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révision. Lorsqu’un document est accepté et publié, le pdf origi-
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Abstract : We develop R2N, a modified quasi-Newton method for minimizing the sum of a C1

function f and a lower semi-continuous prox-bounded h. Both f and h may be nonconvex. At each
iteration, our method computes a step by minimizing the sum of a quadratic model of f , a model of h,
and an adaptive quadratic regularization term. A step may be computed by way of a variant of the
proximal-gradient method. An advantage of R2N over competing trust-region methods is that proximal
operators do not involve an extra trust-region indicator. We also develop the variant R2DH, in which
the model Hessian is diagonal, which allows us to compute a step without relying on a subproblem
solver when h is separable. R2DH can be used as standalone solver, but also as subproblem solver inside
R2N. We describe non-monotone variants of both R2N and R2DH. Global convergence of a first-order
stationarity measure to zero holds without relying on local Lipschitz continuity of ∇f , while allowing
model Hessians to grow unbounded, an assumption particularly relevant to quasi-Newton models.
Under Lipschitz-continuity of ∇f , we establish a tight worst-case evaluation complexity bound of

O(1/ϵ2/(1−p)) to bring said measure below ϵ > 0, where 0 ≤ p < 1 controls the growth of model Hessians.
Specifically, the latter must not diverge faster than |Sk|

p, where Sk is the set of successful iterations up
to iteration k. When p = 1, we establish the tight exponential complexity bound O(exp(cϵ−2)) where
c > 0 is a constant. We describe our Julia implementation and report numerical experience on a classic
basis-pursuit problem, an image denoising problem, a minimum-rank matrix completion problem, and a
nonlinear support vector machine. In particular, the minimum-rank problem cannot be solved directly
at this time by a trust-region approach as corresponding proximal operators are not known analytically.

Keywords : Nonsmooth optimization, nonconvex optimization, regularized optimization, composite op-
timization, modified quasi-Newton method, proximal quasi-Newton method, proximal gradient method

Résumé: Nous développons R2N, une méthode quasi-Newton modifiée pour minimiser la somme
d’une fonction C1 f et d’une fonction h semi-continue inférieurement et prox-bornée. Les fonctions
f et h peuvent toutes deux être non convexes. À chaque itération, notre méthode calcule un pas en
minimisant la somme d’un modèle quadratique de f , d’un modèle de h, et d’un terme de régularisation
quadratique adaptatif. Un pas peut être calculé au moyen d’une variante de la méthode du gradient
proximal. Un avantage de R2N par rapport aux méthodes de région de confiance concurrentes est que
les opérateurs proximaux n’impliquent pas d’indicateur de région de confiance supplémentaire. Nous
développons également la variante R2DH, dans laquelle la hessienne du modèle est diagonale, ce qui
permet de calculer un pas sans avoir recours à un solveur de sous-problème lorsque h est séparable.
R2DH peut être utilisé comme solveur autonome, mais aussi comme solveur pour le sous-problème
de R2N. Nous décrivons également des variantes non monotones de R2N et R2DH. La convergence
globale d’une mesure de stationnarité de premier ordre vers zéro est garantie sans supposer que ∇f est
(localement) Lipschitz continue, et sans imposer aux hessiennes du modèle d’être uniformément bornée,
une hypothèse particulièrement pertinente pour les modèles quasi-Newton. Sous l’hypothèse que ∇f
est Lipschitz continue, nous établissons une borne de complexité d’évaluation atteinte dans le pire des

cas de O(1/ϵ2/(1−p)) pour amener ladite mesure sous ϵ > 0, où 0 ≤ p < 1 contrôle la croissance des
hessiennes du modèle. Plus précisément, ces dernières ne doivent pas diverger plus rapidement que
|Sk|

p, où Sk est l’ensemble des itérations réussies jusqu’à l’itération k. Lorsque p = 1, nous établissons
la borne de complexité exponentielle atteinte O(exp(cϵ−2)), où c > 0 est une constante. Nous décrivons
notre implémentation en Julia et rapportons des expériences numériques sur un problème classique
de poursuite de base, un problème de débruitage d’image, un problème de complétion matricielle de
rang minimal, et une machine à vecteurs de support non linéaire. En particulier, le problème de rang
minimal ne peut pas être résolu directement à ce jour par une approche de région de confiance car les
opérateurs proximaux correspondants ne sont pas connus analytiquement.

Acknowledgements: The research of Y. Diouane and D. Orban is partially supported by an NSERC
Discovery Grant.
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1 Introduction

We consider problems of the form

minimize
x∈Rn

f(x) + h(x), (1)

where f : Rn → R is C1 on Rn, and h : Rn → R ∪ {+∞} is lower semi-continuous (lsc). Both f and

h may be nonconvex. Our motivation is to develop a modified Newton variant of the trust-region

algorithms of Aravkin et al. [3] and Leconte and Orban [21] because the proximal operators used in the

subproblems should be easier to derive as they do not need to account for a trust-region indicator. We

introduce method R2N, at each iteration of which the sum of a quadratic model of f , a model of h, and

an adaptive quadratic regularization term, is approximately minimized. Both models may be nonconvex.

The Hessian of the quadratic model of f may be that of f if it exists, or an approximation such as those

derived from quasi-Newton updates. We establish global convergence of R2N under the assumption

that the models of h are prox-bounded and approximate h(x+ s) as o(∥s∥)—an assumption that covers

composite terms with Hölder Jacobian, see Model Assumption 5.1 for details. No assumption on local

Lipschitz continuity of ∇f is required, nor is boundedness of the model Hessians, provided they do
not diverge too fast. Specifically, if Bk is the model Hessian at iteration k, we require that the series

with general term 1/(1 + max0≤j≤k ∥Bj∥) diverge—an assumption similar to that used in trust-region

methods [13, §8.4]. Our assumptions are significantly weaker than assumptions commonly found in

the analysis of competing methods, and, consequently, the applicability of R2N is significantly more

general—see the related research section below for details.

R2N specializes to method R2DH when Bk is diagonal, as did the solver of Leconte and Orban [21].

For a number of choices of separable h that are relevant in applications, steps can be computed

explicitly without resort to an iterative subproblem solver. R2DH can be used as standalone solver or

as subproblem solver inside R2N.

We also develop complexity results inspired from those of Leconte and Orban [22] and Diouane

et al. [16], that account for potentially unbounded model Hessians. Specifically, we require that either

∥Bk∥ = O(|Sk|
p) for some 0 ≤ p ≤ 1, where Sk is the set of successful iterations up to iteration k.

When 0 ≤ p < 1, we establish a tight O(ϵ−2/(1−p)) complexity, and when p = 1, we establish a tight

exponential complexity, i.e., a bound in O(exp(cϵ−2)) where c > 0 is a constant. Though the latter

bound is tight, it is not known if it is attained for a quasi-Newton update.

We provide efficient implementations of R2N and R2DH. The latter can use one of several diagonal

quasi-Newton updates. Both have non-monotone variants that preserve their convergence and complexity

properties. Our open-source Julia implementations are available from [5]. In Section 8, we illustrate

the performance of R2N and R2DH on challenging problems, including minimum-rank problems for

which the trust-region methods of [3, 4] are impractical.

Contributions and related research

The proximal-gradient method [17, 26] is the prototypical first-order method for (1). Vast amounts

of literature consider variants but restrict f and/or h to be convex, impose that f have (locally)

Lipschitz-continuous gradient, or that h be Lipschitz continuous. For instance, [24] develop a proximal

Newton method that requires f and h convex, a positive semi-definite Hessian, and solve the subproblem

via the proximal-gradient method. Cartis et al. [10] require h to be globally Lipschitz continuous.

Kanzow and Lechner [19] develop an approach closely related to ours, but for convex h. Others dispense

with convexity but require coercivity of f + h [25]. We are aware of few references that allow both f

and h to be nonconvex. Bolte et al. [8] design an alternating method for problems with partitioned sets

of variables. Stella et al. [31] propose a line search limited-memory BFGS method named PANOC.

Themelis et al. [32] devise ZeroFPR, a non-monotone line search proximal quasi-Newton method based

on the forward-backward envelope. Boţ et al. [9], study a proximal method with momentum. The last

three converge if f + h satisfies the Kurdyka- Lojasiewicz (K L) assumption. Kanzow and Mehlitz [20]
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merely assume that f is C1, but that h is bounded below by an affine function, which is stronger than

our prox-boundedness assumption.

Our work follows the scheme laid out by Aravkin et al. [3]; a trust-region framework applicable to

nonconvex f and/or h, and that does not require coercivity or K L assumptions. They also describe a

method named R2 that amounts to a proximal-gradient method with adaptive step size, and that may

be viewed as R2N where Bk is set to zero at each iteration, effectively reducing to a first-order method.

Aravkin et al. [4] specialize their trust-region method to problems where f has a least-squares structure,

and develop a Levenberg-Marquardt variant named LM that may also be viewed as a special case of

R2N for least-squares f . If Jk is the least-squares residual’s Jacobian at xk, their model of f uses

Bk = JT
k Jk. Leconte and Orban [21] devise variants of the trust-region method of [3] for separable h in

which the model Hessian is a diagonal quasi-Newton approximation. They also devise non-monotone

schemes that are shown to significantly improve performance in certain cases. All of [3, 4, 21] assume

uniformly bounded second-order information in the model of f .

Leconte and Orban [22] revisit the trust-region method of [3] but allow for unbounded model

Hessians. They establish global convergence and a worst-case complexity bound of O(ϵ−2/(1−p))

provided ∥Bk∥ = O(|Sk|
p) with 0 ≤ p < 1. To the best of our knowledge, they were the first to use

that assumption and to obtain a complexity bound in the presence of unbounded model Hessians.

Unfortunately, their analysis does not generalize to p = 1.

Potentially unbounded model Hessians are a relevant assumption in several contexts, including quasi-

Newton methods. Conn et al. [13, §8.4.1.2] show that the SR1 approximation satisfies ∥Bk∥ = O(|Sk|),
and a similar bound for BFGS when f is convex. Powell [28] establishes a similar bound for his PSB
update. Even though it is not currently known whether those bounds are tight, the case p = 1 covers

them.

Diouane et al. [16] generalized the results of [22] to p = 1 and provided tighter complexity constants

when 0 ≤ p < 1 in the context of trust-region methods for smooth optimization, i.e., h = 0. Our

complexity analysis draws from [16, 22].

Notation

Unless otherwise noted, if x is a vector, ∥x∥ denotes its Euclidean norm and if A is a matrix, ∥A∥
denotes its spectral norm. For positive sequences {ak} and {bk}, we say that ak = o(bk) if and only if

lim supk ak/bk = 0. The cardinality of a finite set A is denoted |A|. We denote N0 the set of positive

integers.

2 Background

We recall relevant concepts of variational analysis, e.g., [29].

The domain of h is domh := {x ∈ R
n | h(x) < ∞}. Because h is proper, domh ̸= ∅. If

P : Rn → R
n is a set-valued function, domP = {x ∈ Rn | P (x) ̸= ∅}.

Definition 1. (Limiting subdifferential) Consider ϕ : Rn → R and x̄ ∈ Rn such that ϕ(x̄) < +∞. We

say that v ∈ Rn is a regular subgradient of ϕ at x̄ if

lim inf
x→x̄

ϕ(x) − ϕ(x̄) − vT (x− x̄)

∥x− x̄∥
≥ 0.

The set ∂̂ϕ(x̄) of all regular subgradients of ϕ at x̄ is called the Fréchet subdifferential.

The limiting subdifferential of ϕ at x̄ is the set ∂ϕ(x̄) of all v ∈ Rn such that there is {xk} → x̄

with {ϕ(xk)} → ϕ(x̄) and {vk} → v with vk ∈ ∂̂ϕ(xk) for all k.
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If ϕ = f + h with f continuously differentiable and h lower semi-continuous, then ∂ϕ(x) =

∇f(x) + ∂h(x) [29, Theorem 10.1].

Definition 2. (Proximal Operator) Let h : Rn → R∪ {+∞} be proper and lower semi-continuous. The

proximal operator of h with step length ν > 0 is

prox
νh

(x) := argmin
y

h(y) + 1
2ν

−1∥y − x∥2.

Without further assumptions on h, the proximal operator might be empty, or contain one or more

elements.

By [29, Exercise 8.8c], x̄ is first-order stationary for (1) if 0 ∈ ∇f(x̄) + ∂h(x̄).

3 Models

For σ ≥ 0, x ∈ Rn, and B(x) = B(x)
T ∈ Rn×n, consider the models

φ(s;x) := f(x) + ∇f(x)
T
s+ 1

2s
TB(x)s (2a)

ψ(s;x) ≈ h(x+ s) (2b)

m(s;x, σ) := φ(s;x) + 1
2σ∥s∥

2 + ψ(s;x). (2c)

Note that (2c) represents a regularized second-order model of the objective of (1), where f and h are

modeled separately. More details, on the use of such model to solve (1), will be given in Section 4. By

construction, φ(0;x) = f(x) and ∇φ(0;x) = ∇f(x). We make the following assumption on (2b).

Model Assumption 3.1. For any x ∈ Rn, ψ(·;x) is proper, lower semi continuous and prox-bounded

with threshold λx ∈ R+∪{+∞} [29, Definition 1.23]. In addition, ψ(0;x) = h(x), and ∂ψ(0;x) = ∂h(x).

We make the following additional assumption and say that {ψ(·;x)} is uniformly prox-bounded.

Model Assumption 3.2. There is λ ∈ R+ ∪ {+∞} such that λx ≥ λ for all x ∈ Rn.

Model Assumption 3.2 is satisfied if h itself is prox-bounded and we select ψ(s;x) := h(x+ s) for
all x. Let

p(x, σ) := min
s

m(s;x, σ) ≤ m(0;x, σ) = f(x) + h(x) (3a)

P (x, σ) := argmin
s

m(s;x, σ), (3b)

be the value function and the set of minimizers of (2c), respectively.

For x ∈ Rn, s ∈ P (x, σ) =⇒ 0 ∈ ∇φ(s;x) + σs+ ∂ψ(s;x). Our first result states properties of the

domain of p and P as given in (3a) and (3b).

Lemma 1. Let Model Assumption 3.1 be satisfied and B(x) = B(x)T for all x ∈ R
n. Then,

dom p = R
n × R. In addition, if Model Assumption 3.2 holds, domP ⊇ {(x, σ) | σ > max(λ−1 −

λmin(B(x)), λ−1)}, where λmin(B(x)) is the smallest eigenvalue of B(x).

Proof. By definition of the domain and Model Assumption 3.1,

dom p = {(x, σ) | inf
s
m(s;x, σ) < +∞} = {(x, σ) | ∃s m(s;x, σ) < +∞}

= {(x, σ) | ∃s ψ(s;x) < +∞} = R
n ×R,

because ψ(·;x) is proper. Moreover,

domP = {(x, σ) | ∃s(x, σ) ∈ Rn, m(s(x, σ);x, σ) = inf
s
m(s;x, σ)}.
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Write

m(s;x, σ) = φ(s;x) + 1
2 (σ − λ−1)∥s∥2 + ψ(s;x) + 1

2λ
−1∥s∥2.

By Model Assumption 3.2 and [29, Exercise 1.24(c)], there is b ∈ R such that ψ(s;x) + 1
2λ

−1∥s∥2 ≥ b

for all s ∈ Rn. Let a ∈ R. The above and (2a) imply that the level set {s ∈ Rn | m(s;x, σ) ≤ a} is

contained in

{s ∈ Rn | ∇f(x)
T
s+ 1

2s
T (B(x) + (σ − λ−1)I)s ≤ a− b− f(x)},

which is a bounded set for σ > λ−1−λmin(B(x)), i.e., m(·;x, σ) is level-bounded. Thus, [29, Theorem 1.9]

implies that infsm(s;x, σ) is attained, i.e., that P (x, σ) ̸= ∅.

In Lemma 1, domP = {(x, σ) | σ > max(λ−1−λmin(B(x)), λ−1)} does not hold in general. Consider

for example a situation where ψ(s;x) is bounded below for all x ∈ Rn, i.e., each λx = +∞. We can

choose λ = +∞. Assume also that, for a given x ∈ Rn, φ(s;x) = 0 for all s, and ψ(s;x) level-bounded.

Then, λmin(B(x)) = 0, and for σ = 0 = λ−1, m(s;x, σ) = ψ(s;x). Therefore, P (x, σ) ̸= ∅.

For a given s(x, σ) ∈ P (x, σ), we define

ξ(x, σ) := f(x) + h(x) − (φ (s(x, σ);x) + ψ (s(x, σ);x)) . (4)

The next result relates (4) to first-order stationary for (1) and (2c).

Lemma 2. Let Model Assumption 3.1 be satisfied, and x ∈ Rn and σ ≥ 0 be given. Then, ξ(x, σ) =

0 ⇐⇒ 0 ∈ P (x, σ) =⇒ x is first-order stationary for (1).

Proof. Firstly, ξ(x, σ) = 0 occurs if and only if p(x, σ) = f(x) + h(x) = φ(0;x) + ψ(0;x), which occurs

if and only if 0 ∈ P (x, σ). Therefore, 0 ∈ ∂m(0;x, σ) = ∇φ(0;x) + ∂ψ(0;x) = ∇f(x) + ∂h(x), and x

is first-order stationary for (1). The same logic applies in the opposite direction, and establishes the

equivalence.

The following proposition states some properties of (3a) and (3b).

Proposition 1. Let Model Assumptions 3.1 and 3.2 be satisfied. Assume also that ∇f is bounded over

R
n. Let ϵ > 0. Then,

1. at any (x, σ) such that σ ≥ λ−1 − λmin(B(x)) + ϵ, p is finite and lsc, and P (x, σ) is nonempty
and compact;

2. if {(xk, σk)} → (x̄, σ̄) with σk ≥ λ−1−λmin(B(xk)) + ϵ for all k in such a way that {p(xk, σk)} →
p(x̄, σ̄), and for each k, sk ∈ P (xk, σk), then {sk} is bounded and all its limit points are in

P (x̄, σ̄);

3. for any x ∈ Rn, p(x̄, ·) is continuous at any σ̄ ≥ λ−1 − λmin(B(x̄)) + ϵ and {p(xk, σk)} → p(x̄, σ̄)

holds in part 2.

Proof. The proof consists in establishing that (2c) is level-bounded in s locally uniformly in (x, σ) [29,

Definition 1.16] for σ ≥ λ−1 − λmin(B(x)) + ϵ and applying [29, Theorem 1.17]. It is nearly identical to

that of [4, Proposition 3.2] and is omitted.

Even though model (2c) is natural for incorporating second-order information, it is generally difficult

to compute an exact minimizer of it. We proceed as Aravkin et al. [3, 4] and consider a simpler

first-order model that will allow us to define an implementable stationary measure, to set minimal

requirements steps computed in the course of the iterations of the algorithm of Section 4, and to derive
convergence properties. This first-order model generalizes the concept of Cauchy point (“cp”) when

solving (1). For fixed ν > 0 and x ∈ Rn, define

φcp(s;x) := f(x) + ∇f(x)
T
s (5a)
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mcp(s;x, ν−1) := φcp(s;x) + 1
2ν

−1∥s∥2 + ψ(s;x) (5b)

pcp(x, ν−1) := min
s

mcp(s;x, ν−1) ≤ mcp(0;x, ν−1) = f(x) + h(x) (5c)

Pcp(x, ν−1) := argmin
s

mcp(s;x, ν−1) (5d)

ξcp(x, ν−1) := f(x) + h(x) − (φcp(scp(x, ν−1);x) + ψ(scp(x, ν−1);x)), (5e)

where scp ∈ Pcp(x, ν−1). By [8, Lemma 2],

ξcp(x, ν−1) ≥ 1
2ν

−1∥scp(x, ν−1)∥2 ≥ 0. (6)

In the smooth case, i.e., h = 0 and ψ = 0, scp = −ν∇f(x), so that

ξcp(x, ν−1) ≥ 1
2ν

−1∥scp∥
2 = 1

2ν∥∇f(x)∥2,

which suggests ν−1/2ξcp(x, ν−1)
1/2

as a stationarity measure that generalizes the norm of the gradient

to the nonsmooth setting.

The next results establish corresponding properties of pcp and Pcp. The proofs are similar to those

of Lemmas 1 and 2 and proposition 1 and are omitted.

Lemma 3. Let Model Assumption 3.1 be satisfied. Then, dom pcp = Rn ×R. If Model Assumption 3.2

holds, domPcp ⊇ {(x, ν−1) | ν > max(λ−1 − λmin(B(x)), λ−1)}.

The next result characterizes first-order stationarity for (1).

Lemma 4. Let Model Assumption 3.1 be satisfied and ν > 0. Then,

ξcp(x, ν−1) = 0 ⇐⇒ 0 ∈ Pcp(x, ν−1) =⇒ x is first-order stationary for (1).

The following result states properties of (5c) and (5d).

Proposition 2. Let Model Assumptions 3.1 and 3.2 be satisfied and ∇f(x) be bounded over Rn. Let

ϵ > 0. Then,

1. at any (x, ν−1) with ν−1 ≥ λ−1 + ϵ, pcp is finite and lsc, and Pcp(x, ν−1) is nonempty and
compact;

2. if {(xk, ν
−1
k )} → (x̄, ν̄−1) with ν−1

k ≥ λ−1 + ϵ for all k in such a way that {pcp(xk, ν
−1
k )} →

pcp(x̄, ν̄−1), and for each k, sk ∈ Pcp(xk, ν
−1
k ), then {sk} is bounded and all its limit points are

in Pcp(x̄, ν̄−1);

3. for any x̄ ∈ R
n and any ν̄−1 ≥ λ−1 + ϵ, pcp(x̄, ·) is continuous at ν̄ and {pcp(xk, ν

−1
k )} →

pcp(x̄, ν̄−1) holds in part 2.

The main idea of the algorithm proposed in Section 4 is that (2c) is approximately minimized at

each iteration. In order to establish convergence, the step s thus computed is required to satisfy Cauchy

decrease, which we define as in [3, 4]:

φ(0;x) + ψ(0;x) − (φ(s;x) + ψ(s;x)) ≥ (1 − θ1)ξcp(x, ν−1), (7)

for a preset value of θ1 ∈ (0, 1). In other words, s must result in a decrease in φ(·;x) + ψ(·;x) that is

at least a fraction of the decrease of the Cauchy model φcp(·;x) + ψ(·;x) obtained with the Cauchy

step scp and a well-chosen step length ν.

The following result parallels [21, Proposition 4] and establishes that if a step s reduces (2c) at least

as much as scp does, Cauchy decrease holds. This observation is important because the first step of the

proximal-gradient method from s = 0 applied to (5b) and to (2c) with step length ν is the same, and

that step is precisely scp. Therefore, a step s may be obtained by continuing the proximal-gradient
iterations on (2c) from scp.
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Proposition 3. Let Model Assumption 3.1 be satisfied. Let x ∈ Rn, θ1 ∈ (0, 1), σ > 0 and let scp be

computed with ν = θ1/(∥B(x)∥ + σ). Assume s ∈ Rn is such that m(s;x, σ) ≤ m(scp;x, σ). Then, s

satisfies (7).

Proof. Let x ∈ Rn, σ > 0, and s ∈ Rn, such that m(s;x, σ) ≤ m(scp;x, σ). Then,

φ(s;x) + ψ(s;x) + 1
2σ∥s∥

2 ≤ φ(scp;x) + ψ(scp;x) + 1
2σ∥scp∥

2

= φcp(scp;x) + ψ(scp;x) + 1
2s

T
cpB(x)scp + 1

2σ∥scp∥
2.

The Cauchy-Schwarz inequality sTcpB(x)scp ≤ ∥B(x)∥∥scp∥
2, the identity φ(0;x) = φcp(0;x) and (6)

yield

φ(0;x) + ψ(0;x) − φ(s;x) − ψ(s;x) ≥ ξcp(x, ν−1) − 1
2 (∥B(x)∥ + σ)∥scp∥

2 + 1
2σ∥s∥

2

≥ ξcp(x, ν−1) − 1
2 (∥B(x)∥ + σ)∥scp∥

2

≥ ξcp(x, ν−1) − (∥B(x)∥ + σ)νξcp(x, ν−1)

= (1 − θ1)ξcp(x, ν−1).

Computing ∥B(x)∥ in the spectral norm comes at a cost. However, as we now illustrate, an inexact

computation is sufficient in order to ensure (7). Assume that we are able to compute β(x) ≈ ∥B(x)∥
such that β(x) ≥ µ∥B(x)∥ for 0 < µ < 1, and set ν = θ1/(β(x) + σ). The proof of Proposition 3

continues to apply unchanged until the very last line, which becomes

φ(0;x) + ψ(0;x) − (φ(s;x) + ψ(s;x)) ≥ (1 − (∥B(x)∥ + σ)ν)ξcp(x, ν−1)

=

(
1 − θ1

∥B(x)∥ + σ

β(x) + σ

)
ξcp(x, ν−1).

If β(x) ≤ ∥B(x)∥, (∥B(x)∥ + σ)/(β(x) + σ) ≤ ∥B(x)∥/β(x) ≤ 1/µ, so that(
1 − θ1

∥B(x)∥ + σ

β(x) + σ

)
ξcp(x, ν−1) ≥ (1 − θ1/µ)ξcp(x, ν−1).

Thus, as long as θ1 < µ, (7) is satisfied with θ1 replaced with θ1/µ.

If, on the other hand, β(x) ≥ ∥B(x)∥, then (∥B(x)∥ + σ)/(β(x) + σ) ≤ 1, and(
1 − θ1

∥B(x)∥ + σ

β(x) + σ

)
ξcp(x, ν−1) ≥ (1 − θ1)ξcp(x, ν−1),

and (7) holds unchanged.

The above observation also allows us to replace ∥B(x)∥ in the denominator of ν with, e.g., ∥B(x)∥1,

∥B(x)∥∞ or ∥B(x)∥F if B(x) is available as an explicit matrix, or indeed with any other norm of B(x).

4 A modified quasi-Newton method for nonsmooth optimization

We are in position to describe a modified quasi-Newton method to solve (1) named R2N. By contrast

with trust-region-based approaches [3, 21], proximal operators are easier to evaluate in the R2N

subproblem as they do not include a trust-region indicator.

At iteration k, we choose a step length νk > 0 based on the regularization parameter σk > 0 and the

norm of the model Hessian B(xk) at the current iterate xk ∈ Rn as in Proposition 3. We then compute
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the Cauchy step sk,cp as a minimizer of (5b). A step sk is subsequently computed that satisfies the

assumptions of Proposition 3.

The rest of the algorithm is standard. The decrease in f + h at xk + sk is compared to the decrease

predicted by the model. If both are in sufficient agreement, xk + sk becomes the new iterate, and σk
is possibly reduced. If the model turns out to predict poorly the actual decrease, the trial point is

rejected and σk is increased. Algorithm 1 states the whole procedure.

The interaction between σk and the unknown threshold λxk
works as in [3, Algorithm 6.1] and

[4]. If σk ≤ λ−1
xk

, ψ(sk;xk) = −∞, and according to the rules of extended arithmetic, which state that

±∞ · 0 = 0 · (±∞) = (±∞)/(±∞) := 0 [29], ρk = 0. Consequently, sk will be rejected at Line 10, and

σk+1 will be set larger than σk at Line 11. After a finite number of such increments, σk will surpass

λ−1
xk

, resulting in a step with finite ψ(sk;xk). In effect, Model Assumption 3.2 is only required to hold

at the iterates generated by the algorithm.

Algorithm 1 R2N: A proximal modified Quasi-Newton method.

1: Choose constants 0 < θ1 < 1 < θ2, 0 < η1 ≤ η2 < 1 and 0 < γ3 ≤ 1 < γ1 ≤ γ2.
2: Choose x0 ∈ Rn

where h is finite, 0 < σmin < σ0.
3: for k = 0, 1, . . . do

4: Choose Bk := B(xk) ∈ R
n×n

such that Bk = B
T
k .

5: Compute νk := θ1/(∥Bk∥+ σk).

6: Compute sk,cp ∈ argmins mcp(s;xk, ν
−1
k ) and ξcp(xk, ν

−1
k ) as defined in (5e).

7: Compute a step sk such that m(sk;xk, σk) ≤ m(sk,cp;xk, σk).
8: If ∥sk∥ > θ2 ∥sk,cp∥, reset sk = sk,cp.
9: Compute the ratio

ρk :=
f(xk) + h(xk)− (f(xk + sk) + h(xk + sk))

φ(0;xk) + ψ(0;xk)− (φ(sk;xk) + ψ(sk;xk))
.

10: If ρk ≥ η1, set xk+1 = xk + sk. Otherwise, set xk+1 = xk.
11: Update the regularization parameter according to

σk+1 ∈


[γ3σk, σk] if ρk ≥ η2, very successful iteration

[σk, γ1σk] if η1 ≤ ρk < η2, successful iteration

[γ1σk, γ2σk] if ρk < η1. unsuccessful iteration

12: end for

Importantly, R2N does not require Bk ⪰ 0, which may be useful in practice in order to capture

natural problem curvature. In addition, we allow {Bk} to be unbounded. In Section 5, we establish

convergence provided it does not diverge too fast, using an assumption similar to that used in trust-

region methods [13, §8.4]. In Section 6, we study the effect of using different bounds on {∥Bk∥} on

worst-case evaluation complexity. The complexity results are obtained by adapting results from [16] (in

the context of trust-region methods for smooth optimization) to R2N.

Our main working assumption is the following.

Problem Assumption 4.1. The function f is continuously differentiable over the set {x ∈ R
n |

(f + h)(x) ≤ (f + h)(x0)} and h is proper and lower semi-continuous.

Problem Assumption 4.1 is very mild as one does not require boundedness nor Lipschitz continuity of

f or ∇f , in contrast with [4, Problem Assumption 4.1] or the assumptions of Kanzow and Lechner [19].

For instance, our analysis includes cases where f is continuously differentiable, but whose gradient is

not locally Lipschitz continuous at x = 0, e.g., f(x) = |x|
3
2 .

In the next sections, we derive convergence and worst-case complexity analysis for Algorithm 1. We

will repeatedly use the notation

S := {i ∈ N | ρi ≥ η1} (all successful iterations) (8a)

Sk := {i ∈ S | i ≤ k} (successful iterations until iteration k) (8b)

U := {i ∈ N | ρi < η1} (all unsuccessful iterations) (8c)

Uk := {i ∈ N | i ̸∈ S, i ≤ k} (unsuccessful iterations until iteration k). (8d)
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5 Convergence analysis of Algorithm 1

In this section, we investigate the convergence properties of Algorithm 1 under Problem Assumption 4.1.

We show that lim infk→∞ ν
− 1

2

k ξcp(xk, ν
−1
k )

1
2 = 0. We stress that the obtained convergence properties of

Algorithm 1 are more general than those of [4, 19, 20], and do not require boundedness of the model

Hessians nor (local) Lipschitz continuity of ∇f .

We first establish lower bounds on ξcp(xk, ν
−1
k ) in terms of ∥sk∥.

Lemma 5. For all k ∈ N,

ξcp(xk, ν
−1
k ) ≥ 1

2θ
2
2

ν−1
k ∥sk∥

2. (9)

Additionally, for any α > 0,

ν
− 1

2

k ξcp(xk, ν
−1
k )

1
2 ≥ α ⇒ ξcp(xk; ν−1

k ) ≥ α

θ2
√

2
∥sk∥. (10)

Proof. From Algorithm 1, we have ∥sk∥ ≤ θ2∥sk,cp∥. Hence,

ξcp(xk, ν
−1
k ) ≥ 1

2ν
−1
k ∥sk,cp∥

2 ≥ 1

2θ
2
2

ν−1
k ∥sk∥

2.

If ν
− 1

2

k ξcp(xk, ν
−1
k )

1
2 ≥ α,

ξcp(xk, ν
−1
k ) ≥ αν

1
2

k ξcp(xk, ν
−1
k )

1
2 ≥ αν

1
2

k ( 1

2θ
2
2

ν−1
k ∥sk∥

2)
1
2 =

α

θ2
√

2
∥sk∥.

The next lemma shows that the convergence of {xk}k∈N holds if the objective is bounded below, the al-

gorithm generates infinitely many successful iterations and the stationarity measure ν
−1/2
k ξcp(xk, ν

−1
k )

1/2

is bounded away from zero.

Lemma 6. Assume that Algorithm 1 generates infinitely many successful iterations and that there is

(f + h)low ∈ R such that (f + h) (xk) ≥ (f + h)low for all k ∈ N. Additionally, assume, that there is

α > 0 such that for all k ∈ N, ν−1/2
k ξcp(xk, ν

−1
k )

1/2
≥ α. Then, {xk}k∈N is a Cauchy sequence, and

hence converges.

Proof. For all k ∈ S, using (10) from Lemma 5, we have

f(xk) + h(xk) − f(xk+1) − h(xk+1) ≥ η1(1 − θ1)ξcp(xk, ν
−1
k )

≥ η1(1 − θ1)α

θ2
√

2
∥sk∥ =

η1(1 − θ1)α

θ2
√

2
∥xk+1 − xk∥.

Summing over all successful iterations from 1 to k, we obtain

f(x0) + h(x0) − (f + h)low ≥
∑
j∈Sk

f(xj) + h(xj) − f(xj+1) − h(xj+1)

≥ η1(1 − θ1)α

θ2
√

2

∑
j∈Sk

∥xj+1 − xj∥

=
η1(1 − θ1)α

θ2
√

2

k∑
j=0

∥∥xj+1 − xj
∥∥ .

Thus,
∑

j∈N ∥xj+1 − xj∥ < +∞. Hence, {xk}k∈N is a Cauchy sequence, and converges.

The following lemma shows that when {xk} converges and {σk} diverges along common subsequences,

the corresponding subsequence of {sk} converges to zero.
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Lemma 7. Let Problem Assumption 4.1 and Model Assumptions 3.1 and 3.2 be satisfied and assume that

there is an index set K ⊆ N such that limk∈K σk = +∞ and {xk}k∈K is bounded. Then, limk∈K sk =

limk∈K sk,cp = 0.

Proof. By contradiction, assume that there is an index set K′ ⊆ K and α > 0 such that ∥sk,cp∥ ≥ α

for all k ∈ K′. By definition of sk,cp and Model Assumption 3.1, f(xk) + h(xk) = mcp(0;xk, ν
−1
k ) ≥

mcp(sk,cp;xk, ν
−1
k ). Hence,

f(xk) + h(xk) ≥ φcp(sk,cp;xk) + ψ(sk,cp;xk) + 1
2ν

−1
k ∥sk,cp∥

2

= f(xk) + ∇f(xk)
T
sk,cp + 1

2θ1
(∥Bk∥ + σk)∥sk,cp∥

2 + ψ(sk,cp;xk)

≥ f(xk) + ∇f(xk)
T
sk,cp + 1

2θ1
σk∥sk,cp∥

2 + ψ(sk,cp;xk)

≥ f(xk) − ∥∇f(xk)∥∥sk,cp∥ + 1
2 (
σk
θ1

− λ−1)∥sk,cp∥
2

+ ψ(sk,cp;xk) + 1
2λ

−1∥sk,cp∥
2.

By Model Assumption 3.2 and [29, Exercise 1.24(c)], there is bh ∈ R such that ψ(s;x) + 1
2λ

−1∥s∥2 ≥ bh
for all s and x. Hence, for all sufficiently large k ∈ K′, σk > λ−1 and

f(xk) + h(xk) ≥ f(xk) − ∥∇f(xk)∥∥sk,cp∥ + 1
2 (
σk
θ1

− λ−1)∥sk,cp∥
2 + bh

≥ f(xk) − ∥∇f(xk)∥∥sk,cp∥ + 1
2α(

σk
θ1

− λ−1)∥sk,cp∥ + bh

= f(xk) +

(
1
2α(

σk
θ1

− λ−1) − ∥∇f(xk)∥
)
∥sk,cp∥ + bh. (11)

Since {xk}k∈K′ is bounded, so are {f(xk)}k∈K′ and {∇f(xk)}k∈K′ by Problem Assumption 4.1. Let

bf := mink∈K′ f(xk) > −∞ and bf ′ = maxk∈K′ ∥∇f(xk)∥ <∞. Because {f(xk) +h(xk)} is nonincreas-

ing, (11) yields

f(x0) + h(x0) ≥ f(xk) + h(xk) ≥ bf +

(
1
2α(

σk
θ1

− λ−1) − bf ′

)
∥sk,cp∥ + bh. (12)

As limk∈K′ σk = +∞, for k sufficiently large, 1
2α(σk

θ1
− λ−1) > bf ′ . Thus, for all sufficiently large

k ∈ K′, (12) combines with ∥sk,cp∥ ≥ α to give

f(x0) + h(x0) ≥ bf +

(
1
2α(

σk
θ1

− λ−1) − bf ′

)
α+ bh,

which is a contradiction because the right-hand side diverges. Thus, limk∈K ∥sk,cp∥ = 0. Finally, since

∥sk∥ ≤ θ2∥sk,cp∥, we get also limk∈K ∥sk∥ = 0.

For the remainder of this section, we need the following assumption.

Model Assumption 5.1. For all k ∈ N, the model function ψ(·, xk) satisfies

|h(xk + sk) − ψ(sk;xk)| = o(∥sk∥) as sk → 0. (13)

Model Assumption 5.1 is trivially satisfied if, at each iteration k, we set ψ(s;xk) = h(xk + s), which

is what Kanzow and Lechner [19] do. However, the assumption also holds when h(x) = g(c(x)), where

c : Rn → R
m has Lipschitz-continuous or αh-Hölder-continuous Jacobian, g : Rm → R is L-Lipschitz

continuous, and we choose ψ(s;xk) := g(c(xk) + ∇c(xk)T s). Indeed, there exists M > 0 such that

|h(xk + s) − ψ(s;xk)| ≤ L∥c(xk + s) − c(xk) −∇c(xk)T s∥ ≤ LM∥s∥1+αh = o(∥s∥).
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Theorem 1. Let Problem Assumption 4.1 and Model Assumptions 3.1, 3.2 and 5.1 be satisfied. Assume

that there is an index set K ⊆ N so that (i) there is α > 0 such that ν
−1/2
k ξcp(xk, ν

−1
k )

1/2
≥ α for all

k ∈ K, (ii) {σk(1 + ∥Bk∥)−1}k∈K is unbounded and (iii) {xk}k∈K is bounded. Then, there is an index

set K′ ⊆ K such that for all k ∈ K′ sufficiently large, k is a very successful iteration.

Proof. By Assumption (ii), there is an index set K′ ⊂ K such that limk∈K′ σk(1 + ∥Bk∥)−1 = ∞. Since

σk ≥ σk(1 + ∥Bk∥)−1, we also have limk∈K′ σk = ∞. Lemma 7 then implies limk∈K′ ∥sk∥ = 0. For all

k ∈ K′, Model Assumption 5.1 combines with (7) and a Taylor expansion of f about xk to give

|ρk − 1| =

∣∣∣∣ (f + h)(xk + sk) − (φ(sk;xk) + ψ(sk;xk))

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk))

∣∣∣∣
=

∣∣∣∣∣ (f + h)(xk + sk) − (f(xk) + ∇f(xk)
T
sk + 1

2s
T
kBksk + ψ(sk;xk))

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk))

∣∣∣∣∣
≤ |f(xk + sk) − f(xk) −∇f(xk)T sk|

(1 − θ1)ξcp(xk, ν
−1
k )

+
∥Bk∥∥sk∥

2

2(1 − θ1)ξcp(xk, ν
−1
k )

+
|h(xk + sk) − ψ(sk;xk)|

(1 − θ1)ξcp(xk, ν
−1
k )

=
o(∥sk∥)

(1 − θ1)ξcp(xk, ν
−1
k )

+
∥Bk∥∥sk∥

2

2(1 − θ1)ξcp(xk, ν
−1
k )

+
o(∥sk∥)

(1 − θ1)ξcp(xk, ν
−1
k )

≤ o(∥sk∥)

ξcp(xk, ν
−1
k )

+
(1 + ∥Bk∥)∥sk∥

2

2(1 − θ1)ξcp(xk, ν
−1
k )

. (14)

By Assumption (i), Lemma 5 implies ξcp(xk; ν−1
k ) ≥ α

θ2
√
2
∥sk∥ for all k ∈ K′, which we apply to the

first term in the right-hand side of (14). Similarly, (9) implies

ξcp(xk, ν
−1
k ) ≥ 1

2θ
2
2

ν−1
k ∥sk∥

2 = 1

2θ1θ
2
2

(∥Bk∥ + σk)∥sk∥
2 ≥ 1

2θ1θ
2
2

σk∥sk∥
2,

which we apply to the second term in the right-hand side of (14). Hence, (14) simplifies to

|ρk − 1| ≤ o(∥sk∥)
α

θ2
√
2
∥sk∥

+
(1 + ∥Bk∥)∥sk∥

2

(1−θ1)

θ1θ
2
2

σk∥sk∥
2

=
o(∥sk∥)

∥sk∥
+

θ1θ
2
2

(1 − θ1)σk(1 + ∥Bk∥)−1 . (15)

By Assumption (ii), the right-hand side of (15) converges to zero. Thus, for all sufficiently large k ∈ K′,

|ρk − 1| ≤ 1 − η2, which implies that ρk ≥ η2.

Theorem 1 shares similarities with [4, Theorem 4.1] but uses weaker assumptions. In particular,

compared to [4, Theorem 4.1], we do not use the Lipschitz continuity of ∇f nor do we require model

Hessians to be uniformly bounded.

Lemma 8. Let Problem Assumption 4.1 and Model Assumptions 3.1, 3.2 and 5.1 be satisfied. Assume

that {xk}k∈N is bounded and that there is α > 0 such that for all k ∈ N, ν−1/2
k ξcp(xk, ν

−1
k )

1/2
≥ α.

Then, {σk(1 + ∥Bk∥)−1}k∈N is bounded.

Proof. Assume, by contradiction, that {σk(1 + ∥Bk∥)−1}k∈N is unbounded. Since {σk}k∈N increases

only on unsuccessful iterations and {(1 + ∥Bk∥)−1}k∈N is bounded, {σk(1 + ∥Bk∥)−1}k∈U must be

unbounded, where U is defined in (8). Hence, using Theorem 1, we deduce that there is an index set

U ′ ⊆ U such that for all k ∈ U ′ sufficiently large, k is a very successful iteration, i.e., k ∈ S, which is

absurd.
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Consider the following assumption

Model Assumption 5.2. The sequence {Bk}k∈N satisfies:∑
k∈N

1

rk
= +∞, rk := max

0≤j≤k
∥Bj∥ + 1.

The next theorem examines the case where Algorithm 1 generates only a finite number of successful

iterations.

Theorem 2. Let Problem Assumption 4.1 and Model Assumptions 3.1, 3.2, 5.1 and 5.2 be satisfied. If

Algorithm 1 generates finitely many successful iterations, then there is x∗ ∈ Rn such that xk = x∗ for

all sufficiently large k, and lim infk→∞ ν
− 1

2

k ξcp(xk, ν
−1
k )

1
2 = 0.

Proof. Assume, by contradiction, that there is α > 0 such that ν
− 1

2

k ξcp(xk, ν
−1
k )

1
2 ≥ α for all k ∈ N

and let kf be the last successful iteration. Hence, xk = xkf
for all k ≥ kf and limk xk = xkf

= x∗.

Using Lemma 8, {σk(1 + ∥Bk∥)−1}k∈N is bounded by a constant bσ > 0. This, implies, that for all

k > kf ,
1

rk
=

1

1 + max0≤j≤k ∥Bj∥
≤ 1

1 + ∥Bk∥
≤ bσ
σk
.

Thus, Model Assumption 5.2 implies
∞∑

k=kf+1

1

σk
= +∞. (16)

On the other hand, all k > kf , k is an unsuccessful iteration. The mechanism of Algorithm 1 then ensures
σk

σk+1
≤ 1

γ1
< 1 for all k > kf . But this implies that

∑∞
k=kf+1

1
σk

converges, which contradicts (16).

To the best of our knowledge, Theorem 2 is the first convergence result of a regularized or trust-region

method that does not rely on the boundedness of the regularization parameter or trust-region radius in

the case of a finite number of successful iterations. In the absence of such boundedness, Theorem 2

does not provide information on the stationarity of x∗. Note that it is not because the algorithms

performs a finite number of successful iterations that sk = 0 for all k sufficiently large. For this reason,

there is no guarantee that x∗ will be first-order stationary for (1) after a finite number of iterations.

Now we consider the case where the number of successful iterations is infinite. Let τ ∈ N0 and k0
be the index of the first successful iteration, and define, as in [16],

T τ
k =

{
j = k0, . . . , k | j ≤ τ |Sj |

}
, (17a)

Wτ
k =

{
j = k0, . . . , k | j > τ |Sj |

}
. (17b)

The next lemma provides a series comparison result that will be used in the proof of the main

theorem.

Lemma 9 (16, Lemma 7). Let {rj}j∈N be a non-decreasing positive real sequence. For any k ≥ k0,

τ
∑
j∈Sk

1

rj
≥

∑
j∈T τ

k

1

rj
=

k∑
j=k0

1

rj
−

∑
j∈Wτ

k

1

rj
,

where T τ
k and Wτ

k are defined in (17).

The following lemma plays a key role in deriving a convergence result in the case where the number

of successful iterations is infinite.
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Lemma 10. Let Problem Assumption 4.1 and Model Assumptions 3.1, 3.2, 5.1 and 5.2 be satisfied.

Assume that (i) τ ∈ N0 is chosen so that γ3γ
τ−1
1 > 1, (ii) there is α > 0 such that ν

−1/2
k ξcp(xk, ν

−1
k )

1/2
≥

α for all k ≥ k0, and (iii) {xk}k≥k0
is bounded. Then,

{∑
j∈Wτ

k

1
rj

}
k≥k0

is bounded, where rj is as in

Model Assumption 5.2.

Proof. For any j ≥ 0, Lemma 8 and the update mechanism of Algorithm 1 imply that there is bσ > 0

such that
1

rj
≤ 1

1 + ∥Bj∥
≤ bσ
σj

≤ bσ

γ
|Sj |
3 γ

|Uj |
1 σ0

=
bσ

γ
|Sj |
3 γ

j−|Sj |
1 σ0

.

Consider now k ≥ k0 and j ∈ Wτ
k . Then, j > τ |Sj |, which, together with the fact that γ1 > 1 and

0 < γ3 ≤ 1 leads to

1

rj
≤ bσ

γ
|Sj |
3 γ

j−|Sj |
1 σ0

<
bσ

γ
j/τ
3 γ

j−j/τ
1 σ0

=
bσ

(γ3γ
τ−1
1 )j/τσ0

.

We sum the above inequalities over j ∈ Wτ
k and use the fact that γ3γ

τ−1
1 > 1 to obtain∑

j∈Wτ
k

1

rj
<
bσ
σ0

∑
j∈Wτ

k

1

(γ3γ
τ−1
1 )j/τ

≤ bσ
σ0

∑
j∈N

1

(γ3γ
τ−1
1 )j/τ

<∞.

We state now our main convergence result.

Theorem 3. Let Problem Assumption 4.1 and Model Assumptions 3.1, 3.2, 5.1 and 5.2 be satisfied.

Assume that Algorithm 1 generates infinitely many successful iterations and that there is (f + h)low ∈ R
such that (f + h) (xk) ≥ (f + h)low for all k ∈ N. Then, lim infk→+∞ ν

−1/2
k ξcp(xk, ν

−1
k )

1/2
= 0.

Proof. By contradiction, assume that there is α > 0 such that for all k ∈ N, ν
−1/2
k ξcp(xk, ν

−1
k )

1/2
≥

α. Lemma 6 shows that {xk}k∈N is convergent, hence bounded. Lemma 8 then implies that

{σk(1 + ∥Bk∥)−1}k∈N is bounded, say by bσ > 0. Equivalently, σk ≤ bσ(1 + ∥Bk∥). For any j ∈ S,

ρj ≥ η1, and

f(xj) + h(xj) − f(xj+1) − h(xj+1) ≥ η1(1 − θ1)ξcp(xj , ν
−1
j )

≥ η1(1 − θ1)νjα
2

=
η1(1 − θ1)θ1α

2

σj + ∥Bj∥

≥ η1(1 − θ1)θ1α
2

(bσ(1 + ∥Bj∥) + ∥Bj∥)

≥ η1(1 − θ1)θ1α
2

(1 + bσ)(1 + ∥Bj∥)

≥ η1(1 − θ1)θ1α
2

1 + bσ

1

rj
,

where rj is defined in Model Assumption 5.2. Let k ≥ k0. We sum the above inequalities over all

j ∈ Sk, and obtain

f(x0) + h(x0) − f(xk+1) − h(xk+1) ≥ η1(1 − θ1)θ1α
2

1 + bσ

∑
j∈Sk

1

rj
.



Les Cahiers du GERAD G–2024–64 13

Since f + h is bounded below, it follows that
∑

k∈S
1
rk
<∞. Let τ ∈ N0 be chosen so that γ3γ

τ−1
1 > 1.

By Lemma 10,
∑

j∈Wτ
k

1
rj

is uniformly bounded for all k ≥ k0. However, Lemma 9 yields that for all

k ≥ k0,
k∑

j=k0

1

rj
≤ τ

∑
j∈Sk

1

rj
+

∑
j∈Wτ

k

1

rj
,

which implies that
∑∞

k=k0

1
rk

converges, and contradicts Model Assumption 5.2.

Note that the assumptions involved in Theorem 3 are weaker compared to existing methods in the

literature—see Section 1.

6 Complexity analysis of Algorithm 1

In this section, we study the evaluation complexity of Algorithm 1 in the case where the model Hessians

are allowed to be unbounded. We replace Model Assumption 5.1 with the following.

Model Assumption 6.1. There is κm > 0 such that for all k ∈ N,

|(f + h)(xk + sk) − (φ+ ψ)(sk;xk)| ≤ κm(1 + ∥Bk∥)∥sk∥
2. (18)

Note that if ∇f is Lipschitz continuous and ψ(;x) satisfies Model Assumption 5.1 then Model

Assumption 6.1 is satisfied as discussed by Leconte and Orban [22].

The next lemma will allow us to show that {σk(1 + ∥Bk∥
−1)} is bounded

Lemma 11. Let Problem Assumption 4.1 and Model Assumptions 3.1, 3.2 and 6.1 be satisfied. Define

bsucc :=
2κm

1 − η2
> 0.

If xk is not first-order stationary and σk(1 + max0≤j≤k ∥Bj∥)−1 ≥ bsucc, iteration k is very successful

and σk+1 < σk.

Proof. Because xk is not first-order stationary, sk ≠ 0. By definition of sk, m(0;xk, σk) ≥ m(sk;xk, σk).

Hence,

φk (0;xk) + ψk (0;xk) ≥ φk (sk;xk) + ψk (sk;xk) + 1
2σk∥sk∥

2. (19)

Thus, Model Assumption 6.1 yields

|ρk − 1| =

∣∣∣∣ (f + h)(xk + sk) − (φk(sk;xk) + ψk(sk;xk))

φk(0;xk) + ψk(0;xk) − (φk(sk;xk) + ψk(sk;xk))

∣∣∣∣
≤ κm(1 + ∥Bk∥)∥sk∥

2

1
2σk∥sk∥

2

≤ 2κm

σk(1 + max0≤j≤k ∥Bj∥)−1 ≤ 2κm
bsucc

= 1 − η2.

Thus, we obtain ρk ≥ η2, meaning that the iteration k is very successful.

The next theorem shows that {σk(1 + ∥Bk∥
−1)} is bounded.

Theorem 4. Let Problem Assumption 4.1 and Model Assumptions 3.1, 3.2 and 6.1 be satisfied. For all

k ∈ N, if xk is not stationary,

σk(1 + max
0≤j≤k

∥Bj∥)−1 ≤ bmax := min {σ0(1 + ∥B0∥)−1, γ2bsucc} > 0.
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Proof. Set bk := σk(1 + max0≤j≤k ∥Bj∥)−1 for all k. We proceed by induction. For k = 0, σ0(1 +

∥B0∥)−1 ≤ bmax by definition. Assume that bk ≤ bmax for k ≥ 0.

Assume first that bk < bsucc. Because {(1 + max0≤j≤k ∥Bj∥)−1} is non-increasing, the update of σk
in Algorithm 1 ensures that

bk+1 = (1 + max
0≤j≤k+1

∥Bj∥)−1σk+1 ≤ (1 + max
0≤j≤k

∥Bj∥)−1γ2σk = γ2bk < γ2bsucc ≤ bmax.

Now, assume conversely that bk ≥ bsucc. Lemma 11 implies that iteration k is very successful, and

σk+1 < σk. Thus,

bk+1 = (1 + max
0≤j≤k+1

∥Bj∥)−1σk+1 < (1 + max
0≤j≤k

∥Bj∥)−1σk = bk ≤ bmax.

Additionally, instead of Model Assumption 5.2, we assume that model Hessians grow at most linearly

with |Sk|, which covers multiple quasi-Newton approximations—see Section 1.

Model Assumption 6.2. There are µ > 0 and 0 ≤ p ≤ 1 such that, for all k ∈ S,

max
0≤j≤k

∥Bj∥ ≤ µ(1 + |Sk|
p). (20)

Because |Sk| is non-decreasing with k, (20) is equivalent to ∥Bk∥ ≤ µ(1 + |Sk|
p) for all k ∈ N. The

following theorem considers the case with a finite number of successful iterations. The proof follows [4,

Theorem 4.2] and is recalled here for completeness.

Theorem 5. Let Problem Assumption 4.1 and Model Assumptions 3.1, 3.2, 6.1 and 6.2 be satisfied. If

Algorithm 1 generates finitely many successful iterations, then xk = x∗ for all sufficiently large k where

x∗ is a stationary point.

Proof. Assume by contradiction that x∗ is not a stationary point. Because the number of successful

iterations is finite, according to Model Assumption 6.2, there is kf ∈ N such that ∥Bk∥ ≤ µ(1 + |Skf
|p)

for all k ≥ kf , where kf is the index of the last successful iteration. The mechanism of Algorithm 1

ensures that σk increases on unsuccessful iterations. Hence, there must exist an unsuccessful iteration

k > kf such that σk ≥ bsucc(1 + µ(1 + |Skf
|p)) ≥ bsucc(1 + ∥Bk∥), with bsucc defined in Lemma 11.

Because x∗ is not stationary, we can apply Lemma 11, which shows that k is very successful, and

contradicts our assumption.

We know from Theorem 3 that lim infk→+∞ ν
−1/2
k ξcp(xk, ν

−1
k )

1/2
= 0 when Algorithm 1 generates

infinitely many successful iterations. Let ϵ > 0 and kϵ be the first iteration of Algorithm 1 such that

ν
−1/2
k ξcp(xk, ν

−1
k )

1/2
≤ ϵ. Define

S(ϵ) := Skϵ−1 = {k ∈ S | k < kϵ}, (21a)

U(ϵ) := Ukϵ−1 = {k ∈ N | k ̸∈ S and k < kϵ}. (21b)

The next theorems bound kϵ. The proofs are similar to [16, Theorem 2].

Theorem 6. Let Problem Assumption 4.1 and Model Assumptions 3.1, 3.2, 6.1 and 6.2 be satisfied.

Assume that Algorithm 1 generates infinitely many successful iterations and that there is (f + h)low ∈ R
such that (f + h) (xk) ≥ (f + h)low for all k ∈ N. If 0 ≤ p < 1,

|S(ϵ)| ≤ ((1 − p)κ1ϵ
−2 + 1)

1/(1−p)
− 1 = O(ϵ−2/(1−p)), (22)

where

κ1 =
((f + h) (x0) − (f + h)low) (bmax + 2µ(1 + bmax))

η1θ1(1 − θ1)
,
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and bmax is as in Theorem 4. If p = 1,

|S(ϵ)| ≤ exp(κ1ϵ
−2) − 1. (23)

Proof. Let k ∈ S(ϵ), then ν
−1/2
k ξcp(xk, ν

−1
k )

1/2
≥ ϵ and

(f + h) (xk) − (f + h) (xk + sk) ≥ η1(1 − θ1)ξcp(xk; ν−1
k ) ≥ η1(1 − θ1)νkϵ

2. (24)

Theorem 4 implies

νk =
θ1

∥Bk∥ + σk
≥ θ1

max0≤j≤k ∥Bj∥ + bmax(1 + max0≤j≤k ∥Bj∥)

=
θ1

bmax + (1 + bmax) max0≤j≤k ∥Bj∥
.

Model Assumption 6.2 then implies

νk ≥ θ1
bmax + µ(1 + bmax)(1 + |Sk|

p)
=

θ1
|Sk|

p ζ (|Sk|
p) , (25)

where ζ : R+ → R, ζ(x) := x/(bmax + µ(1 + bmax)(x+ 1)).

Because ζ is non-decreasing and |Sk| ≥ 1 (as we have infinitely many successful iterations),

ζ(|Sk|
p) ≥ ζ(1) = (1 + 2µ(1 + bmax))

−1
. Thus, (25) becomes

νk ≥ θ1
bmax + 2µ(1 + bmax)

1

|Sk|
p ,

which combines with (24) to yield

(f + h) (xk) − (f + h) (xk + sk) ≥ η1θ1(1 − θ1)ϵ2

bmax + 2µ(1 + bmax)

1

|Sk|
p := C

1

|Sk|
p . (26)

We sum over all k ∈ S(ϵ), and obtain

(f + h)(x0) − (f + h)low ≥ C
∑

k∈S(ϵ)

1

|Sk|
p = C

|S(ϵ)|−1∑
k=0

1

|Sϕ(k)|
p ,

where ϕ is an increasing map from {0, . . . , |S(ϵ)| − 1} to S(ϵ). Thus, by definition of ϕ and Sϕ(k),

|Sϕ(k+1)| = |Sϕ(k)| + 1 and |Sϕ(0)| = 1. In other words, |Sϕ(k)| = k + 1, and

(f + h)(x0) − (f + h)low ≥ C

|S(ϵ)|−1∑
k=0

1

(k + 1)
p = C

|S(ϵ)|∑
k=1

1

kp
.

Because
∫ k+1

k
1
t
p dt ≤

∫ k+1

k
1
k
p dt = 1

k
p ,

(f + h)(x0) − (f + h)low ≥ C

|S(ϵ)|∑
k=1

∫ k+1

k

1

tp
dt = C

∫ |S(ϵ)|+1

1

1

tp
dt. (27)

There are two cases to consider:

• if 0 ≤ p < 1, (f + h)(x0) − (f + h)low ≥ C (|S(ϵ)|+1)
1−p−1

1−p , which is (22);

• if p = 1, (f + h)(x0) − (f + h)low ≥ C log(|S(ϵ)| + 1), which is (23).

Finally, we derive a bound on the cardinality of U(ϵ).
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Theorem 7. Let Problem Assumption 4.1 and Model Assumptions 3.1, 3.2 and 6.1 hold. Assume that

Algorithm 1 generates infinitely many successful iterations. Then

|U(ϵ)| ≤ | logγ1
(γ3)||S(ϵ)| + logγ1

(1 + µ(1 + |S(ϵ)|p)) +
log(bmax/σ0)

log(γ1)
, (28)

where µ and p are defined in Model Assumption 5.2, bmax as in Theorem 4, and |S(ϵ)| is as in Theorem 6.

Proof. The mechanism of Algorithm 1 guarantees that for all k ∈ N, |Uk| ≤ | logγ1
(γ3)| |Sk| +

logγ1
(σk/σ0). Hence, Theorem 4 yields

|U(ϵ)| ≤ | logγ1
(γ3)||S(ϵ)| + logγ1

(
bmax(1 + max0≤j≤kϵ−1 ∥Bj∥)

σ0

)
≤ | logγ1

(γ3)||S(ϵ)| + logγ1
(1 + µ(1 + |S(ϵ)|p)) + logγ1

(
bmax

σ0

)
.

The complexity bound in Theorem 6 is of the same order as that of [4, Lemma 4.3] for trust-region

methods when p = 0 in Model Assumption 6.2, which corresponds to bounded model Hessians. Unlike

[3, Lemma 3.6], the constant θ2, as defined in the switch on Algorithm 1 of Algorithm 1, does not

appear in our complexity bound. Thus, large values of θ2 in Algorithm 1 will not worsen the complexity

bound. In the general case where p > 0, our bound is better than that in [22, Theorem 4.2], as their step

computation rule makes the bound dependent on θ2. As p approaches 1, the bound in [22, Theorem 4.2]

goes to infinity, whereas ours, though exponential, remains finite, as in [16]. Finally, the same example

as in [16, §3.1] shows that our complexity bounds are also tight.

7 Algorithmic refinements

We describe a special case of Algorithm 1 and an extension for which the convergence theory continues

to hold, that we exploit in the numerical experiments of Section 8, and that prove to be efficient in

practice. As both refinements have already been studied by Leconte and Orban [21] in the context of

their trust-region method, we keep our description to a minimum.

7.1 Special case: diagonal model Hessians

If we select Bk to be diagonal in Algorithm 1, a specialized implementation emerges whenever h is

separable and ψ(·;xk) is chosen to be separable at each iteration. For a number of choices of separable

h that are of interest in applications, the step sk may be computed analytically without requiring

an iterative subproblem solver. We refer to this implementation as R2DH, where “DH” stands to

diagonal Hessians. This section is modeled after [21, Section 4], to which we refer the reader for further

information.

Diagonal quasi-Newton methods originate from [14, 18, 27]. In order for a variational problem to

possess a solution that defines a diagonal update, the classic secant equation is replaced with the weak

secant equation sTkBk+1sk = sTk yk, where yk = ∇f(xk+1) −∇f(xk). A handful of diagonal updates

have been proposed in the literature. The most efficient is probably the spectral update Bk+1 = τk+1I,

where τk+1 := sTk yk/s
T
k sk is defined as in the spectral gradient method [7]. Because Bk is a multiple of

the identity, h and ψ(·;xk) need not be separable as the computation of sk boils down to the evaluation

of a proximal operator with step length 1/
√
τk + σk—see Definition 2. Zhu et al. [34] derive an update

akin to the well-known PSB formula that may be indefinite. We refer to it below as PSB. Andrei [1]
derives an update based on a different variational problem that may also be indefinite. We refer to

it below as Andrei. Additionally, we include a new diagonal variant inspired from the BFGS formula
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using a diagonal update. The main idea comes from applying [11, Lemma 5.1] to the last term of the

BFGS update, i.e., yky
T
k /s

T
k yk, to obtain the diagonal update

Dk+1 =

∑n
i=1 |(yk)i|
sTk yk

diag(|yk|).

This update remains positive as long as sTk yk > 0. We refer to this variant below as DBFGS.

Although DBFGS does not always satisfy the secant equation, our numerical results demonstrate its

competitiveness against other state-of-the-art diagonal-based methods. Note that the three updates

(i.e., PSB, Andrei and DBFGS) generate Bk that is not a multiple of the identity, and hence h and

ψ(·;xk) should be separable.

R2DH may act as standalone solver for (1) or as subproblem solver to compute sk in Algorithm 1.

Our results in Section 8 illustrate that, in both use cases, R2DH typically outperforms R2 [2, 3,

Algorithm 6.1].

7.2 Non-monotone variants

Inspired by the success of the non-monotone spectral gradient method [7], Leconte and Orban [21,

Section 6] explain how to modify an algorithm similar to Algorithm 1 to incorporate a non-monotone

strategy.

Let q ∈ N be a given memory parameter. Define qk = 1 if q = 0 and qk := min(k, q) if q > 0,

Define also S+
qk

the set of the qk most recent successful iterations. By convention, we set S+
0 = {0}. An

iteration k now considers the objective value at each iteration in S+
qk

. Define

(f + h)max,k := max{(f + h)(xj) | j ∈ S+
qk
}. (29)

Algorithm 1 corresponds to q = 0. The non-monotone strategy consists in enforcing decrease with

respect to (f + h)max,k instead of (f + h)(xk). In other words, we redefine

ρk :=
(f + h)max,k − (f + h)(xk + sk)

(f + h)max,k − (φ+ ψ)(sk;xk)
.

As in [21, Section 6], the new expression of ρk does not interfere with convergence properties or

complexity bounds, except that it changes the constants in the latter.

8 Numerical experiments

Our implementation of Algorithm 1 and all solvers used in the experiments are available in the

RegularizedOptimization Julia module [5]. By default, R2N uses an L-BFGS approximation with

memory 5, as implemented in the LinearOperators Julia module [23], and uses parameters θ1 =

(1 + ε
1/5
M )−1 ≈ 0.999, θ2 = 1/εM ≈ 1015, η1 = ε

1/4
M ≈ 10−4, η2 = 0.9, and σ0 = ε

1/3
M ≈ 10−6, where εM

is the machine epsilon. The reason for defining values based on εM is that our code may be run in

various floating-point arithmetics. Here, however, all tests are run in double precision. If iteration k

of Algorithm 1 is very successful, σk+1 = σk/3; if iteration k is unsuccessful, σk+1 = 3σk. Otherwise,

σk+1 = σk.

R2N stops as soon as

ν
−1/2
k ξcp(xk, νk)1/2 < ϵa + ϵrν

−1/2
0 ξcp(x0, ν0)1/2, (30)

where ϵa = ϵr = ε
3/10
M ≈ 10−5 are an absolute and relative tolerance, respectively, or it exceeds the

budget of 1, 000 iterations or 3, 600 seconds of CPU time. To solve the subproblem in Line 7 of

https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
https://github.com/JuliaSmoothOptimizers/LinearOperators.jl
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Algorithm 1, we use either R2 [3, Algorithm 6.1], or one of several R2DH variants (Spec, PSB, Andrei,

or DBFGS) as described in Section 7, as well as the non-monotone spectral R2DH (R2DH-Spec-NM)

with memory 5. R2 initializes ν0 = 1.0. R2N and R2DH initialize ν0 according to Line 5 of Algorithm 1.

The subproblem solvers terminate as soon as

ν̂
−1/2
k ξ̂cp (xk + s, ν̂k)

1/2 ≤

10−3 if k = 0,

min

((
ν−1
k ξcp

)3/2

, 10−3
(
ν−1
k ξcp

)1/2
)

if k > 0,

where ξcp = ξcp (xk, νk), ν̂k and ξ̂cp are the step size and first-order stationarity measure related

to the subproblem solver. Note that R2 and all the R2DH variants can also be used to solve (1)

directly. All quasi-Newton approximations are initialized to the identity. In all experiments, we use

ψ(s;x) := h(x+ s).

Our objective is to minimize the number of objective and gradient evaluations, as they are generally

expensive to compute, while assuming that the proximal operators of common regularizers such that
ℓ0 and ℓ1 norms are comparatively cheap to evaluate. We include also other test problems with the

nuclear norm and the rank regularizers.

In our figures, we set (f + h)∗ to the best value found by all the solvers. We plot ∆(f + h)(xk) =

(f + h)(xk) − (f + h)∗ against the iterations to illustrate progress towards that best value. We also

report the following solver statistics in tables: the final value of f at convergence; the final h/λ, where

λ is a weight on the regularizer h; the final stationarity measure
√
ξ/ν; the number of evaluations of

the smooth objective (#f); the number of evaluations of the gradient (#∇f); the number of proximal

operator evaluations (#prox); and the elapsed time t in seconds.

8.1 Basis pursuit denoise (BPDN)

The first set of experiments focuses on the basis pursuit denoise problem as described in [3], which

is common in statistical and compressed sensing applications. The goal is to recover a sparse signal

xtrue ∈ Rn from noisy observed data b ∈ Rm. This problem can be formulated as

minimize
x

1
2∥Ax− b∥22 + λ∥x∥0, (31)

where A is m×n and randomly generated with orthonormal rows. We set m = 2,000, n = 5,120, and

b := Axtrue + ε, where ε ∼ N (0, 0.01). The true signal xtrue is a vector of zeros, except for 100 of

its components. We set λ = 0.1∥AT b∥∞. All algorithms start from the same randomly generated,

hence non-sparse, x0. For this problem, we compare R2 with R2DH variants (Spec, PSB, Andrei, and

DBFGS).

Figure 1 shows that all solvers reach similar accuracy, except for the PSB and Andrei variants.

R2DH-Spec-NM displays the best performance, followed by the R2DH-Spec and closely by R2DH-

DBFGS variants, although it requires more evaluations to achieve stationarity. Table 1 shows that all
R2DH variants surpass R2 in all measures, except for R2DH-PSB and R2DH-Andrei, which require

more evaluations and seem to converge to a non stationary point. R2 and all other R2DH variants

identify a similarly-sparse solution. R2DH-Andrei requires significantly more evaluations and time than

other R2DH variants and hits the iteration limit before (30) is triggered. Note that R2DH-DBFGS

requires fewer evaluations than R2 both in gradient and function evaluations but struggles to compete

with R2DH-Spec-NM and R2DH-Spec. R2DH-Spec-NM is more efficient than R2DH-Spec, it avoids the

unsuccessful iterations that R2DH-Spec falls into. Given the strong performance of R2DH-Spec-NM,

we set it as the default R2N subsolver in the following experiments.
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Figure 1: BPDN objective vs. iterations (left) and CPU time (right).

Table 1: Comparison of different solvers on the BPDN problem.

Solver f h/λ ∆(f + h)
√
ξ/ν #f #∇f #prox t(s)

R2 9.22e−02 100 8.74e−07 8.0e−04 366 362 366 7.37
R2DH-Spec-NM 9.22e−02 100 5.05e−07 5.9e−04 57 56 56 0.89

R2DH-Spec 9.22e−02 100 0.00e+00 3.6e−04 86 57 85 0.97
R2DH-Andrei 3.42e+00 2926 1.58e+02 8.6e−01 1001 988 1991 20.61

R2DH-PSB 3.69e−06 3400 1.81e+02 6.7e−04 592 591 1194 11.85
R2DH-DBFGS 9.22e−02 100 7.26e−07 6.4e−04 300 153 299 5.53

8.2 Matrix completion

We address the matrix completion problem from [33] with rank nuclear norm regularizers to recover a

low-rank matrix from noisy observations. The problem is formulated as

minimize
X

1
2∥PΩ(X −M)∥2F + λh(X), (32)

where X ∈ Rn×n and n = 120. Here, λ = 10−1 is a weight, and h(X) is either rank(X) or ∥X∥∗, M is

formed by applying a standard two-component Gaussian mixture model (GMM) to a low-rank matrix

Xr. Specifically, M is computed as:

M = (1 − c)(Xr + N (0, σ2
A)) + c(Xr + N (0, σ2

B)),

where N (0, σ2
A) represents the noise component with variance σ2

A, and N (0, σ2
B) represents the influence

of outliers with a larger variance σ2
B. The parameter c controls the relative proportion of noise and

outliers in the observed matrix M . Finally, PΩ is a linear operator that extracts entries (i, j) ∈ Ω and

sets unobserved entries to zero.

For all solvers, we select a random initial matrix and set the rank of Xr to 40. Given that the smooth

part of (32) is a linear least-squares residual, we apply the Levenberg-Marquardt (LM) algorithm from

Aravkin et al. [4, Algorithm 4.1], which is a specific instance of R2N with Bk = JT
k Jk, where Jk is

the Jacobian of the least-squares residual at iteration k. Notably, R2DH can serve as a subproblem

solver within LM—this combination is referred to as LM-R2DH, in contrast to the default LM-R2. We

compare the performance of R2, R2DH, LM-R2, and LM-R2DH in Figure 2 and Tables 2 and 3. In

Tables 2 and 3, the column #∇f is replaced by the number of Jacobian or adjoint products #J .

Figure 2 shows that R2DH stands out in terms of final objective value for the rank regularizer,

while for the nuclear norm regularizer, all solvers achieve similar accuracy. For the rank regularizer,
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Table 2 shows that, while R2DH requires more objective evaluations than either LM variant, it performs

significantly fewer Jacobian-vector products and provides the solution with the best objective value,

and, in particular, the lowest-rank solution. Variants of LM behave almost identically according to

Figure 2 and require the fewest objective evaluations, although they demand many Jacobian-vector

products, as seen in Tables 2 and 3. LM-R2DH requires fewer gradient evaluations and proximal

operator evaluations than LM-R2.
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Figure 2: Objectives vs. iterations for MC with rank (left) and nuclear norm (right) regularizers.

Table 2: Comparison of different solvers for matrix completion problem with rank regularizer.

Solver f h/λ ∆(f + h)
√
ξ/ν #f #J #prox t(s)

R2 2.78e−07 111 1.60e+00 2.3e−04 37 31 37 0.20
R2DH 1.34e−11 95 0.00e+00 3.7e−06 28 15 27 0.17

LM-R2DH 2.16e−08 111 1.60e+00 1.7e−04 2 115 48 0.29
LM-R2 1.67e−12 111 1.60e+00 6.4e−07 3 183 61 0.33

Table 3: Comparison of different solvers for matrix completion problem with nuclear norm regularizer.

Solver f h/λ ∆(f + h)
√
ξ/ν #f #J #prox t(s)

R2 1.00e−02 7.5e+00 1.30e−05 3.6e−04 82 52 82 0.43
R2DH 1.00e−02 7.5e+00 7.28e−07 2.3e−04 43 19 42 0.21

LM-R2DH 1.00e−02 7.5e+00 1.98e−10 3.1e−06 3 246 108 0.63
LM-R2 1.00e−02 7.5e+00 0.00e+00 2.0e−06 3 340 144 0.86

8.3 General regularized problems

In this section, we illustrate the performance of R2N on two test problems. The first problem addresses

an image recognition task using a support vector machine (SVM) similar to those in [3]. The objective is

to use this nonlinear SVM to classify digits from the MNIST dataset, specifically distinguishing between

“1” and “7”, while excluding all other digits. A sparse support is imposed using an ℓ0 regularizer. The

optimization problem is given by

minimize
x∈Rn

1
2∥1− tanh(b⊙ ⟨A, x⟩)∥2 + λ∥x∥0,

where λ = 10−1 and A ∈ Rm×n, with n = 784 representing the vectorized size of each image. The

dataset includes m = 13,007 images for training and m = 2,163 images for testing. Here, ⊙ denotes the

elementwise product between vectors, and 1 = (1, . . . , 1).
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The second problem is from [12, 30] and arises in image denoising and deblurring applications. The

related optimization problem is given by

minimize
x∈Rn

n∑
i=1

log
(

(Ax− b)2i + 1
)

+ λ∥x∥1,

where λ = 10−4 and A ∈ Rn×n with n = 2562 is a Gaussian blur operator. The term b denotes the

blurred image with added Gaussian noise. In our test, b is the blurred version of the cameraman image

x∗ with added Gaussian noise, i.e., b = Ax∗ + noise. The smooth part related to the two optimization

problems is neither quadratic nor linear least squares, but a general non-convex problem.

We compare the performance of four methods: R2, R2DH, R2N-R2 (R2N with R2 as a subsolver),

and R2N-R2DH (R2N with R2DH as a subsolver).

As shown in Tables 4 and 5, for both problems, the R2N variants outperform R2 and R2DH in

terms of objective and gradient evaluations, though they require more proximal operator evaluations.

Both R2N-R2DH and R2N-R2 have comparable performance and reach very good solutions compared

to the other methods.

Note that for the non-linear SVM problem, as indicated in Figure 3 and Table 4, although R2DH

reduces the objective function the most, it requires a higher number of evaluations of f and ∇f than

both R2N-R2DH and R2N-R2.
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Figure 3: Plots of the objective vs. iterations related to SVM (left) and denoise (right).

Table 4: Comparison of different solvers on the nonlinear SVM problem.

Solver f h/λ ∆(f + h)
√
ξ/ν #f #∇f #prox t(s)

R2 1.94e+01 175 5.33e+00 1.6e−02 1002 775 1002 9.47
R2DH 1.59e+01 157 0.00e+00 1.8e−03 781 441 780 4.97

R2N-R2 1.85e+01 233 1.02e+01 2.3e−03 59 59 10404 1.21
R2N-R2DH 1.67e+01 237 8.84e+00 2.5e−03 71 71 11284 1.29

For the denoising problem, the R2N variants outperform the R2 and R2DH variants. R2N-R2,

where R2 is used as a subsolver, is the best among all the tested methods, requiring the fewest objective
and gradient evaluations, followed closely by R2N-R2DH, which provides a more accurate solution, as

detailed in Table 5.
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Table 5: Comparison of different solvers on the denoising problem.

Solver f h/λ ∆(f + h)
√
ξ/ν #f #∇f #prox t(s)

R2 6.05e−02 3.7e+03 1.16e−02 2.7e−02 1002 1002 1002 12.02
R2DH 5.92e−02 3.6e+03 3.92e−03 8.4e−03 1001 578 1000 8.85

R2N-R2 5.88e−02 3.6e+03 8.13e−06 3.4e−04 515 494 97093 316.44
R2N-R2DH 5.88e−02 3.6e+03 0.00e+00 3.2e−04 521 499 97411 314.27

9 Discussion

We proposed method R2N, a modified quasi-Newton method for nonsmooth regularized problems.

R2N generalizes both R2 [3] and LM [4] and enjoys convergence properties without assuming Lipschitz

continuity of ∇f or boundedness of the model Hessians. Inspired by [16], who work on trust-region

methods for smooth optimization, we propose a complexity analysis of R2N to handle potentially

unbounded model Hessians. Unlike traditional complexity analyses that assume uniformly bounded

model Hessians, our study covers practical cases, including quasi-Newton updates such as PSB, BFGS,

and SR1 by bounding the model Hessian growth with a power of the number of successful iterations—a

reasonable bound as, in practice, it is uncommon to update quasi-Newton approximations on unsuccessful

iterations. Nevertheless, Diouane et al. [16] show that similar complexity bounds continue to hold when

the model Hessians are bounded by a power of the number of iterations, and not just the number of

successful iterations. Because their analysis uses similar arguments, their complexity bounds continue

to hold for R2N.

Numerical illustrations show the strong potential of our implementation of R2N and some of its

variants, both as a main solver and as a subproblem solver. In particular, diagonal variants are

competitive with, and often outperform, R2 when used as a subsolver inside R2N. One of the main

advantages of R2N in practice is that proximal operators are easier to compute than in TR [3]. We
illustrated that advantage by solving rank and nuclear norm-regularized problems. One way to further

enhance the performance of R2N is to use a more efficient subproblem solver, e.g., such as that in [6],

or, in certain cases, by solving the subproblem exactly as in [15].

R2N convergence analysis arguments can be used to update and strengthen the existing convergence

analysis of methods R2, TR, TRDH [21], LM and LMTR [4]. In follow-up research, we aim to identify

the nature of limit points under our assumptions.
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