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Abstract : Linear quadratic games on very large dense networks are modelled with discrete time
linear quadratic graphon field games with Q-noise. In such a game, the agents are interconnected
via an undirected network with one agent per node. Brownian motion which is correlated over nodes
affects each agent. The limit of the finite-sized linear quadratic network tracking game in discrete
time is formulated, and it is shown that under the proper assumptions, the game has a graphon limit
system with Q-noise. Then, the optimal control of the discrete time system is found in closed-form
and the Nash equilibrium behavior of the game is demonstrated numerically. The infinite time horizon
discounted case is also analyzed, and a closed form feedback solution is presented in the special case
where the underlying graphon is finite rank.

Keywords: Graphon, Mean Field Games, Infinite dimensional noise

Résumé : Les jeux quadratiques linéaires sur de très grands réseaux denses sont modélisés par des
jeux de champs de graphes quadratiques linéaires à temps discret avec un bruit de qualité. Dans
un tel jeu, les agents sont interconnectés via un réseau non dirigé avec un agent par nœud. Le
mouvement brownien corrélé aux nœuds affecte chaque agent. La limite du jeu de suivi de réseau
linéaire quadratique de taille finie en temps discret est formulée, et il est montré que sous les hypothèses
appropriées, le jeu a un système limite de graphon avec Q-bruit. Ensuite, le contrôle optimal du
système en temps discret est trouvé en forme fermée et le comportement d’équilibre de Nash du jeu
est démontré numériquement. Le cas de l’horizon temporel infini actualisé est également analysé, et
une solution de rétroaction en forme fermée est présentée dans le cas spécial où le graphon sous-jacent
est de rang fini.

Mots clés : Graphon, jeux de champ moyen, bruit de dimension infinie
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1 Introduction

Large systems composed of interacting non-cooperative agents arise in many applications such as

cellular networks, financial markets, and electrical grids. The modelling and control of such systems

is intractable due to the size and complexity of their respective networks.

In the case of a game with a large number of identical agents, one can use Mean Field Game theory

to find the approximate system behavior by simulating a system with an infinite number of agents and

finding the distribution of agents’ states under different control methods [1,7,12]. The mean field game

approach simplifies the game, as rather than optimizing with respect to the actions of every individual

player, one can optimize with respect to a single representative player.

Standard mean field games can be extended to games on networks where each node has an infinite

population of players by the use of graphons [3–5]. Graphon theory [14] allows the adjacency matrix

of an infinitely large graph to be represented as a bounded, symmetric operator, providing a limiting

object for large, dense graphs. Under the Graphon Mean Field Games (GMFG) model each node

in a network contains a separate, infinite population interacting with the agents local to their node

uniformly and the agents in the network through the graphon. As there are an infinite number of

agents, the actions of a single agent do not change the mean field.

Expanding on previous work [9], a linear quadratic game with correlated Gaussian disturbances on

an infinitely large dense graph is investigated where each node represents a single agent. A continuous

time, deterministic model with stochastic initial conditions for this type of linear-quadratic game was

investigated by Gao, Foguen-Tchuendom, and Caines [11]. To distinguish this from the infinite-agent-

per-node GMFG model, this approach was termed the Graphon Field Game model. As in the GMFG

model, the actions of any individual agent do not directly affect the field of the system. The Nash

equilibria of such a system requires the optimality of each agent’s chosen actions with respect to the

field generated by the ensemble of agents’ optimal strategies.

This work extends the work of Gao, Foguen-Tchuendom, and Caines [11] by applying the Q-noise

foundations of Dunyak and Caines [8] to discrete time systems. This model is analogous to the limit

behavior of a finite dimensional graph system with a correlated Gaussian disturbance impacting each

node at each time step. It is demonstrated that the discrete time linear quadratic Q-noise tracking game

has an adapted Nash equilibrium solution, and the behavior of the equilibrium solution is demonstrated

numerically.

Section 3 presents the finite network, finite time field-tracking game as motivation for taking the

infinite node limit, called the graphon field-tracking game. The general approach used to solve the

graphon field tracking game in (Section IV) is:

1. Use the mean field game principle: a given agent optimizes against an exogenous signal that is

indifferent to their own control and state input,

2. Use dynamic programming to find the solution of an arbitrary stochastic tracking problem

(part 4.1), and

3. Use the graphon field to recursively generate the tracked signal for each time step (part 4.2).

The second step generates the tracking signal solution in reference to a stochastic adjoint process, which

is defined recursively backwards. The third step uses the graphon field to generate the adjoint process

for each agent by finding a deterministic backwards operator equation. This is called the Consistency

Condition, as it ensures that the graphon field is consistent with each agent’s optimizing control input.

This behavior is demonstrated numerically in two scenarios: where the maximal eigenvalue of the

graphon M is less than one, and where the maximal eigenvalue is equal to one. This causes the state

of all players of the game to either stabilize about zero or stabilize about an eigenfunction of the game

respectively.
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Part V extends the analysis to infinite time horizon games with multiplicative discounting. Unlike

in the finite time horizon case, the operator equation solutions for the discounted game have multiple

solutions. For the case where the graphon M is low rank, a finite number of closed form solutions are

found. It is demonstrated that it is nontrivial to determine which solution is rational for all agents

numerically.

For simplicity, the initial formulation is presented where each agent has a scalar state and a scalar

control. The extension to games where each agent has multiple states and controls is straightforward,

and the notation is presented in Appendix A.1.

2 Preliminaries

2.1 Notation

• The set of vectors of real numbers of dimension m is denoted Rm.

• Graphons (i.e. bounded symmetric [0, 1]2 functions used as the kernels of linear integral opera-

tors) are denoted in italicized bold capital letters, and in this article is typically written as M .

• L2[0, 1] denotes the Hilbert space of real square-integrable functions on the unit interval. In

addition, L2[0, 1] is equipped with the standard inner product, denoted ⟨u,v⟩. For any function

v, v∗ denotes the adjoint of v. As such, ⟨u,v⟩ is sometimes written as v∗u.

• The identity operator in both L2[0, 1] and finite dimensional spaces is denoted I.
• A linear integral operator with the kernel Q : [0, 1]2 → R acting on a function f ∈ L2[0, 1] is

defined by

(Qf)(x) =

∫ 1

0

Q(x, y)f(y)dy, ∀ x ∈ [0, 1]. (1)

• The operators Q are equipped with the standard L2[0, 1] operator norm ||Q||op.
• A symmetric function Q : [0, 1]2 → R is non-negative if the following inequality is satisfied for

every function f ∈ L2[0, 1],

0 ≤
∫ 1

0

∫ 1

0

Q(x, y)f∗(x)f(y)dxdy (2)

:= ⟨Qf ,f⟩ < ∞.

Additionally, denote Q to be the set of bounded symmetric non-negative functions. All valid

Q-noise covariance functions are members of Q.

• Discrete time Q-noise processes (stochastic processes over the time interval (0, 1, ..., T )) will be

denoted by the bold font gk. For each k ∈ (0, 1, ..., T ), gk is an L2[0, 1] function. The precise

definition of a Q-noise process is given in Section 2.2.

• The expectation of a random variable at time k with respect to a sigma algebra Fk is denoted:

E[·|Fk] := Ek[·]. (3)

This article focuses on systems on games where each agent possesses a scalar state. The extension

to vectors of states is straightforward, and is presented in Appendix A.1.

2.2 Discrete time Q-noise processes

Discrete time Q-noise processes are L2([0, 1]) valued random processes satisfying the following axioms

(modified from [8] for discrete time processes):
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1. Let Q ∈ Q, and let ([0, 1] × {0, 1, ..., T} × Ω,B([0, 1] × {0, 1, ..., T} × Ω),P) be a probability

space with the measurable random variable gk(α, ω) : [0, 1] × {0, 1, ..., T} × Ω → R for all

k ∈ {0, 1, ..., T}, α ∈ [0, 1], and ω ∈ Ω. For notation, ω is suppressed when the meaning is clear.

2. For all α ∈ [0, 1], gk(α) ∼ N (0,Q(α, α)).

3. For all α and β, E[gk(α)gk(β)] = Q(α, β).

An orthonormal basis example: Let {W 1
k ,W

2
k , · · · } be a sequence of independent standard normal

random variables for each k ∈ {0, 1, ..., T}. Let Q ∈ Q have a diagonalizing orthonormal basis {ϕr}∞r=1

with eigenvalues {λr}∞r=1. Then

gk(α, ω) =

∞∑
r=1

√
λrϕr(α)W

r
k (ω) (4)

is a discrete time Q-noise process.

3 Problem statement

3.1 Discrete-time network system games

Consider a discrete time game on a graph GN = (V N , EN ) where each node i represents an agent. The

state of agent i at time k (denoted xi
k with control ui

k) evolves with the following stochastic difference

equation:

xi
k+1 = (axi

k + bui
k + c

1

N

N∑
j=1

MN
ij x

j
k) +W i

k (5)

where a, b, c ∈ R, MN is the weighted adjacency matrix of GN , and {W i
k} is a collection of Gaussian

disturbances with covariance matrix QN for each k. Subject to the actions of all other agents, each

agent i minimizes the expected quadratic cost function with respect to their information set F i
k, which

is the sigma algebra generated by the set {xi
k, z

i
k}Ni=0,

J i(ui, u−i|{zik}Ni=1) (6)

= E

[
T−1∑
k=0

||xi
k − zik||2S + ||ui

k||2R + ||xi
T − ziT ||2S

∣∣∣∣F i
0

]
, (7)

where zik = 1
N

∑N
j=1 M

N
ij x

j
k, ||v||2S = Sv2 for some S ∈ R, R ∈ R, S ≥ 0 and R > 0.

A Nash Equilibrium of the game exists when no agent can benefit by deviating from its current

strategy. If the optimal strategy tuple is {ui∗}Ni=1, this implies

J i(ui∗, u−i∗) ≤ J i(ui, u−i∗) ∀i ∈ {1, ..., N}. (8)

As the network size grows, the networked system adjacency matrix MN approaches its associated

graphon which is a bounded measurable function mapping [0, 1]× [0, 1] → [0, 1], denoted M (see [10,

14]). When the underlying graph is undirected, its graphon is also symmetric. An example of this

network convergence is shown with the two finite networks in Fig. 1 converging to the graphon limit

(Fig. 2).

3.2 Graphon field tracking games

In graphon analysis, as the size of the network tends to infinity, each agent in the system is associated

with a point α on the unit interval. Define the discrete time Q-noise gα
k , α ∈ [0, 1], and the resulting

discrete time system evolves according to

xα
k+1 =(axα

k + buα
k + czα

k ) + gα
k , (9)
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zα
k =

∫ 1

0

M(α, β)xβ
kdβ ∀ α ∈ [0, 1]. (10)

The local field for an agent designated by α refers to the value zα
k found using the above integral and

expectation.

Figure 1: Graphs of graphs with 50 and 500 nodes, respectively, where their associated adjacency matrices converge to
the graphon in Fig. 2 when mapped to the unit square. In this example, nodes with an index closer to zero are more
likely to have many connections than nodes with an index closer to one.

Figure 2: The graph sequence shown in Fig. 1 converges to the Uniform Attachment Graphon W (α, β) = 1 −
max(α, β), α, β ∈ [0, 1].

The objective function for the single agent at node α has the limit

Jα(uα,x0) = E

[
T−1∑
k=0

||xα
k − zα

k ||2S + ||uα
k ||2R

∣∣∣∣Fα
0

]
, (11)
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and its goal is to minimize the objective function for the control strategy uα adapted to the information

pattern Fα
k . For the purposes of this article, the full-state information pattern is used, where Fα

k =

Fk := {xβ
k , β ∈ [0, 1]} for each agent α. This is sufficient for each agent to calculate the entire graphon

field zk at time k. This has the value function form:

V α
k (Fα

k ) =E
[
||xα

k − zα
k ||2S + ||uα

k ||2R (12)

+ Vk+1(Fα
k+1)|Fα

k

]
, k = (0, 1, ..., T − 1),

V α
T (Fα

T ) =ET [||xα
T − zα

T ||2S ] = ||xα
T − dα

T ||2S . (13)

The agents are in a Nash equilibrium when the following inequality holds,

Jα(uα∗,u−α∗) ≤ Jα(uα,u−α∗), ∀ α ∈ [0, 1]. (14)

Unlike in the case of finite agent games, taking the limit as the number of agents tends to infinity

yields an indifference to the costs of a particular agent α with respect to the strategies of any other

specific agent β. Only the strategies of the agents as a mass (taken as a function over the unit interval)

affect the cost of a given agent.

As with mean field games and graphon mean field games, the graphon field term zα
k is not dependent

on both the state xα
k and the action uα

k of any single agent, in the sense that altering {xα
r }0≤r≤k or

{uα
r }0≤r≤k for a particular α does not change zα

k . This is evident from the integral operator definition

of zα
k . As with many mean field game problems, this changes the limit problem from a game to a

tracking control problem where each node in the network is penalized for deviating from its associated

graphon field.

4 Solution to the Q-noise graphon field tracking game

The game is solved in two steps, first by formulating the response of an individual agent α ∈ [0, 1] as

a stochastic tracking problem, then by showing that the individual actions of each agent generate a

Nash equilibrium.

4.1 Solution to the stochastic control tracking problem

Assume an agent α is tracking an exogenous square-integrable drift process dk(α), α ∈ [0, 1]. Define

the state transition equation as

xα
k+1 =(axα

k + buα
k + cdα

k ) + gα
k , (15)

The value function is found using dynamic programming, and, as above, has the form

V α
k (Fα

k ) =E
[
||xα

k − dα
k ||2S + ||uα

k ||2R (16)

+ Vk+1(Fα
k+1)|Fα

k

]
, k = (0, 1, ..., T − 1),

V α
T (Fα

T ) =ET [||xα
T − dα

T ||2S ] = ||xα
T − dα

T ||2S . (17)

As stated above, this work considers the case where all agents have the full-information set Fk consisting

of xη
k and dη

k for all η ∈ [0, 1].

Lemma 1. The value function of agent α at time k, V α
k , is given by

V α
k (Fα

k ) =Ek[Pk(x
α
k )

2 + 2xα
ks

α
k +mα

k ], (18)

k = {0, ..., T},

where E[·|Fk] := Ek[·]. Here, Pk is a positive scalar, and sk and mα
k are L2([0, 1]) valued functions for

all k = {0, ..., T} derived from the following backwards recurrence relations:

Fk =(R+ b2Pk+1)
−1abPk+1, (19)
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Gk =(R+ b2Pk+1)
−1bcPk+1, (20)

Hk =(R+ b2Pk+1)
−1b, (21)

Pk =S +RF 2
k + Pk+1(a− bFk)

2, (22)

sαk =− Sdα
k + FkR(Gkd

α
k +HkEk[s

α
k+1]) (23)

+ (a− bFk)Pk+1

×
[
(c− bGk)d

α
k − bHkEk[s

α
k+1]

]
+ (a− bFk)Ek[s

α
k+1],

mα
k =Sdα

kd
α
k + (Gkd

α
k +HkEk[s

α
k+1])R (24)

× (Gkd
α
k +HkEk[s

α
k+1])

+
[
(c−Gk)d

α
k − bHkEk[s

α
k+1]

]
Pk+1

×
[
(c−Gk)d

α
k − bHkEk[s

α
k+1]

]
+ 2

[
(c−Gk)d

α
k − bHkEk[s

α
k+1]

]
Ek[s

α
k+1]

+Q(α, α) + Ek[m
α
k+1],

with the terminal conditions

PT =S, (25)

sαT =− Sdα
T , (26)

mα
T =S||dα

T ||22. (27)

Further, the optimal control is given by

uo,α
k =− (R+ b2Pk+1)

−1b[Pk+1(ax
α
k + cdα

k ) (28)

+ Ek[s
α
k+1]]

=:− Fkx
α
k −Gkd

α
k −HkEk[s

α
k+1]. (29)

The proof follows from the ansatz (18). See A.2.

The cost mα
k does not affect the control input uα

k and does not have a simple closed form solution,

so it is not calculated here. The structure of the tracking control solution (with the feedforward term

in the costate sk+1) is common in discrete time tracking problems [13].

The value function above solves the general discrete-time stochastic optimal control problem where

an agent α tracks an exogenous signal dα
k . The problem is ill-defined in general since it requires the

computation of the expectation of the offset, Ek[s
α
k+1] in terms of the expected terminal value of dα

T ,

which requires additional assumptions on the process dk.

However, in the graphon field game setting, at each time step k the chosen strategy must generate

the local field term z, i.e. the optimal input {uo
k, k = 0, ..., T−1} must generate a trajectory satisfying

zα
k = [Mxk](α) = dα

k for all α. This provides additional structure to the tracked stochastic process,

and is known as the Consistency Condition for the Nash equilibrium in the limit game [11]. In the full

state feedback case, the Consistency Condition allows the expectation of the offset sk to be explicitly

calculated as a linear state process in terms of zk.

4.2 Nash equilibrium Consistency Condition with full state information

By the Consistency Condition, for each k, the local field zk is given by zk = Mxk. As xk is square-

integrable for each k when generated by the optimal strategy uk and M is an L2[0, 1] to L2[0, 1]

operator, the graphon field zk is square-integrable as well. For the game to yield a Nash equilibrium,

it is necessary for all agents to apply their respective control uα
k and generate the local field process zα

k .

To denote the function over the whole index set the superscript α is omitted.
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To do this, define two new, time varying operators: Γk : L2[0, 1] → L2[0, 1] which calculates the

expected graphon field zk+1 at the next time-step given the state of all agents at the current time-step,

and Ψk : L2[0, 1] → L2[0, 1] which calculates the tracking adjoint process sk as a linear function of the

current graphon field zk.

Lemma 2. Let the signal to be tracked be given by zk = Mxk for time k. Let Γk and Ψk be L2([0, 1])

operators which are defined by the backwards recursion equations

Ψk =− SI+ FkR(GkI+HkΨk+1Γk) (30)

+ (a− bFk)Pk+1

[
(c− bGk)I

− bΨk+1HkΓk

]
+ (a− bFk)Ψk+1Γk,

Γk =(I+ bHkMΨk+1)
−1[(a− bFk)I (31)

+ (c− bGk)M ]

with the terminal condition

ΨT =− SI. (32)

Assume that for all k = {0, ..., T − 1}, the inverse (I+ bHkMΨk+1)
−1 exists. Then,

Ek[zk+1] =Γkzk, (33)

sk =Ψkzk, (34)

and the trajectory generated by

uk = −Fkxk − (GkI+HkΨk+1Γk)zk (35)

gives the optimal tracking trajectory for each α.

See proof A.3.

Combining Lemma 1 and 2 yields the Nash equilibrium of the game.

Theorem 1. Given the limit graphon tracking game of the type (11) for the family of systems (9),

where each agent α indexed by [0, 1] has the total information pattern (that is, each agent knows the

states of all other agents at the current time step), Fα
k = {xk, zk} for all α ∈ [0, 1], the control strategy

given in Equations (A17), (A18), and (35) yields a Nash equilibrium.

4.3 Numerical simulation

To demonstrate the behavior of the field tracking game, There are two general phenomena depending

on the maximal eigenvalue of the graphon M . Namely, as the state xα
k attempts to track the field

average zα
k , the optimal trajectory (without noise) would satisfy

xk = zk := Mxk. (36)

This is an eigenvalue and eigenfunction relation, satisfied by either the trivial function xα
k = 0 for all

agents α ∈ [0, 1], or when xk is an eigenfunction of the operator M with associated eigenvalue λ = 1.

The only [0, 1]-graphon M (where 0 ≤ M(α, β) ≤ 1 for all α, β ∈ [0, 1]) is the Erdos-Renyi graphon

with p = 1, M(α, β) = 1. When max(λ(M)) < 1, tracking the graphon field contracts the state of

all agents to zero to zero. Two contracting examples, with varying graphons and Q-noise disturbances

are presented first, and Two normalized examples are presented second. In order to create examples

where the maximal eigenvalue is one, the graphon M is normalized by its maximal eigenvalue.

In all examples, the states are scalar, with the system parameters a = 1, b = 1, and c = 0.1. To

illustrate that the system effectively tracks the perturbed graphon fields with noise, the disturbance

covariance will be scaled to be small relative to the effect of the graphon field.
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To verify the definitions of Γk and Ψk, for all examples we compute ∆(Γk), the L2 norm between

the expected value of the graphon field zk+1 given zk and the operator Γk acting on the current

graphon field zk, i.e.,

∆(Γ) := max
0≤k≤T

||M(axk + buk + czk)− Γkzk||2. (37)

In all four sample paths below, ∆(Γ) was calculated to be below the order of 10−9, often on the

order of 10−14. This confirms numerically that the operator Γk is equivalent to the expected value of

the graphon field zk at the next time step.

4.4 Contracting graphon, max(λ(M )) < 1

4.4.1 Erdos-Renyi: M(α, β) = 0.9, Q(α, β) = (1−max(α, β))/20

Here, set the initial state for each agent to xα
0 = 3 sin(πα). This initial condition is arbitrary, it only

needs to be set to be non-constant to demonstrate the graphon field behavior. The state xk and field

zk are shown in Fig. 3, as well as the trajectory of the error between the two, xk − zk. The error is

low, but due to the addition of noise at each time step, is never zero.

For the contracting Erdos-Renyi graphon, ∆(Γ) is zero on the order of 10−14.

4.5 M(α, β) =
√

|x− y|, Q(α, β) = cos(α− β)

The trajectory of the state in this example is shown in Fig. 4. Unlike in the Erdos-Renyi case, the

graphon field zk is non-constant at each k, but the controlled game is still stable about the origin

xα
k = 0, α ∈ [0, 1]. For the contracting square root graphon, ∆(Γ) is zero on the order of 10−15.

4.6 Normalized graphon, max(λ(M )) = 1

When the graphon M is normalized by its maximal eigenvalue, instead of sending the state of each

agent to zero, the calculated optimal control uk instead moves the state xk towards the associated

eigenfunction of M . As c = 0.1 and a = 1, the system is unstable, and the system tracks a scaling of

an eigenfunction of M .

4.6.1 Erdos-Renyi: M(α, β) = 1, Q(α, β) = (1−max(α, β))/20

This trajectory is shown in Fig. 5. Unlike the case where M(α, β) = 0.9, the controlled game is stable

near the eigenfunction initial condition. For the normalized Erdos-Renyi graphon, ∆(Γ) is zero on the

order of 10−9.

4.7 M(α, β) =
√

|x− y| (Normalized), Q(α, β) = cos(α− β)

The trajectory shown in Fig. 6 shows that the controlled state is attracted to a scaled eigenfunction

of the system. For the normalized square root graphon, ∆(Γ) is zero on the order of 10−10.

5 Infinite horizon discounted cost

Due to the addition of disturbance of bounded variation, the standard horizon field tracking problem

does not have a well-defined value function in the infinite time horizon case. This can be addressed in

the standard manner by using a multiplicative, stage-wise discount factor ρ.

Even then, this poses some conceptual questions. The graphon field process to be tracked is non-

deterministic and non-constant, and the backwards equation method of deriving the operators Ψ and
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Figure 3: Top: The state trajectory of the system xk

when the graphon field is given by the Erdos-Renyi graphon
M = 0.9. As the graphon is contracting, the controlled
state trajectory is near zero for all agents. Middle: The
associated graphon field. As this is a rank one graphon
equivalent for all agents, the field is flat at each time step.
Bottom: The difference between the graphon field and
state, which determines the cost to particular agents.

Figure 4: Top: The state trajectory of the system xk

when the graphon field is given by the graphon M(α, β) =√
|α− β|. This graphon is also contracting, and the con-

trolled state trajectory approaches zero. Middle: The as-
sociated graphon field. Bottom: The difference between
the agents’ states and graphon fields.

Γ cannot be used directly. As a starting point, consider the finite time horizon discounted case; for

0 < ρ < 1, define the finite horizon discounted tracking problem for a system of the form (15),

Jα
ρ (u,x0) =

T−1∑
k=0

ρkE[||xα
k − zα

k ||2S + ||uα
k ||2R | Fα

0 ] (38)

+ ρTE[||xα
T − zα

T ||2S |FT ]. (39)

By the same proof approach to the finite time non-discounted game, this is associated with the

sequence of value functions

V α
k (Fα

k ) =Ek[Pk(x
α
k )

2 + 2(xα
k )s

α
k +mα

k ], (40)

k = {0, ..., T},

where P ρ
k is an positive scalar, and sk and mα

k are L2([0, 1]) valued functions for all k = {0, ..., T}
derived from the following backwards recurrence relations,

F ρ
k =ρ(R+ ρP ρ

k+1b
2)−1P ρ

k+1ab, (41)

Gρ
k =ρ(R+ ρP ρ

k+1b
2)−1P ρ

k+1bc, (42)
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Figure 5: Top: The state trajectory of the system xk

when the graphon field is given by the Erdos-Renyi graphon
M = 1. As the system is unstable (c = 0.1), the state
of each agent tends to infinity. Middle: The associated
graphon field. Bottom: The difference between each
agent’s state and field. Despite the controlled system be-
ing fundamentally unstable, the state of each agent very
closely tracks the graphon field.

Figure 6: Top: The state trajectory of the system xk when
the graphon field is given by the graphon M =

√
|α− β| af-

ter normalization by its maximal eigenvalue. As the system
is unstable (c = 0.1), the state of each agent tends to in-
finity. Middle: The associated graphon field. Bottom: The
difference between each agent’s state and field. Despite the
controlled system being fundamentally unstable, the state of
each agent very closely tracks the graphon field.

Hρ
k =ρ(R+ ρP ρ

k+1b
2)−1b, (43)

P ρ
k =S +R(F ρ

k )
2 + ρ2(a− bF ρ

k )
2P ,

k+1 (44)

sαk =− Sdα
k + F ρ

kR(Gρ
kd

α
k +Hρ

kEk[s
α
k+1]) (45)

+ ρ(a− bF ρ
k )P

ρ
k+1

×
[
(c− bGρ

k)d
α
k − bHρ

kEk[s
α
k+1]

]
+ ρ(a− bF ρ

k )Ek[s
α
k+1],

mα
k =dα∗

k Sdα
k + ρ

[
(Gρ

kd
α
k +Hρ

kEk[s
α
k+1])

∗R (46)

× (Gρ
kd

α
k +Hρ

kEk[s
α
k+1])

+
[
(c− bGρ

k)d
α
k − bHρ

kEk[s
α
k+1]

]
P ρ
k+1

×
[
(c− bGρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]
+ 2

[
(c− bGρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]
Ek[s

α
k+1]

+Q(α, α) + Ek[m
α
k+1]

]
,
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with the terminal conditions

P ρ
T =S, (47)

sαT =− Sdα
T , (48)

mα
T =S||dα

T ||2. (49)

Further, the optimal control is given by

uo,α
k =− ρ(R+ ρb2P ρ

k+1)
−1[P ρ

k+1(ax
α
k + cdα

k ) (50)

+ Ek[s
α
k+1]]

=:− F ρ
kx

α
k −Gρ

kd
α
k −Hρ

kEk[s
α
k+1]. (51)

As in the non-discounted case, the process to be tracked is given by zk = Mxk at time k. Let Γk

and Ψk be L2([0, 1]) operators defined by the backwards recursion equations

Ψρ
k =− SI+ F ρ

kR(Gρ
kI+Hρ

kΨ
ρ
k+1Γ

ρ
k) (52)

+ ρ(a− bF ρ
k )

∗P ρ
k+1

[
(c− bGρ

k)I
− bΨk+1HkΓk

]
+ ρ(a− bFk)

∗Ψk+1Γk,

Γρ
k =(I+ bHρ

kMΨk+1)
−1[(a− bF ρ

k )I (53)

+ (d− bGρ
k)M ]

with the terminal conditions

Ψρ
T =− SI. (54)

Assume that for all k = {0, ..., T −1}, the inverse (I+bHkMΨk+1)
−1 exists. Then, for the system (15)

as with the non-discounted game,

Ek[zk+1] =Γρ
kzk, (55)

sk =Ψρ
kzk, (56)

and the trajectory is generated by

uρ
k = −F ρ

kxk − (Gρ
kI+Hρ

kΨk+1Γ
ρ
k)zk (57)

gives the optimal tracking trajectory for each α.

It is assumed that the infinite horizon feedback solution (when it exists) is given by the fixed point

to the following algebraic Riccati and operator equations:

F ρ
∞ =ρ(R+ ρb2P ρ

∞)−1P ρ
∞ab, (58)

Gρ
∞ =ρ(R+ ρb2P ρ

∞)−1P ρ
∞bc, (59)

Hρ
∞ =ρ(R+ ρb2P ρ

∞b)−1b, (60)

P ρ
∞ =S + F ρ∗

∞ RF ρ
∞ + ρ(a− bF ρ

∞)∗P ρ
∞(a− bF ρ

∞), (61)

Ψρ
∞ =− SI+ F ρ

∞R(Gρ
∞I+Hρ

∞Ψρ
∞Γρ

∞) (62)

+ ρ(a− bF ρ
∞)∗P ρ

∞
[
(c− bGρ

∞)I
− bH∞Ψ∞Γ∞

]
+ (a− bF ρ

∞)∗Ψ∞Γρ
∞,

Γρ
∞ =(I+ bHρ

∞MΨ∞)−1[(a− bF ρ
∞)I (63)

+ (c− bGρ
∞)M ].
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Under the condition that c = 0 (that is, the states of each agent evolve with strictly local state and

controls) and that the graphon M has finite rank K, then the operators can be explicitly solved with

(K ×K) + 1 equations.

Define the orthogonal subspaces SM to be the the linear subspace spanned by the basis of the

system graphon M , and S̆ to be the orthogonal complement of SM such that

L2[0, 1] =: SM ⊕ S̆. (64)

Then, define the K ×K matrix M to be

Mi,j := ⟨Mϕi, ϕj⟩, i, j ∈ (1, ...,K) (65)

and the complement identity operator Ĭ : L2[0, 1] → S̆ to be the projection operator satisfying

Ĭd = d−
K∑

k=1

⟨d, ϕk⟩ϕk, ∀d ∈ L2[0, 1]. (66)

Theorem 2 (Finite Rank Closed Form Feedback). If the state of each node is a scalar, c = 0, and the

system graphon M is of rank K < ∞ with associated orthonormal basis {ϕk}Kk=1, then Ψ∞ and Γ∞ is

a solution of the quadratic operator equation

BH∞MΨ2
∞ + (CI+ SBHρ

∞M)Ψρ
∞ + SI = 0, (67)

where

C := 1− (a− bF ρ
∞)[F ρ

∞R− ρ(a− bF ρ
∞)P ρ

∞b (68)

− ρ(a− bF∞)2] (69)

Then, in the low rank case Eq. (67) is solved by the orthogonal operator equations

Ψ∞ := Ψ̆∞ +

K∑
i=1

K∑
j=1

[ΨM
∞ ]ij⟨ϕi, ·⟩ (70)

cΨ̆∞ + SĬ = 0, Ψ̆∞ : L2[0, 1] → S̆ (71)

bH∞M(ΨM
∞ )2 + (C + bSH∞)ΨM

∞ (72)

+ SIK = 0, ΨM
∞ ∈ RK×K

where IK is the K-dimensional identity operator.

Proof. Note that if c = 0, then G∞ = 0. Eq. (67) is attained by substituting the definition of Γ∞ into

Eq. (A42), and multiplying on the right by I+bH∞MΨ∞. The equation can then be solved explicitly

in two orthogonal subspaces SM and S̆ using the definitions provided in the lemma.

Note 1. When M is rank one, then Eq. (72) is a simple quadratic equation in one variable. Thus, there

are two solutions due to the square root. In simulations, when the system parameters are changed,

Eqs (52)–(54) may converge to either. In particular, the operator may converge to the solution with

the positive radical when the eigenvalue associated with the eigenfunction of M is less than one, and

to the solution with the negative radical when the associated eigenfunction equals one. Further, while

the solution found through Eqs (52)–(54) is necessarily a Nash equilibrium for the finite-horizon game,

this may not be the case for the other solution of the infinite-horizon game. For M of rank larger than

one, a matrix quadratic formula is required, for which there are 2K solutions.

As will be explored in the following numerical simulations, there are typically multiple solutions

for the operator equations. Given initial conditions aligned with the eigenfunctions of the graphon M ,

some of the generated solutions are clearly worse for all players.
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5.1 Numerical simulation

The following numerical solutions demonstrate the existence of multiple solutions of the infinite time

horizon discounted problem, and that the finite horizon discounted problem can converge to both of

them depending on whether or not the underlying graphon operator is normalized.

For each of the simulations, the discount factor ρ = 0.95 is used, with system parameters a = 1,

b = 1, c = 0 and costs S = 1 and R = 1 and a 200 node discretization of the unit interval. The rank

one graphon M(α, β) = (α2−1)(β2−1) was used to generate the graphon field. In the first set of three

simulations, the graphon is non-normalized (contracting), and for the second set of three simulations

the graphon is normalized. For all agents in all simulations, the initial condition x0(α) = 1, α ∈ [0, 1]

was used.

Fig. 7 shows the state trajectory of the finite time discounted game when the graphon is non-

normalized.

Figure 7: Finite time horizon discounted game with a contracting graphon. As expected, the state trajectory of the finite
time horizon controlled system approaches zero.

Fig. 8 demonstrates that when the positive root solution of Eq. (72) is used to calculate Ψρ
∞ and

Γρ
∞, the solution very closely tracks the controlled state trajectory shown in Fig. 7. Indeed, the

operator norm distance of Ψρ
2Γ

ρ
1 and Ψρ

∞Γρ
∞ was on the order of machine precision, indicating that

the sequence converged.

Meanwhile, Fig. 9 shows that when the negative root solution of Eq. (72) is used, the controlled

state trajectory is exceptionally unstable.

Next, consider the case where the graphon M is normalized by its eigenvalue. As with the nondis-

counted game, the solution of the finite time horizon discounted game approaches a scaled eigenfunction

of the graphon, in this case, ϕ(α) = α2 − 1. Fig. 10 shows this behavior.

However, unlike the previous case, the positive root solution of Eq. 72 does not create a trajectory

that closely matches the finite time horizon game. It instead creates a trajectory that approaches zero

for all agents, even though that seems sub-optimal, shown in Fig. 11.

When the graphon M is normalized, the finite horizon discounted game solution instead converges

to negative root solution. A calculated trajectory of the controlled system using the negative root

solution is shown in Fig. 12, which approaches an eigenfunction of the graphon M in a similar manner

to the finite horizon discounted game trajectory.
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Figure 8: The controlled state trajectory of the game when
the positive root solution of Eq. 72 is used, which closely
resembles the finite time horizon discounted game trajec-
tory.

Figure 9: The system is unstable using the negative root
solution of Eq. 72.

Figure 10: The controlled trajectory of the finite horizon
discounted game closely tracks the eigenfunction of the
system, even under noise, when M is normalized by its
largest eigenvalue.

Figure 11: The controlled state trajectory of the normalized
system using the positive root solution approaches zero for
all agents, instead of approaching an eigenfunction.

Figure 12: When M is normalized, the backwards recursion instead converges to the negative root solution.
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6 Future work

There are some clear directions for future research. First, the work should be extended to limit graphs

embedded in metric spaces using the embedded graph limit theory developed in Caines [2, 6]. This

theory generalizes the concept used implicitly in the numerical simulations above, where each node

in the graph is located uniformly at a point on the unit interval. Embedded graph limit theory

is a method for describing graph limits that exist in geometric spaces more general than the unit

interval, for instance those where each node is located in R2 or R3. In the dense graph case, this is a

straightforward generalization, but may not have a direct solution analog for sparse graphs.

The precise criteria for the convergence of the operators Ψρ
k and Γρ

k to Ψρ
∞ and Γρ

∞ is a topic for

open investigation.

This article considered Nash equilibria with full state information. This will be expanded to other

information sets, such as those where each agent has only local information and, hence, estimation of

the status of the overall graphon field may be of value. In particular, applying it to the case where each

agent uses Kalman filtering to estimate the overall graphon field would be of interest. Further research

in this area would require the consideration of common noise [7], where, unlike in the full information

case, the local state xα
k would not be conditionally independent of the full state {xβ

k , β ∈ [0, 1]}.

Appendix

A.1 Multivariate state notation

Let each agent α ∈ [0, 1] have n local states and m local controls, and let A ∈ Rn×n, D ∈ Rn×n, B ∈
Rn×m. Then, define the state evolution equation as

xα
k+1 =(Axα

k +Buα
k +Dzα

k ) + gα
k , (A1)

where the graphon field zα
k is an n dimensional real vector for all α defined by the following blockwise

form, with graphons M11,M12, ...Mnn

zα
k :=


(zα

k )1
(zα

k )2
...

(zα
k )1

 (A2)

=



∫ 1

0

[
M11(α, β)(x

β
k)1 +M12(α, β)(x

β
k)2

+ · · ·+M1n(α, β)(x
β
k)n

]
dβ∫ 1

0

[
M21(α, β)(x

β
k)1 +M22(α, β)(x

β
k)2

+ · · ·+M2n(α, β)(x
β
k)n

]
dβ

...∫ 1

0

[
Mn1(α, β)(x

β
k)1 +Mn2(α, β)(x

β
k)2

+ · · ·+Mnn(α, β)(x
β
k)n

]
dβ


(A3)

=


M11 M12 · · · M1n

M21 M22 · · · M2n

...
...

. . .
...

Mn1 Mn2 · · · Mnn



(k)1
(k)2
...

(k)1

 (A4)

By abuse of notation, we denote this blockwise form

zk := Mxk (A5)

as in the single-state-per-node case.
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Following this, the relevant Rm dimensional controls for each α ∈ [0, 1] would be defined by

Fk =(R+B∗Pk+1B)−1B∗Pk+1A, (A6)

Gk =(R+B∗Pk+1B)−1B∗Pk+1D, (A7)

Hk =(R+B∗Pk+1B)−1B∗, (A8)

Pk =S + F ∗
kRFk + (A−BFk)

∗Pk+1(A−BFk), (A9)

sαk =− Szα
k + F ∗

kR(Gkz
α
k +HkEk[s

α
k+1]) (A10)

+ (A−BFk)
∗Pk+1

×
[
(D −BGk)z

α
k −BHkEk[s

α
k+1]

]
+ (A−BFk)

∗Ek[s
α
k+1],

mα
k =zα∗

k Szα
k + (Gkz

α
k +HkEk[s

α
k+1])

∗R (A11)

× (Gkz
α
k +HkEk[s

α
k+1])

+
[
(D −Gk)z

α
k −BHkEk[s

α
k+1]

]∗
Pk+1

×
[
(D −Gk)z

α
k −BHkEk[s

α
k+1]

]
+ 2

[
(D −Gk)z

α
k −BHkEk[s

α
k+1]

]
Ek[s

α
k+1]

+Q(α, α) + Ek[m
α
k+1],

with the terminal conditions

PT =S, (A12)

sαT =− Szα
T , (A13)

mα
T =S||zα

T ||22. (A14)

Further, the optimal control is given by

uo,α
k =− (R+B∗Pk+1B)−1B∗[Pk+1(Axα

k +Dzα
k ) (A15)

+ Ek[s
α
k+1]]

=:− Fkx
α
k −Gkz

α
k −HkEk[s

α
k+1]. (A16)

Similarly, Γk and Ψk would be defined by

Ψk =− SI+ FkR(GkI+HkΨk+1Γk) (A17)

+ (A−BFk)
∗Pk+1

[
(D −BGk)I

−BΨk+1HkΓk

]
+ (A−BFk)

∗Ψk+1Γk,

Γk =(I+BHkMΨk+1)
−1[(A−BFk)I (A18)

+ (D −BGk)M ]

with the terminal condition

ΨT =− SI. (A19)

The infinite time horizon discounted problem has a similar formulation:

By the same proof approach to the finite time non-discounted game, this is associated with the

sequence of value functions

V α
k (Fα

k ) =Ek[(x
α
k )

∗Pk(x
α
k ) + 2(xα

k )
∗sαk +mα

k ], (A20)

k = {0, ..., T},
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where P ρ
k is an positive scalar, and sk and mα

k are L2([0, 1]) valued functions for all k = {0, ..., T}
derived from the following backwards recurrence relations,

F ρ
k =ρ(R+ ρB∗P ρ

k+1)
−1B∗P ρ

k+1A, (A21)

Gρ
k =ρ(R+ ρB∗P ρ

k+1)
−1B∗P ρ

k+1D, (A22)

Hρ
k =ρ(R+ ρB∗P ρ

k+1)
−1B∗, (A23)

P ρ
k =S + F ρ∗

k RF ρ
k + ρ(A−BF ρ

k )
∗P ρ

k+1(A−BF ρ
k ), (A24)

sαk =− Sdα
k + F ρ∗

k R(Gρ
kd

α
k +Hρ

kEk[s
α
k+1]) (A25)

+ ρ(A−BF ρ
k )

∗P ρ
k+1

×
[
(D −BGρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]
+ ρ(A−BF ρ

k )
∗Ek[s

α
k+1],

mα
k =dα∗

k Sdα
k + ρ

[
(Gρ

kd
α
k +Hρ

kEk[s
α
k+1])

∗R (A26)

× (Gρ
kd

α
k +Hρ

kEk[s
α
k+1])

+
[
(D −BGρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]∗
P ρ
k+1

×
[
(D −Gρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]
+ 2

[
(D −Gρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]
Ek[s

α
k+1]

+Q(α, α) + Ek[m
α
k+1]

]
,

with the terminal conditions

P ρ
T =S, (A27)

sαT =− Sdα
T , (A28)

mα
T =S||dα

T ||2. (A29)

Further, the optimal control is given by

uo,α
k =− ρ(R+ ρB∗P ρ

k+1)
−1B∗[P ρ

k+1(Axα
k +Ddα

k ) (A30)

+ Ek[s
α
k+1]]

=:− F ρ
kx

α
k −Gρ

kd
α
k −Hρ

kEk[s
α
k+1]. (A31)

Let the process to be tracked be given by zk = Mxk for time k. Let Γk and Ψk be L2([0, 1])

operators which are defined by the backwards recursion equations

Ψρ
k =− SI+ F ρ

kR(Gρ
kI+Hρ

kΨ
ρ
k+1Γ

ρ
k) (A32)

+ ρ(A−BF ρ
k )

∗P ρ
k+1

[
(D −BGρ

k)I
−BΨk+1HkΓk

]
+ ρ(A−BFk)

∗Ψk+1Γk,

Γρ
k =(I+BHρ

kMΨk+1)
−1[(A−BF ρ

k )I (A33)

+ (D −BGρ
k)M ]

with the terminal conditions

Ψρ
T =− SI. (A34)

Assume that for all k = {0, ..., T − 1}, the inverse (I + BHkMΨk+1)
−1 exists. Then, as with the

non-discounted game,

Ek[zk+1] =Γρ
kzk, (A35)

sk =Ψρ
kzk, (A36)
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and the trajectory is generated by

uρ
k = −F ρ

kxk − (Gρ
kI+Hρ

kΨk+1Γ
ρ
k)zk (A37)

gives the optimal tracking trajectory for each α.

Assume that the infinite horizon feedback solution (when it exists) is given by the fixed point to

the following algebraic Riccati and operator equations:

F ρ
∞ =ρ(R+ ρB∗P ρ

∞B)−1B∗P ρ
∞A, (A38)

Gρ
∞ =ρ(R+ ρB∗P ρ

∞B)−1B∗P ρ
∞D, (A39)

Hρ
∞ =ρ(R+ ρB∗P ρ

∞B)−1B∗, (A40)

P ρ
∞ =S + F ρ∗

∞ RF ρ
∞ + ρ(A−BF ρ

∞)∗P ρ
∞(A−BF ρ

∞), (A41)

Ψρ
∞ =− SI+ F ρ

∞R(Gρ
∞I+Hρ

∞Ψρ
∞Γρ

∞) (A42)

+ ρ(A−BF ρ
∞)∗P ρ

∞
[
(D −BGρ

∞)I
−BH∞Ψ∞Γ∞

]
+ (A−BF ρ

∞)∗Ψ∞Γρ
∞,

Γρ
∞ =(I+BHρ

∞MΨ∞)−1[(A−BF ρ
∞)I (A43)

+ (D −BGρ
∞)M ].

A.2 Proof of Lemma 1

The dynamic programming principle is applied to find the optimal control. From the terminal condition

V α
T (xk) = ||xα

T − dα
T ||2S . (A44)

Then, PT = S, sαT = −Sdα
T , and mα

T = ||dα
T ||2S .

By the dynamic programming assumption,

V α
k (xk) = min

u
Ek

[
||xα

k − dα
k ||2S + ||u||2R + V α

k+1(xk+1)
]

(A45)

=min
u

||xα
k − dα

k ||2S + ||u||2R + Ek[V
α
k+1(xk+1)] (A46)

=min
u

||xα
k − dα

k ||2S + ||u||2R (A47)

+ Ek[Pk+1(x
α
k+1)

2 + 2(xα
k+1)s

α
k+1

+mα
k+1]

=min
u

||xα
k − dα

k ||2S + ||u||2R (A48)

+ Ek[(ax
α
k + buα

k + cdα
k + gα

k )
2Pk+1]

+ 2Ek[ax
α
k + buα

k + cdα
k + gα

k ]Ek[s
α
k+1]

+ Ek[m
α
k+1]

=min
u

||xα
k − dα

k ||2S + ||u||2R (A49)

+ (axα
k + buα

k + cdα
k )Pk+1

· (axα
k + buα

k + cdα
k ) +Q(α, α)

+ 2(axα
k + buα

k + cdα
k )Ek[s

α
k+1] + Ek[m

α
k+1].

Note that the right-hand expression of (A49) is differentiable and convex in u, and hence the

optimal control is

uo,α
k =− (R+ b2Pk+1)

−1b[Pk+1(ax
α
k + cdα

k ) (A50)
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+ Ek[s
α
k+1]]

=:− Fkx
α
k −Gkd

α
k −HkEk[s

α
k+1]. (A51)

Applying the optimal control to the value function and re-arranging terms gives equations (A6–A26)

as required. □

A.3 Proof of Lemma 2

First, recall that by definition zk = Mxk, and hence when applying the optimal control at time

k = T − 1,

ET−1[zT ] = ET−1[MxT ] (A52)

=ET−1[M(axT−1 + buT−1 + czT−1 + gT−1)]] (A53)

=M [axT−1 + b(−FT−1xT−1 (A54)

−GT−1zT−1 −HT−1ET−1[sT ]) + czT−1]

=M [(a− bFT−1)xT−1 + (c− bGT−1)zT−1 (A55)

− bGT−1ET−1[sT ]]

=(a− bFT−1)MxT−1 (A56)

+ (c− bGT−1)MzT−1 − bHT−1MET−1[sT ]

=(a− bFT−1)zT−1 + (c− bGT−1)MzT−1 (A57)

− bHT−1MET−1[sT ].

Then, applying the terminal condition sT = −SzT ,

ET−1[zT ] = (a− bFT−1)zT−1 + (c− bGT−1)MzT−1 (A58)

+ bHT−1MET−1[SzT ]

ET−1[zT ]− bHT−1MET−1[SzT ] = (a− bFT−1)zT−1 (A59)

+ (c− bGT−1)MzT−1.

Hence,

ET−1[zT ] =(I− SBHT−1M)−1[(A−BFT−1)I (A60)

+ (c− bGT−1)M ]zT−1 (A61)

=: ΓT−1zT−1. (A62)

Observing this, make the following inductive hypothesis:

Ek[zk+1] =Γkzk, (A63)

sk =Ψkzk, (A64)

where Ψk and Γk are L2([0, 1]) operators for each k ∈ {0, ..., T}. Applying the inductive hypotheses

to the expectation of zk+1,

Ek[zk+1] = [(a− bFk)I+ (c− bGk)M ]zk (A65)

− bHkMEk[sk+1]

= [(a− bFk)I+ (c− bGk)M ]zk (A66)

− bHkMEk[Ψk+1zk+1]

= (I+ bHkMΨk+1)
−1 (A67)

· [(a− bFk)I+ (c− bGk)M ]zk

=: Γkzk, (A68)
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which shows Eq. (A63). Applying the inductive hypotheses to the recursion for sk,

sk =− Szk + FkR(Gkzk +HkEk[sk+1]) (A69)

+ (a− bFk)Pk+1

·
[
(c− bHk)zk − bHkEk[sk+1]

]
+ (a− bFk)

∗Ek[sk+1]

=− Szk + FkR(Gkzk +HkEk[Ψk+1zk+1]) (A70)

+ (a− bFk)Pk+1

[
(c− bGk)zk

− bHkEk[Ψk+1zk+1]
]

+ (a− bFk)
∗Ek[Ψk+1zk+1]

=− Szk + FkR(Gkzk +HkΨk+1Ek[zk+1]) (A71)

+ (a− bFk)
∗Pk+1

[
(c− bGk)zk

− bΨk+1HkEk[zk+1]
]

+ (a− bFk)
∗Ψk+1Ek[zk+1]

=− Szk + FkR(Gkzk +HkΨk+1Γkzk) (A72)

+ (a− bFk)Pk+1

[
(c− bGk)zk

−BΨk+1HkΓkzk
]

+ (a− bFk)
∗Ψk+1Γkzk

=:Ψkzk. (A73)

Then, the optimal control uo
k is given in

uo
k =− Fkxk −Gkzk −HkEk[sk+1] (A74)

=− Fkxk −Gkzk −HkEk[Ψk+1zk+1] (A75)

=− Fkxk − (GkI+HkΨk+1Γk)zk. (A76)

□
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[14] László Lovász. Large Networks and Graph Limits. 2012.


	Introduction
	Preliminaries
	Notation
	Discrete time Q-noise processes

	Problem statement
	Discrete-time network system games
	Graphon field tracking games

	Solution to the Q-noise graphon field tracking game
	Solution to the stochastic control tracking problem
	Nash equilibrium Consistency Condition with full state information
	Numerical simulation
	Contracting graphon, 
	Erdos-Renyi: 

	
	Normalized graphon, 
	Erdos-Renyi: 

	 (Normalized), 

	Infinite horizon discounted cost
	Numerical simulation

	Future work
	Multivariate state notation
	Proof of Lemma 1
	Proof of Lemma 2

