Lemma 1, pp. 7235] that

M ≻ γI, γ > 0 ⇐⇒ Schur stability of E−1F . (23)

Hence if there exist matrices L and R such that (20) and (21) hold, then M ⪰ ϵI. Thus, A(L,R) is

Schur stable.

(Necessity) To prove necessity, invoking the equivalence in (23), it needs to be shown that a positive

definite matrix M ≻ γI can always be parameterized by M = LL⊤ + ϵI for some L ∈ R2N×2N and

ϵ ∈ R>0. By the continuity of eigenvalues of a matrix with respect to its elements [4, Ch. 7], one has

thatM−ϵI is positive definite by choosing a sufficiently small positive ϵ≪ γ. Therefore, the Cholesky

factorization guarantees the existence of L such that M − ϵI = LL⊤, as required.

The observables are nonlinear functions, rendering them infinite dimensional. In order to be able

to provide sufficient degrees, the Koopman embeddings are proposed to be parameterized as

ϕ(x) =

[
x

φ(x, θNN)

]
(24)

where the nonlinear part φ can be any differentiable function approximator, parameterized by θNN.

For brevity, the dependence on θNN is dropped in the notation. In this paper, we choose φ to be a

feedforward neural network due to its scalability. The dimensionality of the observables N is a hyper-

parameter chosen by the user. This specific structure guarantees the existence of left inverses, though

not uniqueness. We use a separate feedforward neural network ϕL = ϕL(·, θL) with all unknown param-

eters collected in the vector θL to approximate the inverse, which is shown to have better performance

empricially.

6To simplify the presentation, we use A to represent both a matrix and the parameterization function with a slight
abuse of notation.
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Remark 3. Eq. (24) is one of the feasible mappings described in Theorem 1. In fact, the construction

of (24) can be further generalized as ϕ = col(ψ,φ), where ψ : Rn → Rn is an invertible network, and

φ : Rn → RN−m is an arbitrary networks. Invertible neural networks have been extensively studied,

with notable examples including bi-Lipschitz networks [51], invertible residual layers [7], and monotone

networks [1]. In this work, we pick ψ to be just the identity map, for simplicity.

4.3 Learning framework for Koopman embeddings

Under the parameterization of the proposed model class, we need to use the dataset ED from the

real-world system to fit the parameters θ := (θNN, θL,L,R). To this end, we need to solve optimization

problems with a proper cost function.

Here, we consider minimizing the simulation error in the lifted coordinate z = ϕ(x):

JSE :=
1

T

T∑
t=1

|z̃t − zt|2, (25)

with T = Ntraj, z̃t = ϕ(x̃t), and zt = A(L,R)t−1ϕ(x̃1). Here, x̃t denotes the measured data cor-

responding to the true state xt at time t. In order to identify the left inverse ϕL concurrently, we

minimize the following composite cost function

θ̂ = argmin
θ∈Θ

JSE + αJRE (26)

with the parameter space Θ, a weighting coefficient α > 0, and the reconstruction loss JRE :=
1
T

∑T
t=1 |x̃t − ϕL(ϕ(x̃t, θNN), θL)|2. The purpose of the term JRE is to learn an approximate left-inverse

ϕL for ϕ. The loss JRE can be thought of as a penalty term that relaxes the constraint x = ϕL(ϕ(x)) ∀x,
and the scalar α determines the weighting of the penalty. We can make full use of data from multiple

trajectories by constructing the cost function as the sum of (Jj
SE +αJj

RE), where, with a slight abuse of

notations, the index j denotes the data sets from different feasible trajectories.

Remark 4. The model class is agnostic to the particular cost function that is minimized. Unconstrained

parameterization in the proposed framework has the benefit that JSE +αJRE may be replaced by other

feasible differentiable objective functions. An alternative is the simulation error in the original x-

coordinate. However, in practice, this was found to produce poor performance. The simulation error

in z can still be large while the simulation error in x is small. As a result, the embedding may fit

poorly without including the excess coordinates of z in the minimization.

Remark 5. It is worth emphasizing two important properties of Problem (26). First, it is an uncon-

strained optimization problem, but imposes guranteed stability on the identified lifted linear model.

The parameter set Θ is the space of real numbers of the appropriate dimensionality. Second, there

exists a differentiable mapping from the parameters θ to the objective for any choice of differentiable

mapping ϕ(·, θNN), e.g. using the parameterization (24) with φ(·, θNN) as a neural network. Regarding

the resulting nonlinear model, it can be expressed as xt+1 = ϕL(Aϕ(xt)). Due to learning errors,

the learnt mapings ϕ and ϕL may not satisfy ϕL ◦ ϕ = Id. While it is not straightforward to verify

stability of the identified nonlinear model in the x-coordinate, we can still ensure the attractivity of

the equilibrium.

Remark 6. In fact, the enforcement of stability in learned or identified dynamical models has been

extensively studied, both within Koopman-based frameworks and beyond. Most approaches in the

literature rely on constrained optimization, typically requiring specialized algorithms [31, 49]. In [31],

stability is enforced at every iteration step by projecting the solution onto the feasible set to handle

the constraints. The recent work [29] provides a probabilistic Koopman framework based on Gaussian

processes, which quantifies model uncertainty in the context of learning dynamical models.

Remark 7. The recent work [38] proposes a Koopman learning framework for continuous-time systems,

providing stability guarantees and discussing the quantification of uncertainties in the learning process.
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That work considers the nonlinear reconstruction of observables from Koopman eigenfunctions, akin to

the Koopman mapping ϕ(x) in our proposed approach. However, the technical route to impose stability

constraints differs: [38] is based on diagonalizable matrices for the lifted linear system, whereas our

work does not impose such a constraint.

Remark 8. The aforementioned properties enable finding a local optimum to Problem (26) using any

off-the-shelf first-order optimizer in conjunction with an automatic differentiation (autodiff) toolbox.

This significantly simplifies the implementation of the framework. Using an autodiff software package,

one only needs to write code that evaluates the objective function at each iteration of the optimization

process, and the gradients w.r.t. θ are automatically computed via the chain rule. While the cost

function in (26) is nonconvex, deep learning methods have been shown to be effective at finding

approximate local minima for such problems. However, these methods do not guarantee proximity to

the global minimum.

5 Imitation learning

In this section, we address the motivating application P2 on imitation learning by extending the

framework in Section 4. The main task of imitation learning is to obtain a control policy that reproduces

the demonstrated trajectories from a given plant. In this paper, we propose to simultaneously learn

a stabilizable model of the dynamics, which acts as a form of regularization encouraging closed-loop

stability of the learned policy. To this end, we begin in this section by proposing a class of stabilizable

Koopman models and study its properties, before turning to the problem of imitation learning.

5.1 Stabilizable Koopman model class

It is a well-known fact that extending the Koopman operator to control systems is technically chal-

lenging and may yield bilinear lifted systems [16], which are a special class of nonlinear systems. To

obtain a bona fide linear lifted model, we focus on a particular class of nonlinear systems, which are

referred to as “generalized feedback linearizable systems”.

Definition 4. For the system (6), if we can find mappings α : Rn × Rm → Rm and ϕ : Rn → RN

(N ≥ n), and the matrices A ∈ RN×N and B ∈ RN×m satisfying

C1: The algebraic equation

B⊥[ϕ ◦ fc(x, v)−Aϕ(x)] = 0, ∀v ∈ Rm (27)

with fc(x, v) := f(x) + g(x)α(x, v);

C2: The mapping ϕ is injective.

Then we call the system (6) generalized feedback linearizable. In addition, if the pair (A,B) is sta-

blizable, we refer to it as Koopman stabilizable.

In the above definition, C1 means that for the closed-loop dynamics, we have ϕ(xt+1) =

ϕ(f(xt, vt)) = Aϕ(xt) + Bvt under the pre-feedback u = α(x, v). By defining z := ϕ(x) and view-

ing v as the new input, the control model is lifted into an LTI system

zt+1 = Azt +Bvt. (28)

The injectivity condition C2 guarantees that the coordinate z can be pulled back to the original x-

coordinate. The above definition covers all feedback linearizable systems that involve a pre-feedback

and a state diffeomorphism z = ϕ(x), a concept central to constructive nonlinear control over the

past three decades [19, 40]. See [19, Thm. 4.2.3] for a necessary and sufficient condition of feedback

linearizability and [2] for a discrete-time version. In [37], this class of nonlinear systems is called
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“immersed by feedback into a linear system”, and the authors provide a local version of the necessary

and sufficient condition via the differential geometric approach.7

We are now in the position to propose the model class for imitation learning.

M2. Stabilizable Koopman Model (A,B,α,ϕ,ϕL):

z0 = ϕ(x0)

zt+1 = Azt +Bvt

xt = ϕL(zt)

ut = α(xt, vt)

(29)

in which 1) z ∈ RN (N ≥ n) is a lifted internal variable; 2) The pair (A,B) is stabilizable; and
3) ϕ has a left inverse satisfying ϕL(ϕ(x)) = x, ∀x.

5.1.1 Stabilization criterion for generalized feedback linearizable systems

Proposition 2. Assume the system (6) is Koopman stabilizable under the C1-continuous pre-feedback

α and an immersion ϕ : Rn → RN and (∂ϕ∂x )
⊤ ∂ϕ

∂x is uniformly bounded. Then, any matrix K that

achieves Schur stability of (A+BK) renders the closed-loop system xt+1 = fc(xt,Kϕ(xt)) contracting.

Proof. The system (6) under the pre-feedback u = α(x, v) becomes xt+1 = fc(xt, vt). Combining the

above, the stabilizing feedback v = Kϕ(x), and the algebraic equation (27), one gets

ϕ ◦ fc(x,Kϕ) = (A+BK)ϕ. (30)

Taking its partial derivative w.r.t. x, one gets

∂ϕ

∂x
(xt+1)

[
∂fc
∂x

(xt, ·)−
∂fc
∂v

(xt, ·)K
∂ϕ

∂x
(xt)

]
= (A+BK)

∂ϕ

∂x
(xt).

(31)

The stabilizing controller for (28) implies the existence of a matrix P ≻ 0 such that

P − (A+BK)⊤P (A+BK) ≻ I ⪰ ρI, (32)

with ρ ∈ (0, 1]. It yields(
∂ϕ

∂x

)⊤

[P − (A+BK)⊤P (A+BK)]
∂ϕ

∂x
≻ ρ

(
∂ϕ

∂x

)⊤
∂ϕ

∂x
. (33)

We now consider a candidate contraction metricM(x) := ∂ϕ
∂x (x)

⊤P ∂ϕ
∂x (x), and substitute (31) into (33),

obtaining

M(xt)−
∂fx
∂x

(xt)
⊤M(xt+1)

∂fx
∂x

(xt) ≻ ρ
∂ϕ

∂x
(xt)

⊤ ∂ϕ

∂x
(xt)

⪰ βM(xt)

β := ρ
λmax(P )

in which, for convenience, we have defined a new function fx(x) := fc(x,Kϕ(x)). By choosing ρ ∈ (0, 1]

sufficiently small, we have 0 < β < 1. Therefore, the closed-loop dynamics xt+1 = fc(xt,Kϕ(xt)) is

contracting.

7The necessary and sufficient condition in [37] is proposed for affine discrete-time systems. For ease of presentation,
we also consider systems in the affine form (6).
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The matching equation (27) is closely connected to the condition in control contraction metrics

(CCM), originally proposed in [32], and a continuous-time version of the connection between CCM

and Koopman stabilizability is revealed in [52, Sec. VI-A]. In general, finding the mappings α and ϕ

analytically is non-trivial. In Section 5.2, we will explore how to simultaneously learn these mappings

within the imitation learning framework and discuss the approximation.

5.1.2 Parameterization of Koopman stabilizable systems

In the proposed Koopman stabilizable model class, we need to identify four components: the stabiliz-

able matrix pair (A,B), a pre-feedback α(x, v), the mapping ϕ, and its left inverse ϕL. To facilitate

the learning framework, in this section, we study how to parameterize them.

Earlier works on learning controllers have used linear matrix inequality (LMI) constraints to im-

pose stabilizability [18, 54]. However, the computation of constrained optimization problems becomes

extremely expensive when jointly estimating the system dynamics. In the following, an unconstrained

parameterization of the triple (A,B,K) is proposed such that the pair (A,B) is guaranteed to be

stabilizable.

Proposition 3. Consider a pair (A,B) ∈ RN×N ×RN×m, in which rank{B} = m and A is parameter-

ized as A(θSL)

A(θSL) =

[
B⊥

B⊤

]−1 [
2B⊥(M11 +M22 +R−R⊤)−1M21

S

]
,

θSL := (L,R,S,B)

(34)

where Mij (i, j = 1, 2) are blocks in

M :=

[
M11 M12

M21 M22

]
= LL⊤ + ϵI, (35)

with ϵ a positive scalar, L ∈ R2N×2N , and R ∈ RN×N . Then, the pair (A,B) is stabilizable. Conversely,

for any stabilizable pair (A,B), we can always find θSL and ϵ to parameterize it in the form of (34).

Proof. The stabilizability of the pair (A,B) is equivalent to the existence of a matrix K ∈ Rm×n such

that ACL := A + BK is Schur stable. Invoking Proposition 1, it is necessary and sufficient to have

matrices L,R and ϵ to parameterize the closed-loop system matrix ACL as

ACL = 2(M11 +M22 +R−R⊤)−1M21. (36)

Note that the matrix

rank

[
B⊥

B⊤

]
= n, (37)

and we multiply it to both sides of (36), obtaining[
B⊥

B⊤

]
A =

[
2B⊥(M11 +M22 +R−R⊤)−1M21

S

]
with S := −B⊤BK+2B⊤(M11+M22+R−R⊤)−1M21. Considering rank{B⊤B} = m and the freedom

of K, hence S is a free variable to parameterize A. Since all the above implications are necessary and

sufficient, we complete the proof.

Remark 9. In the parameterization, the sub-block M22 qualifies as a Lyapunov matrix P due to

M22 − (A + BK)⊤M22(A + BK) ≻ 0, in which case K = 1
2B

⊤PACL. On the other hand, there are

infinite numbers of feasible selections for K to guarantee Schur stability.
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In the control case, the mapping ϕ shares the same properties as the one in Section 4, and thus we

adopt the same parameterizations of ϕ and its left inverse ϕL as done in Section 4.2. The nonlinear

function α(x, v) can be parameterized using another neural networks. Notably, we found that an

invertible mapping from v to u is beneficial for the specific training scheme in the next section. We

present empirical results from simulations for this point in Section 6.

5.2 Imitation learning framework

In this section, we apply the stabilizable Koopman model to the problem of imitation learning (IL). The

objective of IL is to learn a control policy that reproduces trajectories of the system (6) demonstrated

by an expert policy ut = k⋆(xt), given only state-control trajectories ED := {x̃t, ũt}
Ntraj

t=1 . One well-

studied and widely-used paradigm for IL frames it as a supervised learning problem and directly fits

a mapping from state to control input. This is commonly referred to as behavioral cloning [3], which

aims to minimize the cost function JBC = minθ∈Θ

∑Ntraj

i=1 |ũit−kθ(x̃it)|2+ r(θ), with r(·) a regularization

function.

In this paper, the problem of learning stabilizing controllers using the proposed Koopman model

is considered, particularly applying to IL (i.e. Problem P2). Recently, some works have studied

enforcing certain dynamical constraints (such as stability) on the controller during learning, under the

assumption of known dynamics [18, 48, 54].

In this work, stability is used to regularize IL when the dynamics are unknown. Our proposed

approach is to jointly learn a stabilizable model and a control policy that stabilizes it. We make use

of the stabilizable model set M2 in Section 5 and use the demonstration dataset ED to estimate the

parameters θ := (L,R,S,B, θNN, θL) Similar to the autonomous case, we use the following unconstrained

optimization problem – containing the simulation error and a stability regularization penalty term –

to learn a stabilizing feedback:

θ̂ = argmin
θ∈Θ

(
c1J

′
SE + c2JSL + c3αJ

′
RE

)
(38)

in which we have defined the following functions:

J ′
SE =

T−1∑
t=1

|z̃t+1 −Az̃t −Bṽt|2

JSL =

T−1∑
t=1

|z̃t+1 −ACLz̃t|2 +
∣∣∣∣ṽt − 1

2
B⊤PACLz̃t

∣∣∣∣2

J ′
RE =

T∑
t=1

|x̃t − ϕL(ϕ(x̃t))|2

(39)

with T = Ntraj, ACL = A + BK, weighting coefficients ci > 0 (i = 1, 2, 3), and z̃t = ϕ(x̃t) and

ṽt = α−1(x̃t, ũt), invoking that the selected function α(·, ·) is bijective.

The first term J ′
SE is the “open-loop” simulation error in the lifted z-coordinate, i.e. treating ṽ as an

exogenous input, over stabiliziable pairs (A,B); the second term JSL can be viewed as the simulation

error in the lifted coordinate in closed-loop, over Schur-stable matrices ACL, along with a term similar

to behavioural cloning for ṽ; finally, similarly to the autonomous case, the last term J ′
RE is to ensure the

left invertibility of ϕ and learn its left inverse. Just like in the autonomous case, the above optimization

can be solved via first-order methods using automatic differentiation software.
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6 Simulation results

6.1 Simulations: Learning stable Koopman embedding

The approach in Section 4 is validated on the LASA handwriting dataset [22], which consists of human-

drawn trajectories of various letters and shapes.8 It has been widely used as a benchmark for learning

stable systems [41]. Stability is an important constraint for the system characterized by this dataset

as unconstrained models can have spurious attractors, leading to poor generalization to unseen initial

conditions.

A discrete-time model was trained for each shape in the dataset to follow a desired path from

any initial condition. To prepare the data for learning models, splines were fitted to the trajectories

and the datapoints were re-sampled at a uniform time interval. The system state was chosen as

x̃t = [y⊤t , ẏ
⊤
t ]

⊤ ∈ R4, where yt ∈ R2 and ẏt ∈ R2 are the position and velocity vectors of the end-

effector at time t, formulating the minimal realization to this system. All data was scaled to the range

[−1, 1] before training. For each shape in the dataset, leave-one-out cross validation was performed.

Test trajectories are plotted in Fig. 2a as solid black lines for a subset of the shapes in the dataset.

The proposed learning framework was implemented in PyTorch9 and the ADAM optimizer [23] was

used to solve the optimization problem in (26). Hyperparameter values were chosen to be α = 103

and ϵ = 10−8. All instances of φ were selected as fully-connected feedforward neural networks using

rectified linear units (ReLU) as the activation function with its parameter b, 2 hidden layers with

50 nodes each, and an output dimensionality of 20. The neural network parameters θNN and θL are

initialized using the default scheme in PyTorch, while L, R, and b are initialized randomly from a

uniform distribution. In the simulation results, our proposed framework is denoted as SKEL.

We compared with a constrained stable parameterization (SOC) in [31] and an unconstrained

parameterization (LKIS) in [44] which does not have stability guarantees. We kept most aspects

when solving optimization the same when fitting different models, using the normalized simulation

error NSE = (
∑T

t=1 |x̂t − x̃t|2)/(
∑T

t=1 |x̃t|2), where {x̂}Tt=1 is the simulated trajectory using the learned

model. A boxplot of the normalized simulation error for the three methods is shown in Fig. 3. Our

method achieves the lowest median NSE on the test set with 95% confidence. From Fig. 4, it can be

seen that LKIS attains the lowest training error, but does not generalize to the test set and SKEL.

This can be interpreted as a symptom of overfitting and shows that the stability guarantees of SKEL

have a regularizing effect on the model. With regards to SOC, it was observed that the constrained

optimization problem would often converge to poor local minima, which is reflected in the relatively

high training and test errors. A qualitative evaluation was performed to determine the robustness of

the models to small perturbations in the initial condition of the test trajectory. Only SKEL and LKIS

were compared as it was clear from Fig. 3 that SOC underperformed in this setting. The results are

plotted in Figs. 2a-2b. It can be seen that SKEL produces trajectories that converge to each other due

to their contractivity, whereas the LKIS models sometimes behave unpredictably, indicating instability

of the learned model.

6.2 Simulations: Imitation learning

Planar Robotic Manipulator. The approach in Section 5 has been validated on the same LASA hand-

writing dataset, which was used to demonstrate trajectories to be imitated. The data were generated

by a simulated 2 degree-of-freedom (DoF) robot, whose dynamics at the end-effector can be simplified

as 2-DoF fully-actuated if we are only concerned with the working space rather than the configura-

tion space. It has a standard Euler-Lagrange form and is feedback linearizable due to full-actuation,

thus satisfying the key assumptions. Since the original LASA dataset only contains state trajectories,

an inverse dynamics model was used to generate torques as control inputs for the imitation learning

problem. Further details on the model used are given in [11, Sec. 5].

8https://cs.stanford.edu/people/khansari/download.html
9https://github.com/pytorch/pytorch
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(a) SKEL (ours)
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Figure 2: Simulations of SKEL and LKIS models on test data. Trajectories from the models are shown as red dotted lines.
True trajectory is shown as a solid black line, with the endpoint denoted by ⋆. Initial conditions are sampled from the
square region.
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Figure 3: Comparison of SKEL with other Koopman learning methods. Outliers were clipped for better visibility of boxes.
Number of outliers with NSE > 1 from left to right: 1 (SKEL), 15 (LKIS), 0 (SOC).
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Figure 5: Normalized simulation error of learned controllers on the test set. From left to right: linear parameterization of
α — c1 = 1, c1 = 10 and c1 = 100, nonlinear parameterization of α — c1 = 100, behavioural cloning (BC). Number of
clipped outliers from left to right: 4, 2, 1, 0, 5.

Comparisons were made of the performance of the learned controller for various values of c1,

and also made against the standard behavioral cloning (BC) method, which is commonly used as

a baseline for evaluating imitation learning algorithms [14]. Behavioral cloning was implemented as

fitting a neural network mapping states to control inputs by minimizing a mean-squared error loss on

the controller output. The neural networks were chosen to have 2 hidden layers with 20 nodes and tanh

activations. For a quantitative comparison, normalized simulation error (NSE) was used as a metric,

namely
∑T−1

t=1 |x̃t − x̂t|2/
∑T−1

t=1 |x̃t|2 , where x̂t+1 = f(x̂t) + g(x̂t)k(x̂t) and x̂1 = x̃1. Regarding the

prefeedback function α, we consider two bijecitive choices: 1) u = v having been used in learning-based

control [17, 20, 25]; 2) an affine coupling layer [10]:

u = v ⊙ exp(s(x)) + h(x),

where ⊙ denotes the Hadamard product, and s,h can be arbitrary function approximators. The second

choice includes the nonlinear function h, which adds flexibility by allowing more degrees of freedom to

model the nonlinearity in α, while still having an analytical inverse

v = (u− h(x))⊙ exp(−s(x)).

The bijectivity is particularly useful for enhancing traning performance.10

Fig. 5 shows the normalized simulation error with the learned controllers. We note that increas-

ing c1 reduces the NSE up to a point, beyond which performance deteriorates. Besides, increasing the

model complexity by using the nonlinear parameterization for α does not reduce the NSE, possibly

because the small training dataset was insufficient for training larger models. Meanwhile, the BC ap-

proach has a substantially larger NSE than the best-performing controller from our proposed method,

which shows that the proposed stability-based regularization does indeed improve the performance of

the controller over the baseline. A comparison of the trajectories produced by the learned controllers

is shown in Fig. 6. It can be seen that the controller produced by our method induces a closed-loop in

which nearby trajectories remain close to each other and converge to a single equilibrium, as expected

for contracting systems, whereas the trajectories of the BC controller results in divergent trajecto-

ries even with small perturbations to the initial condition, which is unacceptable when controlling

physical systems. The proposed learning framework provides an obvious improvement over behavioral

cloning for the same requirements on the data and without a significant increase in computational cost.

The results suggest that the proposed approach does have a regularizing effect on learning stabilizing

controllers and outperforms the BC method in terms of imitation error.

10There are various methods for learning ivertible maps, e.g. invertible residual networks [7] and BiLipNet [51].
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(a) Proposed method with linear α and c1 = 100.
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Figure 6: Simulations of learned controllers on the real system. Trajectories produced by the controllers are shown as blue
dotted lines. The true trajectory is shown as a solid black line, with the endpoint denoted by the star.
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Figure 7: Scatter plot of total time to convergence of the proposed method vs. the PGD algorithm of [18] in log-log
scale, plus lines of best fit.

Scability. To evaluate the benefits of direct parameterization vs constrained optimization, we in-

vestigated scalability of the learning framework a linear example in [8] which models an unstable

graph Laplacian system. We artificially generated trajectory data for learning, with additional details

in [11, Sec. 5]. A comparison was made against a prior stability-constrained imitation learning

method [18] that requires exact knowledge of (A,B). Their method was applied to this problem set by

first estimating (A,B) via least squares.11 The scalability of both algorithms was evaluated by mea-

suring computation time to convergence of the optimization problems. For the proposed method, this

corresponds to the time taken to compute the gradient and update the parameters. In comparison, the

projected gradient descent (PGD) algorithm proposed by [18] requires solving a semidefinite program

at each iteration. Fig. 7 shows the total convergence time. The slopes of the lines of best fit reveal how

the computation times scale with the dimensionality of the system. It can be seen that the proposed

method is substantially more scalable, demonstrating the advantage in scalability of optimizing an

unconstrained model.

11Note that the method of estimating the open-loop dynamics in [18] is not applicable or extensible to nonlinear
systems.
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7 Conclusion

We introduced new classes of Koopman models with stability and stabilizability guarantees, which are

built upon our novel theoretical connections between the contraction and Koopman stability criteria

in the paper. The stable Koopman model has been applied to nonlinear system identification, while

the stabilizable Koopman model class has shown efficacy in solving imitation learning. In both cases,

we proposed parameterization methods to obtain unconstrained optimization problems to significantly

reduce computation burden. Testing on the renowned LASA handwriting dataset demonstrated that

our approaches outperform pervious methods lacking stability guarantees.
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