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Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2024-65) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce au
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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2024-65
https://www.gerad.ca/en/papers/G-2024-65
https://www.gerad.ca/en/papers/G-2024-65


A nonsmooth exact penalty method for equality-constrained
optimization: Complexity and implementation

Youssef Diouane

Maxence Gollier

Dominique Orban

GERAD & Department of Mathematics and Indus-
trial Engineering, Polytechnique Montréal, Montréal
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Abstract : Penalty methods are a well known class of algorithms for constrained optimization. They
transform a constrained problem into a sequence of unconstrained penalized problems in the hope that
approximate solutions of the latter converge to a solution of the former. If Lagrange multipliers exist,
exact penalty methods ensure that the penalty parameter only need increase a finite number of times,
but are typically scorned in smooth optimization for the penalized problems are not smooth. This led
researchers to consider the implementation of exact penalty methods inconvenient. Recently, advances
in proximal methods have led to increasingly efficient solvers for nonsmooth optimization. We show
that the exact ℓ2-penalty method for equality-constrained optimization can in fact be implemented
efficiently by solving the penalized problem with a proximal-type algorithm. We study the convergence
of our algorithm and establish a worst-case complexity bound of O(ϵ−2) to bring a stationarity measure
below ϵ > 0 under the Mangarasian-Fromowitz constraint qualification and Lipschitz continuity of the
objective gradient and constraint Jacobian. In a degenerate scenario where the penalty parameter grows
unbounded, the complexity becomes O(ϵ−8), which is worse than another bound found in the literature.
We justify the difference by arguing that our feasibility measure is properly scaled. Finally, we report
numerical experience on small-scale problems from a standard collection and compare our solver with
an augmented-Lagrangian and an SQP method. Our preliminary implementation is on par with the
augmented Lagrangian in terms of robustness and efficiency. It is on par with the SQP method in terms
of robustness, though the former remains ahead in terms of number of problem function evaluations.

Keywords : Equality-constrained optimization, penalty methods, proximal methods

Résumé: Les méthodes de pénalité constituent une classe bien connue d’algorithmes pour l’optimisation
sous contraintes. Elles transforment un problème contraint en une séquence de problèmes sans contraintes
dans l’espoir que les solutions approximatives de ces derniers convergent vers une solution du premier.
S’il existe des multiplicateurs de Lagrange, les méthodes de pénalité exacte garantissent que le paramètre
de pénalité ne doit augmenter qu’un nombre fini de fois, mais elles sont généralement ignorées dans
l’optimisation lisse car les problèmes pénalisés ne sont pas lisses. Cela a conduit les chercheurs à
considérer que l’implémentation des méthodes de pénalités exactes n’était pas pratique. Récemment, les
progrès des méthodes proximales ont conduit à des solveurs de plus en plus efficaces pour l’optimisation
non lisse. Nous montrons que la méthode de pénalité exacte ℓ2 pour l’optimisation avec contraintes
d’égalité peut en fait être implémentée efficacement en résolvant le problème pénalisé avec un algorithme
de type proximal. Nous étudions la convergence de notre algorithme et établissons une borne de
complexité dans le pire des cas de O(ϵ−2) pour ramener une mesure de stationnarité en dessous de
ϵ > 0 sous la contrainte de qualification de Mangarasian-Fromowitz et la Lipschitz continuité du
gradient de l’objectif et du jacobien de la contrainte. Dans un scénario dégénéré où le paramètre de
pénalité crôıt sans limite, la complexité devient O(ϵ−8), ce qui est pire qu’une autre borne trouvée
dans la littérature. Nous justifions cette différence en faisant valoir que notre mesure de faisabilité
est correctement échelonnée. Enfin, nous présentons une expérience numérique sur des problèmes à
petite échelle provenant d’une collection standard et nous comparons notre solveur à une méthode de
lagrangien augmentée et à une méthode SQP. Notre implémentation préliminaire est à la hauteur du
Lagrangien augmenté en termes de robustesse et d’efficacité. Elle est à égalité avec la méthode SQP
en termes de robustesse, bien que la première reste en tête en termes de nombre d’évaluations de la
fonction du problème.

Keywords : Optimisation sous contraintes d’égalité, méthodes de pénalité, méthodes proximales
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1 Introduction

We consider the problem

minimize
x∈Rn

f(x) subject to c(x) = 0, (1)

where f : Rn → R and c : Rn → R
m are C1 and both may be nonconvex. We solve (1) by solving a

sequence of unconstrained, nonsmooth penalized problems

minimize
x∈Rn

f(x) + hτ (c(x)), (2)

where hτ = τ∥ · ∥2 and τ > 0 is the penalty parameter. This approach, was first proposed by

Pietrzykowski [45], who used hτ = τ∥ · ∥1. Penalty approaches such as (2) are attractive because,

under standard assumptions, for all sufficiently large and finite τ , solutions of (1) are solutions of (2).

However, the nonsmoothness of hτ caused them to fall out of favor in practice, and other methods,

such as the augmented-Lagrangian method [34, 46] were preferred.

Independently, attention was given recently to nonsmooth regularized problems

minimize
x∈Rn

f(x) + h(x), (3)

where f is as before, and h is proper and lower semi-continuous (lsc), and may be nonconvex. In

particular, proximal methods [29, 38] have been studied intensively in the last decade and have led to

increasingly efficient implementations.

We show that proximal methods can be used to implement exact penalty methods so they perform

similarly to augmented-Lagrangian approaches. To do so, we study an intuitive algorithm that enacts

the exact penalty scheme, but in which subproblems are solved by a first-order proximal method

proposed in [2, 3], and a second-order proximal method proposed in [23]. We establish convergence of

an appropriate stationarity measure to zero, and a worst-case complexity bound of O(ϵ−2) to bring

said measure below ϵ > 0 under the Mangarasian-Fromowitz constraint qualification and Lipschitz

continuity of the objective gradient and constraint Jacobian. In a degenerate scenario where the penalty

parameter grows unbounded, the complexity becomes O(ϵ−8), which is worse than the bound O(ϵ−5)

developed in [15, §3]. Although both bounds are correct, we justify the difference by arguing that

our feasibility measure is properly scaled. As far as we are aware, ours is the first implementation of

the exact penalty scheme based on proximal methods. We report numerical experience on small-scale

problems from a standard collection and compare our solver with an augmented-Lagrangian and an

SQP method. Our preliminary implementation is on par with the augmented Lagrangian in terms of

robustness and efficiency. It is on par with the SQP method in terms of robustness, though the former

remains ahead in terms of number of problem function evaluations.

The paper is organized as follows. In Section 2 we recall key background concepts and results. In

Section 4, we present our algorithm and derive complexity bounds. In Section 5 we derive closed-form

solutions of the proximal operators that arise in our algorithm. Additionally, we provide algorithms

to evaluate the required proximal operators efficiently in practice. In Section 6 we show numerical

results and experiments conducted on a variety of problems. Finally, we provide a closing discussion in

Section 7

Related research

Pietrzykowski [45] first reported the advantage of using a nonsmooth penalty function. His analysis only

covered the ℓ1-penalty but subsequently, Charalambous [16], Han and Mangasarian [33], Coleman and

Conn [18], Bazaraa and Goode [7], and Huang and Ng [36] strengthened his results. Cartis et al. [15]

analyze general composite objectives, i.e., of the form h(c(x)), where h is convex and globally Lipschitz

using a trust-region approach and a quadratic regularization variant. They then apply their results to
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an exact penalty method similar to ours. Grapiglia et al. [32] generalize the results of [15] to various

optimization frameworks under similar assumptions. Contrary to their algorithms, ours is concrete in

the sense that we provide precise guidance on how to compute steps. Additionally, our convergence

analysis holds under weaker assumptions.

Several authors reformulate (2) as a smooth inequality-constrained problem. For instance, (2) can

be written equivalently

minimize
x∈Rn

,u∈Rm
f(x) + τuT e subject to −u ≤ c(x) ≤ u,

when hτ (x) = τ∥x∥1, where e is the vector of ones. That is what Gould et al. [31] do before applying

an interior-point method. The literature review of [31] provides a number of related references.

Estrin et al. [26, 27] implement a smooth exact penalty function originally proposed by Fletcher [28].

They challenge the notion that evaluating the penalty function and its gradient is costlier than in other

widely-accepted constrained frameworks, and detail an efficient implementation.

Originally proposed by Hestenes [34] and Powell [46], the augmented-Lagrangian approach may

be defined as a quadratic penalty applied to the Lagrangian, and was viewed by Powell as a shifted

quadratic penalty function. Two of its attractive features are that it is smooth, and it acts as an exact

penalty once optimal multipliers have been identified. Bertsekas [8] analyzes its convergence thoroughly

and improves the original results. We refer interested readers to [8] for further information. Renowned

implementations of augmented-Lagrangian methods include LANCELOT [19, 20], MINOS [40, 41], and

ALGENCAN [1, 10]. In our numerical experiments, we use the recent implementation of dos Santos

and Siqueira [25], named Percival.

The proximal-gradient (PG) method [29, 38] aims to solve problems with objectives of the form

f(x) + h(x) where f is C1 and h is proper and lsc. In that context, h often has regularizing power; it

promotes solutions with desirable features, such as sparsity. Variants in the literature mainly differ in

the assumptions on f and h. Numerous authors restrict their attention to convex f and/or h. Parikh

and Boyd [44] review PG in the convex case with an insightful chapter on their interpretation. Lee

et al. [37] study the convergence of a proximal Newton method in which steps are computed with

PG where both f and h are convex. Bolte et al. [12] present a method for objectives of the form
g(x) +Q(x, y) + h(y) where both g and h are proper, lsc, and Q is C1. Tseng [51] proposes a general

framework for accelerated PG. Proximal algorithms are related to augmented-Lagrangian methods

[49, 50]. To the best of our knowledge, almost all proximal methods in the literature require evaluating

a proximal operator—which involves the solution of a nonsmooth problem consisting of the sum of a

squared norm and h—at each iteration. Evaluating that operator for hτ in (2) would be impractical and

prohibitively expensive. To compute a step, we use a variant of PG with adaptive step size developed

by Aravkin et al. [3] that does not have convexity restrictions. Crucially, their method allows for a

model of h to be used at each iteration, a feature that makes evaluating the proximal operator feasible.

In a second stage, we use the recent proximal quasi-Newton method of Diouane et al. [23], which may

be seen as a natural generalization of the method of [3].

Notation

The identity matrix of size n is In, or I if the context is clear. We use J(x) to denote the Jacobian of

c at x. For any matrix A, its Moore-Penrose pseudo-inverse is A†. The ℓp-norm of vectors is ∥ · ∥p,
and we use the shortcut ∥ · ∥ for the Euclidean norm. For matrices, ∥ · ∥ represents the operator norm.

Similarly, Bp represents the unit ball, centered at the origin in the ℓp-norm and B is short for B2.

For any ∆ > 0, ∆Bp represents the ball of radius ∆ > 0 centered at the origin. If a set S is finite,

|S| represents its cardinality. For any set S ⊆ Rn, χ(· | S) is the indicator function, namely, for any

x ∈ Rn, χ(· | S) = 0 if x ∈ S and +∞ else. If g, h are two functions of ϵ > 0, the notation g = O(h)

means that there is C > 0 such that lim supϵ→0 g(ϵ)/h(ϵ) ≤ C.
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2 Background

The Mangasarian-Fromowitz constraint qualification (MFCQ) holds at x ∈ Rn for (1) if J(x) has full

row rank.

The element x̄ ∈ Rn is a strict minimum of (1) if c(x̄) = 0 and there is an open set V containing x̄

such that f(x̄) < f(x) for all x ∈ V satisfying c(x) = 0.

Exactness of the ℓ2-norm penalty relies on existence of Lagrange multipliers, and means the following.

Proposition 1 (33, Theorem 4.4). If x̄ is a strict minimum of (1) where the MFCQ holds, for every

τ ≥ ∥ȳ∥, x̄ is a local minimum of (2), where ȳ is the unique vector of Lagrange multipliers at x̄.

Consider ϕ : Rn → R and x̄ ∈ Rn where ϕ(x̄) ∈ R. We say that v ∈ Rn is a regular subgradient of

ϕ at x̄, and we write v ∈ ∂̂ϕ(x̄), if ϕ(x) ≥ ϕ(x̄)+vT (x− x̄)+o(∥x− x̄∥). The set of regular subgradients
is called the Fréchet subdifferential. We say that v is a general subgradient of ϕ at x̄, and we write

v ∈ ∂ϕ(x̄), if there are {xk} and {vk} such that {xk} → x̄, {ϕ(xk)} → ϕ(x̄), vk ∈ ∂̂ϕ(xk) for all k and

{vk} → v. The set of general subgradients is called the limiting subdifferential [47, Definition 8.3].

If ϕ is C1 at x, ∂ϕ(x) = {∇ϕ(x)} [47, §8.8]. In what follows, we rely on the following criticality
property.

Proposition 2 (47, Theorem 10.1). If ϕ : Rn → R is proper and has a local minimum at x̄, then

0 ∈ ∂̂ϕ(x̄) ⊆ ∂ϕ(x̄). If ϕ = f + h, where f is C1 over a neighborhood of x̄ and h is finite at x̄, then

∂ϕ(x̄) = ∇f(x̄) + ∂h(x̄).

The element x̄ ∈ Rn is a KKT point of (1) if there is ȳ ∈ Rm such that ∇f(x̄) = J(x̄)
T
ȳ and

c(x̄) = 0.

We call h : Rn → R proper if h(x) > −∞ for all x ∈ Rn and h(x) < +∞ for at least one x. h is lsc

at x̄ if lim infx→x̄ h(x) = h(x̄).

For proper lsc h and step length ν > 0, the proximal mapping of νh at x is

prox
νh

(x) := argmin
u

1
2ν

−1∥u− x∥2 + h(u). (4)

Proposition 3 (47, Theorem 1.25). Let h : Rn → R be proper lsc and bounded below. For all ν > 0 and

all x ∈ Rn, proxνh(x) is nonempty and compact.

The proximal mapping of νh is nonempty under more general conditions than stated in Proposition 3,

e.g., prox-boundedness [47, Definition 1.23], but boundedness is sufficient for our purposes.

We now intentionally use the notation φ and ψ instead of f and h for reasons that become clear in

subsequent sections. Inspired by (2), we consider the generic nonsmooth problem

minimize
s

φ(s) + ψ(s), (5)

where φ is C1, and ψ is proper, lsc, and bounded below. A popular method to solve (5) is the

proximal-gradient (PG) method [29, 38]. The PG iteration is

si+1 ∈ prox
νiψ

(si − νi∇φ(si)), i ≥ 0, (6)

where νi > 0 is a step length. Descent is guaranteed when ∇φ is Lipschitz-continuous and νi is chosen

appropriately. Recall that ϕ : Rn1 → R
n2 is Lipschitz-continuous with Lipschitz constant L > 0

whenever ∥ϕ(x)− ϕ(y)∥ ≤ L∥x− y∥ for all x, y ∈ Rn1 .

Proposition 4 (12, Lemma 2). Let φ be C1, ∇φ be Lipschitz-continuous with Lipschitz constant L ≥ 0,

and ψ be proper, lsc and bounded below. For any 0 < ν < L−1 and s0 ∈ Rn where ψ is finite, (6) is

such that (φ+ ψ)(si+1) ≤ (φ+ ψ)(si)− 1
2 (ν

−1 − L)∥si+1 − si∥
2 for all i ≥ 0. If L = 0, such as arises

when φ is linear, the above is taken to mean L−1 = +∞.
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3 Models

For given x ∈ Rn, consider models

φ(s;x) ≈ f(x+ s), (7a)

ψτ (s;x) ≈ hτ (c(x+ s)) = τ∥c(x+ s)∥2, (7b)

mτ (s;x) := φ(s;x) + ψτ (s;x), (7c)

where ≈ means that the left-hand side is an approximation of the right-hand side. The type of

approximation expected of (7) is formalized in Model Assumption 3.1.

Model Assumption 3.1. For any x ∈ Rn, φ(·;x) is C1, and satisfies φ(0;x) = f(x) and ∇sφ(0;x) =

∇f(x). For any x ∈ Rn, ψτ is proper lsc, and satisfies ψτ (0;x) = hτ (c(x)) and ∂sψτ (0;x) = ∂hτ (c(x)).

In Model Assumption 3.1, we use the notation ∂s to emphasize that the subdifferential of ψτ (s;x)

is computed with respect to its variable s while keeping x fixed.

We first focus our attention on the first order models

φ(s;x) := f(x) +∇f(x)T s, (8a)

ψτ (s;x) := hτ (c(x) + J(x)s) = τ∥c(x) + J(x)s∥2. (8b)

For future reference, define

gx : Rn → R
m, gx(s) := c(x) + J(x)s (x ∈ Rn), (9a)

η : Rm → R, η(w) := ∥w∥. (9b)

Hence, from [35, Section D.3],

∂η(x) =

{
B2 if x = 0,

x/η(x) otherwise.
(10)

The following lemma gives the subdifferential of ψτ , which will be useful to derive a stationarity measure

for (2).

Lemma 1. Let τ > 0 and x ∈ Rn. Then,

∂sψτ (0;x) =

{
τJ(x)

T
B2 if c(x) = 0,

τJ(x)
T
c(x)/∥c(x)∥ otherwise,

(11)

where ψτ is defined in (8b) and τJ(x)
T
B2 := {τJ(x)T y | y ∈ B2}.

Proof. Let gx and η be as in (9). Since dom η = Rm and c(x) ∈ Range(gx) ⊆ R
m, [48, Theorem 23.9]

and (8b) yield ∂sψτ (s;x) = τJ(x)
T
∂η(c(x) + J(x)s). Combining (10) with the latter and evaluating at

s = 0 concludes.

By the same reasoning as in the proof of Lemma 1, ∂hτ (x) = ∂sψτ (0;x), so that (8) satisfy Model

Assumption 3.1.

4 Algorithm and convergence analysis

At iteration k ∈ N, we solve (2) inexactly for fixed τk > 0. The process of updating τk is the outer

iterations. Solving (2) with τ = τk is the k-th set of inner iterations with inner iterates xk,j .
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We solve (2) with method R2 [3, Algorithm 6.1]; a quadratic regularization method that uses

models (8) and may be viewed as an adaptive variant of PG that does not require knowledge of the

Lipschitz constant of the gradient. At inner iteration j, we compute

sk,j,cp ∈ argmin
s

φ(s;xk,j) + ψτk(s;xk,j) +
1
2σk,j∥s∥

2 (12a)

= prox
σ
−1
k,jψτk

(·;xk,j)

(−σ−1
k,j∇φ(0;xk,j)), (12b)

where σk,j > 0 is a regularization parameter, i.e., sk,j,cp is the first step of PG for the minimization

of φ(s;xk,j) + ψτk(s;xk,j) with step length σ−1
k,j initialized with sk,j,0 = 0 [3, §3.2]. The subscript “cp”

stands for Cauchy point, of which sk,j,cp is an appropriate generalization to the nonsmooth context. We

then set either xk,j+1 := xk,j + sk,j,cp or xk,j+1 := xk,j depending on whether sk,j,cp results in sufficient

decrease in the objective of (2) or not. We refer the reader to [2, 3] for the complete algorithm and

further details. In particular, the quantity

ξ(xk,j ;σk,j , τk) := f(xk,j) + hτk(c(xk,j))− (φ+ ψτk)(sk,j,cp;xk,j) (13)

is key to defining the stationarity measure [2, 3]

σ
1/2
k,j ξ(xk,j ;σk,j , τk)

1/2
. (14)

Proposition 5. Let σ > 0, τ > 0 and x̄ ∈ R
n. If ξ(x̄;σ, τ) = 0, there is ȳ ∈ τ∂η(c(x)) such that

∇f(x̄) = J(x̄)
T
ȳ. Moreover, if c(x̄) = 0 x̄ is a KKT point of (1).

Proof. In view of [3, Lemma 6.1], ξ(x̄, σ, τ) = 0 is equivalent to

0 ∈ argmin
s
φ(s; x̄) + ψτ (s; x̄) +

1
2σ∥s∥

2. (15)

The first-order conditions of (15) and Proposition 2 yield

0 ∈ ∇sφ(0; x̄) + ∂sψτ (0; x̄). (16)

Thus, by Model Assumption 3.1, Lemma 1 and (16), there is y ∈ ∂η(c(x̄)) such that∇f(x̄)+τJ(x̄)T y = 0,

and the result holds with ȳ := τy. If additionally, c(x̄) = 0, x̄ is a KKT point of (1).

The following assumption ensures convergence of the inner iterations.

Step Assumption 4.1 (3, Step Assumption 6.1). For each outer iteration k of Algorithm 1, there is

κm,k > 0 such that for each corresponding inner iteration j, sk,j,cp generated according to (12) satisfies

|f(xk,j + sk,j,cp) + hτk(c(xk,j + sk,j,cp))− (φ+ ψτk)(sk,j,cp;xk,j)| ≤ κm,k∥sk,j,cp∥
2. (17)

We make the following additional assumption on the growth of κm,k along the outer iterations.

Step Assumption 4.2. There exist κm1
> 0 and κm2

> 0 such that for each outer iteration k of

Algorithm 1, κm,k ≤ κm1
τk + κm2

, where κm,k > 0 is defined in Step Assumption 4.1.

Step Assumption 4.2 is satisfied when f and c have Lipschitz gradient and Jacobian, respectively, and

when h is Lipschitz-continuous, which is the case with hτ . Indeed, if ∇f and J have Lipschitz constants

Lg and LJ , respectively, then for any x, s ∈ Rn and τ > 0, |f(x+s)+hτ (c(x+s))−φ(s;x)−ψτ (s;x)| ≤
1
2Lg∥s∥

2 + τ 1
2LJ∥s∥

2, where we used the triangle inequality, the descent lemma for smooth functions

[12, Lemma 1] on f and c, and the fact that hτ is Lipschitz-continuous with constant τ .

In view of Proposition 5, the aim of the outer iterations is to find a feasible point for (1). We focus

on the feasibility problem

minimize
x∈Rn

0 subject to c(x) = 0. (18)
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In the same fashion as we did for ξ, in the case where f = 0, we define a feasibility measure for the

outer iterates based on

θ(x) := h1(c(x))− ψ1(s
∗;x), s∗ ∈ prox

1ψ1

(0). (19)

Note that θ(x) is ξ(x; 1, 1) in the case where f = 0. Therefore, results for ξ equally apply to θ. In

particular, Proposition 5 applies, so that θ(x) = 0 implies J(x)
T
y = 0 for some y ∈ ∂η(c(x)), where

η is defined in (9b). By (10), ∥y∥ ≤ 1. In addition, ∥y∥ < 1 =⇒ c(x) = 0. In particular, whenever

the MFCQ holds, J(x)
T
y = 0 implies y = 0, so that x is feasible. On the contrary, y ̸= 0 indicates a

dependency between the constraint gradients at x, whether x is feasible or not.

By analogy with (14), we define our feasiblity measure as θ(x)
1/2

. Algorithm 1 summarizes the

outer iteration. For a tolerance ϵ > 0, we wish to find the number of inner and outer iterations of

Algorithm 1 until

θ(xk)
1/2 ≤ ϵ. (20)

Algorithm 1 Exact penalty algorithm.

1: Choose x0 ∈ Rn
, β1 > 0 and τ0 > 0.

2: Choose initial and final tolerances ϵ0 ≥ ϵ > 0, 0 < β2 < 1, and β3, β4 > 0.
3: for k = 0, 1, . . . do
4: Compute an approximate solution of (2) with τ := τk starting from xk with initial step size σk,0 = max(β3τk, β4)

and minimal regularization parameter σk,min = β4 Stop at the first iteration j such that

σ
1/2
k,j ξ(xk,j ;σk,j , τk)

1/2 ≤ ϵk.

5: Set xk+1 := xk,j .

6: If θ
1/2

(xk+1) > ϵk, choose τk+1 ≥ τk + β1 and set ϵk+1 := ϵk. Otherwise, set τk+1 := τk and ϵk+1 := β2ϵk.
7: end for

Algorithm 1 is similar to [15, Algorithm 3.1], except that we do not use “steering”; a procedure that

guarantees that the outer and inner measures decrease at the same rate. Instead, we use an increasing

accuracy strategy of the inner measure on Line 6.

We use the following notation in the complexity analysis:

jk(ϵk) := min{j ∈ N | σ1/2
k,j ξ(xk,j ;σk,j , τk)

1/2 ≤ ϵk} (k ∈ N), (21)

k(ϵ) := min{k ∈ N | θ(xk)
1/2 ≤ ϵ}. (22)

The total number of iterations we are looking for is then
∑k(ϵ)
k=0 jk(ϵk).

The next result states [3, Theorem 6.4] with the bound given by Aravkin et al. [2].

Theorem 1 (3, Theorem 6.4 and 2). Let Model Assumption 3.1 and Step Assumption 4.1 hold and f be

bounded below by flow. Let 0 < η1 ≤ η2 < 1 and 0 < γ3 ≤ 1 < γ2 be the parameters of R2. Then,

jk(ϵk) ≤ α1σmax,k

f(xk,0) + hτk(c(xk,0))− flow

ϵ2k
+ α2

∣∣∣∣log(σmax,k

σk,0

)∣∣∣∣ , (23)

where σmax,k = max(σk,0, α3κm,k), and

α1 := (1 + | logγ1(γ3)|) > 0, α2 := |1/ log(γ1)| > 0, α3 := 2γ2/(1− η2) > 2. (24)

Because our approach is similar to that of [15], the next lemmas give estimates between our

measures, based on ξ and θ, and theirs. For all x ∈ Rn and τ > 0, their measures [15, Equations (3.1)

and (3.10)] are

ξTR(x, τ) := f(x) + hτ (c(x))− min
∥s∥≤1

(φ+ ψτ )(s;x), (25a)

θTR(x) := h1(c(x))− min
∥s∥≤1

ψ1(s;x). (25b)
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Lemma 2. For any x ∈ Rn, τ > 0 and σ > 0,

ξ(x;σ, τ) ≥ 1
2 min(1, σ−1ξTR(x, τ)) ξTR(x, τ). (26)

In particular, for any ϵ > 0, if σ1/2ξ(x;σ, τ)
1/2 ≤ ϵ, then σ ≥

√
2ϵ implies

σ1/2ξ(x;σ, τ)
1/2 ≥ 1√

2
ξTR(x, τ). (27)

Proof. Since f and c are C1, and hτ is convex and globally Lipschitz continuous, [15, Lemma 2.5]

gives ξ(x, σ, τ)− 1
2σ∥s∥

2 ≥ 1
2 min(1, σ−1ξTR(x, τ))ξTR(x, τ). Since ξ(x, σ, τ) ≥ ξ(x, σ, τ)− 1

2σ∥s∥
2, (26)

holds.

For the second part, let ϵ > 0 and assume that σ1/2ξ(x;σ, τ)
1/2 ≤ ϵ and σ ≥

√
2ϵ. We now

show that σ−1ξTR(x, τ) ≤ 1, as that will imply (27) by way of (26). Assume by contradiction that

σ−1ξTR(x, τ) > 1. Our assumption and (26) imply ϵ2σ−1 ≥ ξ(x;σ, τ) ≥ 1
2ξTR(x, τ). We multiply

both sides by σ−1, and obtain ϵ2σ−2 ≥ 1
2σ

−1ξTR(x, τ) >
1
2 , which contradicts our assumption that

σ ≥
√
2ϵ.

Lemma 3. For any x ∈ Rn, θTR(x) ≥ min( 1√
2
, θ(x)

1/2
) θ(x)

1/2
.

Proof. For any s∗ ∈ prox1ψ1
(0) = argmins ψ1(s;x) +

1
2∥s∥

2, Proposition 4 implies

θ(x) = ψ1(0;x)− ψ1(s
∗;x) ≥ 1

2∥s
∗∥2. (28)

Assume first that θ(x) ≤ 1
2 . Then, (28) implies ∥s∗∥ ≤ 1. Hence,

min
∥s∥≤1

h1(c(x) + J(x)s) = min
∥s∥≤1

ψ1(s;x) ≤ ψ1(s
∗;x),

which, together with (19) and (25b), implies that θTR(x) ≥ θ(x).

Assume next that θ(x) > 1
2 . Note that (28) may be written ∥ 1√

2
θ(x)

−1/2
s∗∥ ≤ 1. Since s →

h1(c(x) + J(x)s) is convex and 1√
2
θ(x)

−1/2
< 1,

min
∥s∥≤1

h1(c(x) + J(x)s) ≤ h1(c(x) +
1√
2
θ(x)

−1/2
J(x)s∗)

≤
(
1− 1√

2
θ(x)

−1/2
)
h1(c(x)) +

1√
2
θ(x)

−1/2
h1(c(x) + J(x)s∗).

We then have from (19) and (25b), θTR(x) ≥ 1√
2
θ(x)

−1/2
θ(x) = 1√

2
θ(x)

1/2
.

Theorem 2. Assume that Step Assumption 4.2 holds and that f is bounded below by flow.

Assume that there is τ̄ ≥ 0, independent of ϵ, such that θ(xk+1)
1/2

< ϵ whenever τk ≥ τ̄ . Then

Algorithm 1 with stopping criterion (20) terminates either with an approximate KKT point of (1) or

with an infeasible critical point of the feasibility measure (19) in at most(⌈
τ̄ − τ0
β1

⌉
+
⌈
logβ2

(ϵ/ϵ0)
⌉)(α1(κhτ̄ + κf )(α4τ̄ + α5)

ϵ2
+ α2

∣∣∣∣log(α4τ0 + α5

β3τ0

)∣∣∣∣)
inner iterations, which is an overall complexity of O((τ̄ + | log(ϵ/ϵ0)|) τ̄

2ϵ−2), where α1, α2, and α3 are

defined in (24), κm1
and κm2

are defined in Step Assumption 4.2, and κf , κh and α4 are defined as

κh := max
k<k(ϵ)

h1(c(xk,0)) > 0, κf := max
k<k(ϵ)

f(xk,0)− flow ≥ 0, (29a)

α4 := max(β3, α3κm1
) > 0, α5 := max(β4, α3κm,2) > 0. (29b)
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Alternatively, assume τk grows unbounded with k. Assume further that there is κg ≥ 0 such that

∥∇f(xk)∥ ≤ κg for all k. Then, Algorithm 1 with stopping criterion (20) terminates either with an

approximate KKT point of (1) or with an infeasible critical point of the feasibility measure (19) in as

many iterations as in the first case, but replacing τ̄ with (κg + 1)ϵ−2 + 1, which is an overall complexity

of O(ϵ−8).

Proof. Consider the first part of the theorem. From Line 6 of Algorithm 1, there are at most

⌈log(ϵ/ϵ0)/ log(β2)⌉ = ⌈logβ2
(ϵ/ϵ0)⌉ outer iterations where τk is not increased until θ(xk)

1/2
attains or

drops below ϵ. Similarly, there are at most ⌈(τ̄ − τ0)/β1⌉ outer iterations where τk is increased until it

reaches or attains τ̄ . Hence, τk attains or exceeds τ̄ in

k(ϵ) ≤
⌈
τ̄ − τ0
β1

⌉
+
⌈
logβ2

(ϵ/ϵ0)
⌉

(30)

outer iterations. We now find an estimate on jk(ϵk). By Step Assumptions 4.1 and 4.2 and Theo-

rem 1, (23) holds. First, from (29a)

f(xk,0) + hτk(c(xk,0))− flow ≤ κhτk + κf . (31)

The form of σk,0 in Line 4 of Algorithm 1, Step Assumption 4.2 and (29b) give

σmax,k = max(σk,0, α3κm,k) ≤ max(β3τk, β4, α3(κm1
τk + κm2

)) ≤ α4τk + α5, (32)

so that
σmax,k

σk,0
≤ α4τk + α5

max(β3τk, β4)
≤ α4τk + α5

β3τk
≤ α4τ0 + α5

β3τ0
, (33)

because τ 7→ α4τ+α5

β3τ
is decreasing on R+, and τk ≥ τ0. Combining (31), (32) and (33) into (23) gives

jk(ϵk) ≤
α1(κhτk + κf )(α4τk + α5)

ϵ2k
+ α2

∣∣∣∣log(α4τ0 + α5

β3τ0

)∣∣∣∣
≤
α1(κhτ̄ + κf )(α4τ̄ + α5)

ϵ2
+ α2

∣∣∣∣log(α4τ0 + α5

β3τ0

)∣∣∣∣ .
Thus, we obtain the desired bound on

∑k(ϵ)−1
k=0 jk(ϵk).

We now turn to the second part of the theorem. First note that whenever τk is increased, Line 6 of

Algorithm 1 implies

σ
1/2
k,j ξ(xk;σk,j , τk)

1/2 ≤ ϵk < θ1/2(xk) with j = jk(ϵk). (34)

Using the notation of Lemmas 2 and 3, if we assume that σk,j ≥
√
2ϵk, then (34) and Lemma 2 imply

σ
1/2
k,j ξ(xk;σk,j , τk)

1/2 ≥ 1√
2
ξTR(xk, τk). (35)

From Algorithm 1, σk,j ≥ β4 > 0 for all k and j. Because ϵk ≤ β4/
√
2 for all sufficiently large k, we may

assume without loss of generality that (35) holds. Furthermore, for any sk,TR ∈ argmin∥s∥≤1 ψ1(s;xk),

ξTR(xk, τk) = f(xk) + hτk(xk)− min
∥s∥≤1

(φ+ ψτk)(s;xk) (36)

≥ f(xk) + hτk(xk)− (φ+ ψτk)(sk,TR;xk) (37)

= τk(h1(xk)− min
∥s∥≤1

ψ1(s;x))−∇f(xk)
T
sk,TR (38)

= τkθTR(xk)−∇f(xk)
T
sk,TR (39)

≥ τkθTR(xk)− ∥∇f(xk)∥, (40)
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where we used the definition of the models (7) on the third line, the definition of θTR (25b) on the

fourth and the Cauchy-Schwarz inequality on the last line combined with the fact that ∥sk,TR∥ ≤ 1.

Substituting (40) into (35) then gives

σ
1/2
k,j ξ(xk;σk,j , τk)

1/2 ≥ 1√
2
(τkθTR(xk)− ∥∇f(xk)∥) . (41)

At this point, we consider two cases. Assume first that θ(xk)
1/2 ≤ 1√

2
. Lemma 3 and (41) combine

with (34) to give

1√
2
(τkθ(xk)− ∥∇f(xk)∥) ≤ σ

1/2
k,j ξ(xk;σk,j , τk)

1/2 ≤ θ(xk)
1/2 ≤ 1√

2
(θ(xk) + 1), (42)

whenever τk is increased, where we used the fact that
√
t ≤ t+1

2 ≤ t+1√
2

for any t > 0 in the last

inequality. Thus, (42) implies

∥∇f(xk)∥ ≥ (τk − 1)θ(xk)− 1. (43)

Because τk > 1 for all large enough k, and ∥∇f(xk)∥ ≤ κg, (43) yields θ(xk) ≤ (κg + 1)/(τk − 1)

whenever τk is increased. Therefore, θ1/2(xk) ≤ ϵk whenever

τk ≥
κg + 1

ϵ2k
+ 1. (44)

Assume instead that θ1/2(xk) >
1√
2
. Lemma 3 and (41) imply

σ
1/2
k,j ξ(xk;σk,j , τk)

1/2 ≥ 1√
2

(
1√
2
τkθ(xk)

1/2 − ∥∇f(xk)∥
)
. (45)

Using the same approach that led from (42) to (44), with the difference that we do not require the

final inequality in (42), we find in this case

τk ≥
√
2κg
ϵk

+ 2. (46)

Combining (44) with (46) gives θ(xk)
1/2 ≤ ϵk whenever

τk ≥ max

(
κg + 1

ϵ2k
+ 1,

√
2κg
ϵk

+ 2

)
. (47)

For small enough values of ϵk, i.e., for all large enough k,
κg+1

ϵ
2
k

+ 1 >
√
2κg

ϵk
+ 2, and we may assume

without loss of generality that θ(xk)
1/2 ≤ ϵk whenever (44) holds.

Overall, (44) implies θ1/2(xk) ≤ ϵ whenever

τk ≥
κg + 1

ϵ2
+ 1. (48)

The value on the right-hand side of (48) is the counterpart of τ̄ from the first part of the proof, with

the crucial difference that it depends on ϵ. Still, we may use the value of the right-hand side of (48) in

place of τ̄ in the first part of the proof.

The existence of κh and κf in (29a) is guaranteed by the fact that f , h and c are continuous

functions.

Combining Proposition 1 with Theorem 2, we see that the assumptions of the first case of Theorem 2

hold under the MFCQ. Therefore, the bound in the first case of Theorem 2 is the one we expect to
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observe the most in practical settings, while the bound in the second case should only happen if the

problem is degenerate, i.e., does not admit Lagrange multipliers.

Comparing the bounds in Theorem 2 with those of Cartis et al. [15, Theorem 3.2], we see two

differences: an additional log(ϵ/ϵ0) term in our first case, and we found an O(ϵ−8) instead of their

O(ϵ−5) complexity.

The additional log(ϵ/ϵ0) comes from the fact that we used an increasing accuracy strategy in

Algorithm 1, as we do not need to compute high-accuracy solutions when far from feasibility. However,

if one chooses to enforce constant accuracy throughout, then ϵ0 = ϵ, which implies log(ϵ/ϵ0) = 0.

Regarding the difference in the second case, notice first that our measure θ1/2 does not scale linearly

with Cartis et al.’s θTR but θ does. We can easily find examples for which θ(x) = θTR(x). Consider

c : R→ R, c(x) = x. For x ∈ R,

argmin
|s|≤1

|x+ s| = argmin
s

1
2s

2 + |x+ s| =


−1 if x > 1,

−x if |x| ≤ 1,

1 if x < −1,

which implies from (19) and (25b) that θ(x) = θTR(x) = min(|x|, 1). Now, we can see that the issue

really comes from Lemma 3; if instead of the inequality in Lemma 3 we had an inequality of the type

θTR > κθ1/2 for some constant κ > 0, then using the same approach that led to (46) we would have

found an upper bound on τk in O(ϵ−1) instead of O(ϵ−2) which would have then led to the O(ϵ−5)

complexity.

In addition, any s∗ ∈ prox1ψ1
(0) = argmins

1
2∥s∥

2 +ψ1(s;x) is such that 0 ∈ s∗ + ∂ψ1(s
∗;x), which

is equivalent to

−s∗ ∈ ∂ψ1(s
∗;x). (49)

For any gs∗,x ∈ ∂ψ1(s
∗;x), convexity of ψ1(·;x) and [35, Corollary D.2.1.3] imply

ψ1(s
∗;x) = ψ1(0;x) + gTs∗,xs

∗ + o(∥s∗∥)

The choice gs∗,x = −s∗, (49) and (19) combine to give θ(x) = ∥s∗∥2 + o(∥s∗∥). Hence, θ varies like
the squared norm of a subgradient, which justifies taking the square root of θ to define an optimality

measure. In addition, Lemma 3 implies θTR ≥ θ as θ → 0. The above leads us to believe that the O(ϵ−8)

is the correct complexity for exact penalty algorithms when the penalty parameter is unbounded.

Finally, our assumptions are weaker than those of Cartis et al. [15] as we only require boundedness

of {∇f(xk)}, whereas they require boundedness of {xk}.

A quasi-Newton variant

Instead of using R2 as solver for (2) in Algorithm 1, we explore variant R2N recently proposed in [23]

that uses or approximates second order information on f , and show that it preserves the convergence

and complexity properties. As it turns out, using second-order models in the subproblem does not

improve the complexity bounds of the outer loop, but we still expect improvements in practice as more

information is given to enrich the model. At inner iteration j of outer iteration k, instead of (12a), we

compute sk,j as an approximate solution of

minimize
s

mQ(s;xk,j , Bk,j , σk,j), (50)

where mQ(s;x,B, σ) := φQ(s;x,B) + ψτk(s;x) +
1
2σ∥s∥

2, and φQ(s;x,B) := φ(s;x) + 1
2s
TBs, with φ

defined in (8a), B = BT ∈ Rn×n. In particular, B may be a quasi-Newton approximation of ∇2f(x),

or ∇2f(x) if it exists. Diouane et al. [23] do not require B to be positive (semi-)definite. However, it
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is not difficult to see that (50) is unbounded below along any negative curvature direction of B + σI.

Hence, we always adjust σ so that φQ(s;x,B) + 1
2σ∥s∥

2 is convex. Clearly, Model Assumption 3.1

continues to hold for φQ.

Although the analysis of [23] does not depend on it, we make the following simplifying assumption.

Step Assumption 4.3. There is a constant κB such that for each iteration k and j of Algorithm 1 that

uses R2N, Bk,j = BTk,j and ∥Bk,j∥ ≤ κB .

R2N use the same ξ(xk,j ; ν
−1
k,j , τk) as in (13) as a stationarity measure and uses (14) as a stopping

criterion as well, with the difference that ν−1
k,j := θ/(σk,j + ∥Bk,j∥), where θ ∈ (0, 1) is a parameter. An

analogue of Theorem 2 holds for Algorithm 1 with R2N as subsolver. If we denote σ̃k,j := νk,j
−1, Step

Assumption 4.1 yields

σk,jθ
−1 ≤ σ̃k,j ≤ σk,jθ

−1 + κBθ
−1.

With these inequalities, we find σ̃max,k = θ−1σmax,k+θ
−1κB which acts as the σmax,k defined previously.

With that, we can establish Theorem 2 with ξ(xk,j ; ν
−1
k,j , τk) as an inner stationarity measure.

The updated complexity bounds rest upon the following result.

Theorem 3 (23, Theorems 6.4 and 6.5). Let Model Assumption 3.1 and Step Assumptions 4.1 and 4.3
hold and f be bounded below by flow. Let 0 < η1 ≤ η2 < 1 and 0 < γ3 ≤ 1 < γ2 be the parameters of

R2N. Then,

jk(ϵk) ≤ (2κB(1 + σmax,k) + σmax,k)
(
1 + | logγ1(γ3)|

) ∆(f + h)

η1αϵ
2
k

+ logγ1

(
σmax,k

σk,0

)
,

where ∆(f + h) := f(xk,0) + hτk(c(xk,0))− flow.

Theorem 4. Assume that Step Assumption 4.2 and the assumptions of Theorem 3 hold. Assume that

there is τ̄ ≥ 0, independent of ϵ, such that θ(xk+1)
1/2

< ϵ whenever τk ≥ τ̄ . Then Algorithm 1 with

stopping criterion (20) using R2N to solve (2) terminates either with an approximate KKT point of (1)

or with an infeasible critical point of the feasibility measure (19) in at most(⌈
τ̄ − τ0
β1

⌉
+
⌈
logβ2

(ϵ/ϵ0)
⌉)( α6

αϵ2
+ α2

∣∣∣∣log(α4τ0 + α5

β3τ0

)∣∣∣∣)
inner iterations, which is an overall complexity of O((τ̄ + | log(ϵ/ϵ0)|) τ̄

2ϵ−2), where α1, α2, α3 are as

in Theorem 1, α4, α5, κh, κf are as in Theorem 2, κm1
and κm2

are as in Step Assumption 4.2, κB is

as in Step Assumption 4.3, and

α6 := α1(κhτ̄ + κf )((α4τ̄ + α5)(1 + 2κB) + 2κB).

Alternatively, assume τk grows unbounded with k. Assume further that there is κg ≥ 0 such that

∥∇f(xk)∥ ≤ κg for all k. Then, Algorithm 1 with stopping criterion (20) using R2N to solve (2)

terminates either with an approximate KKT point of (1) or with an infeasible critical point of the

feasibility measure (19) in as many iterations as in the first case, but replacing τ̄ with (κg + 1)ϵ−2 + 1,

which is an overall complexity of O(ϵ−8).

The proof of Theorem 4 is almost identical to that of Theorem 2. The only difference is that the

bound (33) becomes σ̃max,k/σ̃k,0 ≤ (σmax,k + κB)/σk,0.

5 Proximal operators

We now give a closed form solution for the computation of sk,j,cp in (12a). We start with general results

and then specialize them to our case. In addition, when R2N is used, we provide a closed form solution

for the computation of sk,j in (50). Thus, resorting to an iterative solver for nonsmooth problems to

compute sk,j is not necessary.
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Theorem 5. Let Q ∈ Rn×n be symmetric positive definite, A ∈ Rm×n, b ∈ Rm, d ∈ Rn, τ > 0 and

p ∈ N. Let q be such that 1/p+ 1/q = 1. The unique solution of

minimize
u∈Rn

1
2u

⊤Qu− d⊤u+ τ∥Au+ b∥p, (51)

is

u∗ = Q−1(d+AT y∗) (52)

where y∗ is a solution of

maximize
y∈Rm

− 1
2 (d+AT y)

T
Q−1(d+AT y)− bT y subject to ∥y∥q ≤ τ. (53)

If A has full row rank, y∗ is unique.

Proof. As (51) is strictly convex, it has a unique solution u∗. It may be written

minimize
u∈Rn

z∈Rm

1
2u

TQu− dTu+ τ∥z∥p subject to z = Au+ b. (54)

The Lagrangian of (54) is L(u, z; y) =
[
1
2u

TQu− dTu− (AT y)
T
u
]
+
[
τ∥z∥p + yT z

]
− bT y, and is

separable with respect to u and z. The minimizer of the terms in u is u∗ = Q−1(d + AT y), and

corresponds to an optimal value of − 1
2 (d+AT y)

T
Q−1(d+AT y). Regarding the terms in z,

min
z

[
τ∥z∥p + yT z

]
= −max

z

[
(−y)T z − τ∥z∥p

]
= −ζ∗(−y),

where ζ : w 7→ τ∥w∥p and ζ∗ is its Fenchel conjugate. Using [13, Example 3.26], ζ∗(w) = τχ(wτ | Bq).
We conclude that

min
z

[
τ∥z∥p + yT z

]
=

{
0 ∥y∥q ≤ τ,

−∞ ∥y∥q > τ.

The above gives us (53) as the dual of (54). Since (u, z) = (0, b) is feasible for (54), the relaxed Slater
condition, hence strong duality, holds for (54) and (53). If A has full row rank, (53) is strictly concave,

and therefore has a unique solution.

When p = 2, a closed-form solution emerges for y∗ in Theorem 5.

Theorem 6. Under the assumptions of Theorem 5, in the case where p = 2, a solution of (53) is given

by

y∗ =


−(AQ−1AT )

†
(AQ−1d+ b) if ∥(AQ−1AT )

†
(AQ−1d+ b)∥2 ≤ τ

and AQ−1d+ b ∈ Range(AQ−1AT )

−(AQ−1AT + α∗I)
−1

(AQ−1d+ b) otherwise,

where α∗ is the unique positive root of the strictly decreasing function

g(α) = ∥(AQ−1AT + αI)
−1

(AQ−1d+ b)∥22 − τ2.

Proof. In the case where p = 2, q = 2 and we can rewrite (53) as

minimize
y∈Rm

1
2 (d+AT y)

T
Q−1(d+AT y) + bT y subject to ∥y∥22 ≤ τ2. (55)

Whether A has full row rank or not, (55) is convex and satisfies Slater’s condition. Thus, by the KKT

conditions, y solves (55) if and only if there is α∗ such that

(AQ−1AT + α∗I)y +AQ−1d+ b = 0, and 0 ≤ α∗ ⊥ (τ − ∥y∥2) ≥ 0. (56)
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There are now two cases. In the first case, α∗ = 0. Then by (56), (AQ−1AT )y = −(AQ−1d + b).

Thus, if AQ−1d + b ∈ Range(AQ−1AT ), by primal feasibility, the pseudo-inverse is the solution

whenever ∥(AQ−1A⊤)
†
(AQ−1d+ b)∥2 ≤ τ . In the second case, α∗ > 0 and (56) yields ∥y∥22 = τ2 and

y = −(AQ−1AT + α∗I)
−1

(AQ−1d+b), because AQ−1A⊤+α∗I is nonsingular, and where g(α∗) = 0.

When A has full row rank, the solution given by Theorem 6 is unique. When A is rank deficient in

Theorem 6 and α∗ = 0, the pseudo-inverse yields the minimum Euclidean norm solution of (56). If the

latter does not have norm at most ντ , no other solution does, and we must be in the case α∗ > 0. The

next result specializes Theorem 6 to the evaluations of the proximal operator for ψτ (·;x).
Corollary 1. Let A ∈ Rm×n, b ∈ Rm, and τ > 0. Define ητ : u 7→ τ∥Au+ b∥2. For ν > 0,

prox
νητ

(w) ∋


w −AT (AAT )

†
(Aw + b) if ∥(AAT )

†
(Aw + b)∥2 ≤ τ

and Aw + b ∈ Range(AAT )

w −AT (AAT + α∗I)
−1

(Aw + b) otherwise,

(57)

where α∗ is the unique positive root of the strictly decreasing function

g(α) = ∥(AAT + αI)
−1

(Aw + b)∥22 − ν2τ2.

Proof. By (4), proxνητ (w) = argminu∈Rn
1
2u

T Iu− wTu+ ντ∥Au+ b∥2. Replacing Q with In, d with

w and τ with ντ in Theorems 5 and 6 concludes.

In the context of R2 and R2N, we will apply Corollary 1 with τ = τk, ητ := ψτk(·;xk), A = J(xk),

b = c(xk), and ν = σ−1
k .

The same methodology allows us to derive a closed-form solution of (50).

Corollary 2. Let A ∈ Rm×n have full row rank, let b ∈ Rm, x ∈ Rn and τ > 0. Let B be an n × n

symmetric matrix such that Q := νB + I is positive definite, and ητ : u −→ τ∥Au + b∥2. For ν > 0,

define

prox
νητ

(w,B) := argmin
u∈Rn

1
2ν

−1∥u− w∥2 + ψτ (u;x) +
1
2u

TBu. (58)

Let v := AQ−1w + b. Then,

prox
νητ

(w,B) ∋


Q−1

(
w −AT (AQ−1AT )

†
v
)

if ∥(AQ−1AT )
†
v∥2 ≤ τ

and v ∈ Range(AQ−1AT )

Q−1
(
w −AT (AQ−1AT + α∗I)

−1
v
)

otherwise,

where α∗ is the unique positive root of the strictly decreasing function

g(α) = ∥(AQ−1AT + αI)
−1

(AQ−1w + b)∥22 − ν2τ2.

Proof. By (58), proxνψτ (·;x)(w,B) = argminu∈Rn
1
2u

TQu − wTu + ντ∥Au + b∥2. Replacing Q with

νB + I, d with w and τ with ντ in Theorems 5 and 6 concludes.

From Theorem 5, we see that solving (12a) requires solving the trust-region problem (53) in Rm,

or, equivalently, (57). An efficient procedure to solve such problems in the ℓ2 norm case was proposed

by Moré and Sorensen [39]. We follow their approach. In the light of Corollary 1 and using the same

notation, it should be clear that any efficient procedure to solve (53) should try to find the root of g(α)
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in as few iterations as possible because each evaluation of g requires solving a linear system. The idea

in [39] is to solve the equivalent secular equation

g(α) = 0 ⇐⇒ 1

∥(AAT + αI)
−1

(Ax+ b)∥2
=

1

ντ
, (59)

which has preferable numerical properties. They use Newton’s method to solve (59). We summarize

the procedure as Algorithm 2 with the help of the following result.

Lemma 4 (21, Lemma 7.3.1). Define ϕ(α) :=
1

∥s(α)∥2
− 1

ντ
, where

s(α) :=

{
−(AAT )

†
(Ax+ b) if α = 0,

−(AAT + αI)
−1

(Ax+ b) if α > 0.

Then, ϕ is strictly increasing and concave, and for all α > 0,

ϕ′(α) = −s(α)
T∇αs(α)

∥s(α)∥32
, ∇s(α) = −(AAT + αI)

−1
s(α).

If A has full row rank then the above holds for α = 0 as well.

Algorithm 2 Proximal operator evaluation.

1: Compute s(0) as given by Lemma 4.

2: If ∥s(0)∥ ≤ ντ and AA
T
s(0)− (Ax+ b) = 0, return x+A

T
s(0)

3: Choose θ ∈ (0, 1). Set k = 0.
4: If A has full row rank, set α0 := 0. Otherwise, set α0 :=

√
ϵM and compute s(α0).

5: while ∥s(αk)∥ ̸= ντ do

6: Compute αk+1 as α
+

given by (60).

7: If α
+ ≤ 0, reset αk+1 := θαk.

8: Compute s(αk+1).
9: Let k := k + 1.
10: end while
11: return x+A

T
s(αk).

Instead of computing the Cholesky factorization of AAT + αI, we compute the QR factorization

of ATα :=
(
A

√
αIm

)T
. The R factor coincides with the Cholesky factor. The update of Newton’s

method can be found using Lemma 4:

α+ = αk −
ϕ(αk)

ϕ′(αk)
= αk −

(ντ − ∥s(αk)∥) ∥s(αk)∥
2

ντs(αk)
T∇s(αk)

. (60)

Algorithm 2 obtains qk = s(αk) by solving RTRqk = −(Ax+b). Instead of performing another solve with

R and RT to obtain∇s(αk), we observe that s(αk)
T∇s(αk) = −qTk R

−1R−T qk = −∥R−T qk∥
2 = −∥pk∥

2,

so only one extra solve with RT is necessary.

When evaluating s(0) on Line 1, we check whether A is rank deficient or not by looking for zeros on

the diagonal of R. If so, we compute the least-norm solution of the underdetermined linear system.

[21, Lemma 7.3.2] indicates that convergence is assured once α ∈ L := (max(0, −λ1), α
∗], where α∗

solves (59) and where λ1 is the smallest eigenvalue of AAT , for all Newton iterates remain in L and

converge to α∗. If α = 0 does not yield the solution, we initialize Newton’s method from an α0 chosen

so that ϕ′(α0) can be computed. If ever αk > α∗, convergence is not assured. However, [21, Lemma

7.3.3] indicates that, due to the concavity of ϕ, the next iterate will either be in L or non-positive.
Line 7 safeguards against α < 0 by restarting the Newton iterations from a positive value smaller than

αk in hopes of eventually landing in L.
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We now turn to the solution of (50). For any α ≥ 0, the element u ∈ proxνητ (w,B) given by

Corollary 2 can equivalently be obtained from[
−Q AT

A αI

] [
u
y

]
=

[
−w
−b

]
. (61)

Because B will typically be a limited-memory quasi-Newton approximation in our implementation,

materializing, let alone factorizing, (61) would be inefficient. Thus, we use MINRES-QLP [17]. Even

though only an approximate minimizer of (50) is required, we leave the MINRES-QLP to their default

values, and compute an accurate solution. If α = 0 and A is rank deficient, MINRES-QLP is guaranteed

to return the mininimum-norm solution of (61), but not necessarily y = −(AQ−1AT )
†
v required

by Corollary 2. Computing such y with MINRES-QLP can be done by solving a larger symmetric

saddle-point system that represents the optimality conditions of the least-norm problem that defines y.

Our preliminary implementation simply searches for α ≥ √
εM , where εM is the machine epsilon. We

will study and report on alternative computations of y in follow-up research.

In order to solve g(α) = 0 with g as in Corollary 2, we solve the secular equation

ϕQ(α) = 0, ϕQ(α) :=
1

∥(AQ−1AT + αI)
−1

(AQ−1x+ b)∥2
− 1

ντ
.

If y(α) solves (61),
ϕQ(α)

ϕ′Q(α)
=

∥y(α)∥2

y(α)
T
(AQ−1AT + αI)

−1
y(α)

(1− ∥y(α)∥
ντ

). (62)

Computing the denominator above requires w := (AQ−1AT + αI)
−1
y(α) found with MINRES-QLP via[

−Q AT

A αI

] [
u
w

]
=

[
0

y(α)

]
. (63)

6 Implementation and experiments

We implemented all algorithms above in Julia 1.10 [9]. Algorithm 1, R2 and R2N are part of the

RegularizedOptimization.jl package [5]; Algorithm 2 is in ShiftedProximalOperators.jl [6].

We compare Algorithm 1 against the augmented-Lagrangian solver Percival [4, 25] and the IPOPT [43,

52] solver on equality-constrained problems from the CUTEst collection [30, 42] with fewer constraints

than variables, and with at most 300 variables. This results in a set of 50 problems. Each problem is

given a limit of 5 minutes of CPU time. In what follows, we do not provide CPU time comparisons

because our implementation is still preliminary, and memory usage is not optimal.

Percival and IPOPT are second-order methods while Algorithm 1 with R2 is a first-order method.

For the comparison to be fair, in the problems that we expose to Percival and IPOPT, we replace the

Hessian of the objective with a multiple of the identity, ∇2f(x) ≈ σf (x)I, and replace the constraint

Hessians with the zero matrix, ∇2ci(x) ≈ 0 for 1 ≤ i ≤ m. Because R2 updates σk,j at each iteration,

we update σf (x) as in the spectral gradient method [11], i.e., σf (xk,j) := sTk,jyk,j/s
T
k,jsk,j , where

sk,j := xk,j − xk,j−1 and yk,j := ∇f(xk,j)−∇f(xk,j−1).

The optimality measures in (13) and (19), though appropriate in our context, are inconvenient to

compare with solvers for smooth optimization, as the latter use criteria based on the KKT conditions

for (1). Therefore, our implementation of Algorithm 1 stops as soon as

∥∇f(xk) + J(xk)
T
yLSk ∥ ≤ ϵ and ∥c(xk)∥ ≤ ϵ,

where yLSk is computed as the minimum least-squares solution of ∇f(xk) + J(xk)
T
y = 0.

https://github.com/MaxenceGollier/RegularizedOptimization.jl/tree/penalty_alg
https://github.com/MaxenceGollier/ShiftedProximalOperators.jl/tree/compositeNormL2
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Percival and IPOPT use all default parameters. In these preliminary small-scale tests, all solvers

use an absolute stopping test with ϵ = 10−3. In Algorithm 1, we used β1 = τ0 = 500, ϵ0 = 10−2,

β2 = 0.1, β3 = 10−2, β4 = εM ≈ 2.2× 10−16. In Algorithm 2, we used QRMumps.jl [14] for the QR

factorizations and set θ = 0.8. The stopping criterion for Newton’s method is |∥yk∥ − ντ | < ε0.75M . We

approximate the least-norm solution of AATx = b with the solution of (A+
√
ϵMI)x = b. Finally, we

impose the lower bound αk ≥ ϵ0.75M in order to instabilities when A is rank deficient and α∗ appears to

be zero. More sophisticated strategies will be required in later versions of our implementation. We set

the maximal number of iterations for both Algorithm 1 and Algorithm 2 to 104. All tests are performed

in double precision.

We also compare Algorithm 1 combined with R2N to IPOPT and Percival. All parameters are

the same as before, and we experiment with both LBFGS and LSR1 Hessian approximations with

memory 5. The MINRES-QLP tolerance is set to εM and its maximum number of iterations to 104 to

evaluate (58).

We report our results in the form of Dolan and Moré [24] performance profiles in Figure 1 in

terms of number of objective, gradient and constraint evaluations. When using R2N, we only report

results with LBFGS; results with LSR1 are nearly identical. In the left column of Figure 1, we see

that our implementation is competitive with first-order Percival and IPOPT on all three metrics.

Because Percival never evaluates the Jacobian but only Jacobian-vector products, we do not provide

profiles in terms of Jacobian evaluations. The profiles suggest that the performance of Algorithm 1

Figure 1: Left: Algorithm 1 with the R2 subsolver against Percival and IPOPT with a spectral quasi-Newton approximation.
Right: Algorithm 1 with the R2N subsolver against Percival and IPOPT with a LFGS quasi-Newton approximation.

https://github.com/JuliaSmoothOptimizers/QRMumps.jl
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is very promising for problems where, for some reason, constraint Hessians cannot be evaluated or

approximated. In the right column of Figure 1, we see that Algorithm 1 is very on par with Percival,

while IPOPT is ahead of both. Whether we use R2 or R2N, the robustness of Algorithm 1 is on par

with the other two solvers. We think that these results are strongly in favor of considering exact penalty

approaches as an alternative to augmented-Lagrangian approaches.

7 Discussion and future work

Algorithm 1 is, to the best of our knowledge, the first practical implementation of the exact ℓ2-penalty

method. On small-scale problems, our preliminary implementation is on par with an augmented

Lagrangian method. It is also competitive with IPOPT when spectral Hessian approximations are used

in the latter in terms of efficiency and robustness. It remains competitive in terms of robustness when

using limited-memory quasi-Newton Hessian approximations. Improvements in terms of efficiency are

the subject of active research.

Among possible improvements, the solution of the secular equations requires attention in the

presence of rank-deficient Jacobians when the solution is at, or near, the origin. In Algorithm 2, one

idea is to use the method of Golub and Riley [22] to compute the least-norm solutions of rank-deficient

overdetermined problems. The latter requires a single QR factorization and may be viewed as a form of

iterative refinement. A possible improvement in terms of CPU time is to solve the secular equation (59)

in reduced-precision arithmetic. Similarly, MINRES-QLP does not provide the required least-norm

solution in Corollary 2. When it appears that the solution is α∗ = 0 and the Jacobian is rank deficient,

a different saddle-point system can be solved that provides the required solution.

The framework of Section 4 is general and can be extended to other norms. In particular, Theorem 5

suggests that we could implement the exact ℓ1-penalty method originally proposed by Pietrzykowski [45].
Indeed, evaluating the proximal operator amounts to solving an convex bound-constrained subproblem

for which there are efficient polynomial time algorithms [21, Chapter 7.8].

A trust-region variant of Algorithm 1 based on [3, Algorithm 3.1] instead of R2 would enjoy the same

asymptotic complexity bounds, although evaluation of the proximal operators would be significantly

harder.

In future research, we plan to extend our analysis to constrained problems where the objective is

the sum of a smooth function f and a nonsmooth regularizer h:

min
x
f(x) + h(x) subject to c(x) = 0.
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