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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2024
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Legal deposit – Bibliothèque et Archives nationales du Québec, 2024
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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
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Abstract : For sequences of networks embedded in the unit cube [0, 1]m, (weak) measure limits
of sequences of empirical measures of vertex densities (vertexon functions) exist, and the associated
(weak) measure limits of sequences of empirical measures of edge densities (graphexon functions) in
[0, 1]2m exist, regardless of the sparsity or density of the limit graphs. This paper presents an exten-
sion of Graphon Mean Field Game (GMFG) theory to the vertexon-graphexon MFG set-up (denoted
GXMFG). Specific second order dynamics are introduced for the inter-node influence mediated by the
singular part of a network graphexon measure; this is analyzed in the particular cases of a network limit
ring topology and a limit rectangular lattice topology. Existence and uniqueness results are presented
for the corresponding GXMFG equations.

Keywords : Mean field games, graphon, graphexon, Nash equilibria, decentralized control

Résumé : Pour les séquences de réseaux plongés dans le cube unité [0, 1]m, il existe des limites de
mesure (faibles) de séquences de mesures empiriques de densités de sommets (nomées fonctions de
vertexons), et les limites de mesure (faibles) associées de séquences de mesures empiriques de densités
d’arêtes (nomées fonctions de graphexons) dans [0, 1]2m existent, indépendamment de la rareté ou de
la densité des graphes limites. Cet article présente une extension de la théorie du jeu de champ moyen
du graphon (GMFG) à la configuration MFG vertexon-graphexon (notée GXMFG). Une dynamique
spécifique du second ordre est introduite pour l’influence inter-nœuds médiatisée par la partie singulière
d’une mesure de graphexon de réseau; ceci est analysé dans les cas particuliers d’une topologie en
anneau limite de réseau et d’une topologie en treillis rectangulaire limite. Les résultats d’existence et
d’unicité sont présentés pour les équations GXMFG correspondantes.

Mots clés : Jeux à champ moyen, graphon, graphexon, équilibres de Nash, contrôle décentralisé
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1 Introduction

1.1 GMFG and GXMFG theory

In [8], the basic existence and uniqueness results were established for the Graphon Mean Field Game

equations, and a full derivation of the fundamental results was provided, including the key ϵ-Nash

theory for GMFG systems which relates the infinite population equilibria on infinite networks to finite

population equilibria on finite networks [6, 7]. The GMFG equations are of great generality since

they permit the study, in the limit, of dense infinite networks of non-cooperative dynamical agents

concentrated in asymptotically infinite sub-populations on the asymptotically infinite set of nodes.

Moreover the classical MFG equations are retrieved when communication over the infinite network is

restricted to uniform weightings of direct influences of all agents on the network on every other agent

in the network.

In common with the GMFG scheme, the Graphexon MFG (GXMFG) system of equations [9]

is given by the linked equations on [0, T ] for (i) the Hamilton-Jacobi-Bellman (HJB) PDE for the

value function Vα for a generic agent’s stochastic control problem at node α, (ii) the Fokker-Planck-

Kolmogorov (FPK) equation for the McKean-Vlasov stochastic differential equation (SDE) for the

local mean field µα of the generic agent, and (iii) the specification of the best response feedback law.

The GMFG framework is formulated in terms of graphons and hence is restricted to asymptotically

dense networks, whereas the GXMFG construction is formulated within the graphexon setting and

applies to networks which are asymptotically a combination of sparse and dense graph limits.

The GXMFG formalism in this paper incorporates a second order differential interaction term in the

dynamics. This interaction structure is used to model the influence of the neighboring subpopulations

through the spatial variations of their behaviors. This extends the first order interaction introduced

in previous work [9].

1.2 Graphons, vertexons and graphexons

Graphon theory ([23]) provides a natural framework for the formulation of game theoretic problems

involving agents distributed over large networks when the nodes can be indexed by the reals in [0, 1]

furnished only with the topology of the node set [0, 1]. Graphons are then measurable bounded

functions on [0, 1]2 (interpreted as generalized adjacency matrices), and the topology on the space

of graphons is that of the cut metric (see [23, Chapter 8]). This is the graphon framework which is

commonly used in dynamics and games analysis on large networks (see e.g. [1–3, 8, 10, 12, 13, 18, 24–

26]).

An (embedded) vertexon in a connected compact set M in Rm is defined to be the vertex set of a

graph together with its empirical densities (and the associated measures) generated by an asymptoti-

cally dense partition hierarchy of M . It is shown in [4] that sequences of vertexons have subsequential

vertexon limit measures in M . Consequently, the differentiation of functions on vertexon limits with

open support is well defined, which is not the case for graphons where no metric topology is defined.

Moreover, along such sequences, the associated sequences of graphs have subsequential graph edge limit

measures, termed graphexons and, unlike the graphon case, non-empty graphexon limits are defined

for all non-empty graph sequences, including sparse graph sequences. Such large sparse graphs occur,

for instance, in biological neural networks and electrical power grids. [15–17, 19].

1.3 Organization

The paper is organized as follows. Section 2 provides a concise overview of the notion of vertexon-

graphexon measure limits. Section 3 introduces the second order mean field dynamics model for agent

interactions on certain singular graphexon network limits. The graphexon mean field game equations
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on the ring are presented in Section 4. The linear quadratic GXMFG problem on the ring is developed

in Section 5, and its extension to the infinite rectangular lattice is given in Section 6. Finally, the

corresponding existence and uniqueness results for the GXMFG equations are established together

with a numerical example in Section 7.

2 Vertexon-graphexon limits of embedded graph sequences

Let {Gn = (Vn, En), n ∈ N} be a sequence of (not necessarily increasing) finite non-empty simple

graphs, that is to say a sequence of vertex set – edge set pairs, where each finite non-empty graph Gn

has no more than one undirected edge (vi, vj) ∈ En ⊂ Vn×Vn between any two nodes vi, vj ∈ Vn and

no node vi has a self-loop (vi, vi). The set of all infinite sequences of vertex sets shall be denoted V.

It will be assumed that {Gn, n ∈ N} is an embedded graph sequence, that is to say Vn ⊂M,n ∈ N
where M := [0, 1]m ⊂ Rm, and that each Vn, termed a vertexon, is non-empty. Henceforth, {Gn =

(Vn, En), n ∈ N} denotes a sequence of graphs with nodes in M, and edges (taken as line segments)

lie in M, but, as a set, En ⊂ Vn × Vn.

Definition 2.1. Let P := {Pk, k ∈ N} denote a sequence of lattice equipartitions of M , where each

Pk, k ∈ N, consists of the set of disjoint voxel sets

Pk,i =
∏m

t=1
(̃
it − 1

2k+1
,
it

2k+1
] ⊂M,

i = (i1, .., it, .., im),

it ∈ [2k+1] = {1, ..., 2k+1}, t ∈ [m] := {1, ...,m},

(1)

where
∏m

t=1 denotes Cartesian product, (̃ it−1
2k+1 ,

it
2k+1 ] denotes (

it−1
2k+1 ,

it
2k+1 ] if it > 1 and denotes [ it−1

2k+1 ,
it

2k+1 ]

in case it = 1.

Definition 2.2 (Vertexon (Voxel Stepping) Functions ([4])). For fixed m ∈ N, and any P , a vertexon

function, Un,k,i(z), z ∈ Pk,i, of a vertexon Vn, n ∈ N, is defined by setting

Un,k,i(z) =
1

card(Vn)

card(Vn ∩ Pk,i)

µ({Pk,i)}
, (2)

z ∈ Pk,i, i = (i1, ..., im), it ∈ [2k+1], t ∈ [m],

where µ(A) denotes the Lebesgue measure of a Borel set A.

Evidently, Un,k,i(z), z ∈ Pk,i, equals the fraction of the vertices of Vn lying in Pk,i per unit volume

of [0, 1]m. Furthermore, the value of Uk,i(z) is independent of the value of z ∈ Pk,i and so Uk,i(·) is

constant over Pk,i for each i.

Theorem 2.3 (Vertexon (Stepping Function) Limits [4]). Let V [∞] := {Vn, n ∈ N} be a sequence of

vertexons. Then, any sequence {Un,k(z); z ∈ M,n, k ∈ N} of vertexon functions derived from V [∞]

possesses a subsequence {Unk,k,
(z); z ∈M} converging weakly in L1(M) to a limit vertexon (measure)

V∞(dz), z ∈M.

Definition 2.4 (Edge (Voxel Stepping) Functions [4])). For fixedm ∈ N, an edge voxel stepping function,,

En
k , i, j(z), z ∈ Pk,i×Pk,j ∈ P 2

k , Pk ∈ P, for the edge set En of a graph Gn = (Vn, En), with Card(Vn) ≥
2), Card(En) ≥ 1, is defined as

En
k,i,j(z) =

1

card(En)

1

µ(Pk,i)µ(Pk,j)

[∑
s,t
ews,t : vs ∈ Vn ∩ Pk,i, vt ∈ Vn ∩ Pk,j , es,t ∈ En

]
,

z ∈ P 2
k,ij := Pk,i × Pk,j , i = (i1, ., im), j = (j1, ., jm) ⊂M, is, jt ∈ [2k+1], s, t ∈ [m].

We shall refer to vertexon and edge function sequences and their limits as vertexon and graphexon

sequences, and on occasion, for simplicity, refer to the vertexon and graphexon sequence limits them-

selves as vertexons and graphexons.
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Definition 2.5. ([4]) A vertexon-graphexon measure pair V (dx) ∈ L1(M
1), G(dz) ∈ L1(M

2), is a pair

of positive measures on the m+ 2m dimensional unit cube M1 ×M2 = [0, 1]m × [0, 1]2m.

Theorem 2.6 (Vertexon-Graphexon Limits (after [4])). Let {Gn = (Vn, En), n ∈ N} be an em-

bedded graph sequence in M , together with the associated vertexon-graphexon function sequence

pairs {Un(x);En(z);n ∈ N}. Then, there exists a sub-sequence {Unp
(x);Enp

(z);np, p ∈ N; (x, z) ∈
M1 ×M2} which converges weakly to the limit measure pair V∞(dx),W∞(dz), x ∈M, z ∈M2.

In other words, vertexon-graphexon sequences of empirical measures converge weakly to limiting

vertexon-graphexon measure pairs as in Gnp
= (Unp

, Enp
) → (V∞,W∞) as np → ∞.

Example 2.7. (Immediate Neighbour Connections on [0, 1]) Let {Gn = (Vn, En), n ∈ N} be such that

Vn consists of n nodes uniformly distributed along the unit interval [0, 1] and En consists of the two

edges of each node to its nearest neighbours in Vn. In this case, the unique limit vertexon V∞(dz), z ∈
M, is the unit density corresponding to the absolutely continuous unit measure on [0, 1], while the limit

graphexon W∞ is the unit measure G(x, dy) = δx concentrated on the diagonal {(x, x)| x ∈ [0, 1]} in

the unit square [0, 1]2. This example may be specialized to the case where the end points indexed by

{0} and {1} are mutually identified.

Example 2.8. [4] (Erdös-Rényi Graphexon Limits in [0, 1]4) Consider the iterative random construc-

tion of Erdös-Rényi type with vertices placed at random in [0, 1]2 and with edges assigned with proba-

bility p, 0 < p < 1. Here the limiting edge measure for the sequence of graphexons possesses a constant

density function of value p, 0 ≤ p ≤ 1, on the 4-cube [0, 1]4.

Example 2.9. (Vertexon-Graphexon Ring Network) Consider a network of nodes uniformly distributed

in the infinite limit on a circle of radius 1
2 situated in [0, 1]2. This graph limit is given by a ver-

texon measure uniformly distributed on {(1/2+ (1/2) cos θ, 1/2+ (1/2) sin θ); θ ∈ [0, 2π)}, where 2π is

identified with 0.

Then it may be verified that the corresponding graphexon is given by the unit mass supported by

the circle, or ring, {(1/2 + 1/2 cos θ, 1/2 + 1/2 sin θ, 1/2 + 1/2 cos θ, 1/2 + 1/2 sin θ]; θ ∈ [0, 2π)} lying

in the four dimensional cube [0, 1]4; it is a one dimensional compact Riemannian manifold without

boundary where 2π is identified with 0.

Example 2.10. (Vertexon-Graphexon of the Infinite Rectangular Lattice) Consider the limit of a uni-

formly distributed (uniformly) rectangular (i.e. square) grid in [0, 1]2. This gives rise to the vertexon

given by the uniform unit density on [0, 1]2, which is evidently not singular.

Then the corresponding graphexon is given by the sum of two measures supported on two foliations

of {[0, 1]4} namely {1

2
δ(p− x)δ(q − y) +

1

2
δ(p− y)δ(q − x); 0 ≤ x, y, p, q ≤ 1

}
.

3 The ring topology: Second order interaction of immediate neigh-
bors

In this section we model homeomorphically the one dimensional ring graphexon of Example 3 with

the one dimensional line segment in the second case in Example 1 where the end points are identified

with each other, which here are indexed by {0} and {2π}.

In previous work [9], the graphon framework of [8] was extended to include the graphexon case

of singular measures. In this paper, we first consider the limit of finite populations of stochastic

dynamical systems interacting over finite networks with the ring graphexon limit. Specifically we

adopt the following stochastic differential equation (SDE) model for the dynamics of a generic agent
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at a node α in the ring limit network:

dxα(t) =f0[xα(t), uα(t), µα(t)]dt

+

∫
β

∫
z

g(α, β)f1(xα, uα, z)µβ(dz)dβdt

+

∫
β

f2(xα, uα, ∂β⟨µβ , ψ⟩)N(α, dβ)dt

+ σdwα(t) (3)

=: (f0 + f̃1 + f̃2)dt+ σdwα(t).

Here f1 describes the coupling with subpopulations at other locations of the dense subnetwork ex-

pressed via the absolutely continuous part of the graphexon measure given by the graphon function

g, while f2 describes the coupling with subpopulations at other locations of the sparse subnetwork

expressed via the singular part N of the graphexon measure.

In these GXMFG equations on the ring the Lebesgue decomposition of the system graphexon

measure {G(α, dβ), α, β ∈ [0, 2π)} consists of its absolutely continuous component {g(α, β), α, β ∈
[0, 2π)}, which is set to zero, and its singular component {N(α, dβ) = δα, α, β ∈ [0, 2π)}; this yields

G(α, dβ) = g(α, β)dβ + N(α, dβ), (4)

= δα α, β ∈ [0, 2π).

To motivate the second order interaction model in the continuum modeling formulation, consider

the finite ring topology and three vertices at

(k − 1)∆α, k∆α, (k + 1)∆α.

Let mk∆α denote the state average of the large number of agents residing at node k∆α. Define

Ξ =
1

(∆α)2
[m(k−1)∆α(t) +m(k+1)∆α(t)− 2mk∆α(t)], (5)

where (∆α)2 is selected as a scaling parameter so that in the limit Ξ has a well defined value. For

subpopulations distributed on a finite ring network, a representative agent at vertex l = k∆α has the

SDE

dxl(t) = f(l,Xl(t), ul(t), µl(t))dt+DΞdt+ σdWl(t), (6)

where Ξ indicates the influence of the neighboring subpopulations.

If mα(t) has sufficient smoothness with respect to α, we have

Ξ
∆α→0−→ ∂2αmα(t)

and say that the model has second order spatial differential interaction dynamics. The interested reader

is referred to [11] for similar ideas of deriving second order diffusion dynamics based on immediate

neighbor interactions in a line network. We consider the case with D being a scalar and moreover

D > 0. If the immediate neighbour average (in one component of mα) is higher than at vertex k∆α,

then the state at k∆α receives an upward lift along that direction. Such an interaction pattern implies

a smoothing effect across the sub-populations in that a subpopulation has a tendency to conform with

the neighboring sub-populations.

Employing the model of local influences in the sparse case outlined above and including them in

the general GXMFG equations (3) we arrive at the following system representation.
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At each vertex α ∈ [0, 2π), a local subpopulation of a large number of agents is situated. We now

introduce the following simple nonlinear model for a generic agent at vertex α:

dxα(t) =f(α, xα(t), uα(t), µα(t))dt+D∂2αmα(t)dt+ σdwα(t), (7)

where we have α ∈ [0, 2π), xα(t) ∈ Rn, uα(t) ∈ Rr, the Brownian motion wα(t) ∈ Rr1 , and

mα(t) =

∫
Rn

xµα(t, dx).

The function f is allowed to depend on α itself. In the above, µα(t) is the mean field generated

by the local subpopulation at vertex α, of which the constituent agents have i.i.d. initial states

and independent driving Brownian motions. The second order derivative term ∂2αmα(t), computed

componentwise in Rn, is used to model the impact of the immediate neighbors. We call {µα(t)|α ∈
[0, 2π)} a mean field ensemble, as a collection of local mean fields.

Now we further introduce the cost of a generic agent

Jα = E
∫ T

0

L(xα(t), uα(t), µα(t))dt, (8)

where for simplicity the terminal cost is taken as zero.

4 The graphexon mean field game equations on a ring

For notational simplicity, we present the graph limit model with scalar individual states and controls,

i.e., n = r = 1. The Brownian motion is also a scalar. Its extension to the vector case is evident.

We have the HJB equation

[HJB](α)

− ∂tVα(t, x) = inf
u

{
∂xVα(t, x)[f(α, x, u, µα(t)) +D∂2αmα(t)]

+ L(x, u, µα(t))
}
+
σ2

2
∂2xVα(t, x), (9)

Vα(T, x) = 0, (t, x) ∈ [0, T ]× R, α ∈ [0, 2π).

The closed-loop state process satisfies the FPK equation

[FPK](α)

∂tpα(t, x) = −∂x{[f(α, x, u0, µα(t)) +D∂2αmα(t)]pα(t, x)}+
σ2

2
∂2xpα(t, x), (10)

[BR](α) u0(t, xα|µG) =: φ(t, xα|µG).

We use pα(t, ·) to denote the probability density function of the distribution µα(t).

As in standard mean field games, the HJB equation above is derived by solving an optimal control

problem of the α agent regarding µα(·) and mα(·) as fixed. The solution of the HJB-FPK equation

system consists of the functions (Vα, pα) defined on [0, T ]×R, which are indexed by α ∈ T. The term

mα(t) is determined using pα(t, x).

5 The Linear Quadratic (LQ) model

On the ring we take T = [0, 2π) as the set of nodes, and the states xα to lie in Rn. Suppose all initial

states have the mean mα(0) and finite second moment at t = 0. We take

f(xα, uα, µα) = Axα +Buα +D0mα,
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where uα ∈ Rn1 , mα =
∫
Rn yµα(dy) is the mean of the mean field distribution µα at node α, and we

take

L(xα, uα, µα) = ||xα − Γ1mα − Γ2η||2Q + uTαRuα,

where R > 0 and Q ≥ 0, ∥z∥2Q := zTQz, and η is a constant vector. By the above running cost, each

agent tries to track a position based on the local population average and a reference position η ∈ Rn.

Now for the best response control problem of the α-agent, we consider the dynamics

dxα(t) =(Axα(t) +Buα(t) +D0mα(t) +D∂2αmα(t))dt+ σdwα(t). (11)

The cost of the representative agent is given by

Jα =E
∫ T

0

(||xα − Γ1mα − Γ2η||2Q + uTαRuα)dt

+ E∥xα(T )− Γ1fmα(T )− Γ2fη∥2Qf
. (12)

The relevant Riccati equation for this MFG is given by

0 = Ṗ + PA+ATP − PBR−1BTP +Q, (13)

where the terminal condition is P (T ) = Qf , and which has a unique solution P on [0, T ]. We further

introduce the linear ODE:

0 =∂tSα(t) + (AT − PBR−1BT )Sα(t)

+ P [D0mα(t) +D∂2αmα(t)]−Q[Γ1mα(t) + Γ2η], (14)

where Sα(T ) = −Qf (Γ1fmα(T ) + Γ2fη). Here Sα(·) is viewed as a function of t for the given α.

Lemma 5.1. Suppose mα(·) is a given function on [0, T ] in the optimal control problem (11)–(12).

Then the optimal control law is

ûα(t) = −R−1BT (P (t)xα(t) + Sα(t)), 0 ≤ t ≤ T.

5.1 The mean field game equation system

Under the best response control law ûα, the closed-loop state equation of the α-agent is

dxα(t) =[(A−BR−1BP )xα(t)−BR−1BTSα(t)

+D0mα(t) +D∂2αmα(t)]dt

+ σdwα(t). (15)

Now we average the states of a large number of agents at vertex α. By the independence of the state

processes such an averaging regenerates the same quantity mα(t). So taking expectations on both

sides of (15) yields the equation of evolution of the state mean:

∂tmα(t) =[A−BR−1BTP (t) +D0]mα(t) +D∂2αmα(t)−BR−1BTSα(t),

where the initial condition is mα(0). To determine the solution in the LQ case, it is sufficient to use

the equation of mα instead of the FPK equation.

We summarize the mean field game equations on T = [0, 2π) as follows

∂tSα(t) =− (AT − PBR−1BT )Sα(t)

+ (QΓ1 − PD0)mα(t)− PD∂2αmα(t) +QΓ2η, (16)
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∂tmα(t) =(A−BR−1BTP +D0)mα(t) +D∂2αmα(t)

−BR−1BTSα(t), (17)

where mα(0) is given and Sα(T ) = −Qf (Γ1fmα(T ) + Γ2fη). The equations above constitute a PDE

system with an initial condition and a terminal condition, as a generalization of the standard forward-

backward ODE system in mean field games with symmetric players; see [14]. For convenience of further

analysis, we may use the alternative notation S(t, α), m(t, α).

The solution of the mean field game in the current case reduces to finding two Rn-valued functions

S,m defined on Q = [0, T ]× T satisfying (16) and (17).

6 The Linear Quadratic (LQ) model: Infinite rectangular network
case

Recall from Section II that the vertexon limit of a uniformly distributed rectangular (i.e. square) grid

in [0, 1]2 is a uniform unit density on [0, 1]2, which is evidently not singular, while the corresponding

graphexon is given by the sum of two singular measures supported on two foliations of [0, 1]4 namely{1

2
δ(p− x)δ(q − y) +

1

2
δ(p− y)δ(q − x); 0 ≤ x, y, p, q ≤ 1

}
.

Since no differentiation can occur except in the two directions parallel to the edges of the unit

square [0, 1]2, the limit of second order interactions in this case is given by the Laplacian operator

∆mα,β(t) = [∂2α + ∂2β ]mα,β(t).

And the resulting model for the dynamics of a generic agent at vertex α, β is

dxα,β(t) =f0(α, β, xα,β(t), uα,β(t), µα,β(t))dt

+D[∂2α + ∂2β ]mα,β(t))dt+ σdwα,β(t), (18)

Since the Laplacian here has a positive definite symbol, the existence and uniqueness analysis in

the subsequent section for the single network variable case applies to this more complex network case

when the following conditions are imposed: (i) the dynamical state dimension is kept to one, and (ii)

the dynamical periodic boundary conditions used for the ring topology are employed in the infinite
lattice case by making it into a two dimensional torus by identifying opposite edges in the standard

way.

Furthermore, it can be seen that this formulation generalizes yet further to infinite rectangular

networks of higher dimension.

7 Existence and uniqueness analysis

To analyze the PDE system (16)–(17). We consider the scalar case, i.e. n = 1. Accordingly, the state

process in (11) is a scalar. We make the following assumption.

Assumption 1. For the model (11), we have D > 0.

The condition D > 0 is important in existence analysis of the mean field game since (17) becomes

a parabolic equation (with spatial variable α) subject to an initial condition.

For a suitably general analysis yielding the existence of classical solutions we introduce certain

Hölder spaces. We fix δ ∈ (0, 1) to be used in the Hölder norm. For two points x and y on the ring T
parameterized by [0, 2π), we define the distance

dr(x, y) = min{2π − |x− y|, |x− y|}. (19)
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Next, on the set Q = [0, T ]×T, we define the parabolic distance between two points (t, x) and (s, y) as

d((t, x), (s, y)) = dr(x, y) + |t− s|1/2.

Based on the distance d we define the Hölder semi-norm for a function v(t, α) defined on Q:

[v]δ/2,δ;Q = sup
zi∈Q,z1 ̸=z2

|v(z1)− v(z2)|
dδ(z1, z2)

.

Denote |v|0;Q = supz∈Q |v(z)|. We further define the Hölder norms

|v|δ/2,δ;Q =|v|0;Q + [v]δ/2,δ;Q,

|v|1+δ/2,2+δ;Q =|v|0;Q + |∂tv|0;Q + |∂αv|0;Q
+ |∂2αv|0;Q + [v]1+δ/2,2+δ;Q,

where [v]1+δ/2,2+δ;Q = [∂tv]δ/2,δ;Q + [∂2αv]δ/2,δ;Q. We use Cδ/2,δ(Q) (resp., C1+δ/2,2+δ(Q)) to denote

the space consisting of functions with |v|δ/2,δ;Q < ∞ (resp., |v|1+δ/2,2+δ;Q < ∞). For a function

defined on the ring T = [0, 2π), we similarly define the Hölder norm |v|2+δ,T using the distance dr; we

may visualize v as a periodic function defined on R. In our further analysis, we will drop Q from the

subscript in the norm without causing confusion.

7.1 The fixed point method

We give some analytical preparation. Consider the following equation [21, Theorem 5.1] [22, Theorem

5.14], [5]

∂tq(t, α) = D∂2αq(t, α) + F (t, α)q(t, α) + g(t, α), (20)

where D > 0, q(0, α) = φ(α), φ ∈ C2+δ(T), g ∈ Cδ/2,δ(Q), and

|F |δ/2,δ ≤ C1.

Remark 7.1. We regard φ as a periodic function with one period [0, 2π], twice differentiable with a

Hölder continuous second derivative.

The following lemma is a corollary to Theorem 5.1 in [21].

Lemma 7.2. Suppose Q = [0, T ]× T. Then there exists a unique solution q ∈ C1,2(Q) to (20) and

|q|1+δ/2,2+δ ≤ C0(|g|δ/2,δ + |φ|2+δ), (21)

where the constant C0 only depends on (D,C1, T, δ).

We proceed to the existence analysis of (16)–(17) by formulating the following fixed point problem.

Given a general function Ŝ ∈ Cδ/2,δ(Q) in place of S in (17), by Lemma 7.2, we obtain a unique

solution m̂ and define the following mapping

m̂ = Λ1(Ŝ),

which is well defined from Cδ/2,δ(Q) to C1+δ/2,2+δ(Q).

Next with any m̌ ∈ C1+δ/2,2+δ(Q) in place of m in (16), we determine a unique solution Š and

define the mapping

Š = Λ2(m̌),

which will subsequently be shown to be from C1+δ/2,2+δ(Q) to Cδ/2,δ(Q).

Thus, we have the following fixed point equation

S = Λ2Λ1(S), (22)

which determines a solution of the PDE system (16)–(17).



Les Cahiers du GERAD G–2024–69 9

Consider m = Λ1(S) and m
′ = Λ1(S

′), with identical initial condition data mα(0) = m′
α(0), where

S and S′ are any functions from Cδ/2,δ(Q). By Lemma 7.2, we have

|m−m′|1+δ/2,2+δ ≤ (C0B
2/R)|S − S′|δ/2,δ. (23)

Below we show that Λ2 has its image in Cδ/2,δ(Q). Let Φ(t, τ) be the fundamental solution of

the ordinary differential equation ż = −(AT − PBR−1BT )z. We take an arbitrary function m ∈
C1+δ/2,2+δ(Q) in (16) and have

Sα(t) =Φ(t, 0)Sα(0) +

∫ t

0

Φ(t, τ)[(QΓ1 − PD0)mα(τ)

− PD∂2αmα(τ) +QΓ2η]dτ, (24)

where Sα(0) is to be determined. By the terminal condition in (16), we determine

Sα(0) =−
∫ T

0

Φ(0, τ)[(QΓ1 − PD0)mα(τ)− PD∂2αmα(τ) +QΓ2η]dτ

− Φ(0, T )Qf [Γ1fmα(T ) + Γ2fη].

Substituting the above Sα(0) into (24), we have

Sα(t) =Λ2(m)(t)

=−
∫ T

t

Φ(t, τ)[(QΓ1 − PD0)mα(τ)− PD∂2αmα(τ)

+QΓ2η]dτ − Φ(t, T )Qf [Γ1fmα(T ) + Γ2fη].

Now we calculate the Hölder norm of S. We have

|Sα(t)− Sα′(t)|

≤
∫ T

t

|Φ(t, τ)| · |QΓ1 − PD0| · |mα(τ)−mα′(τ)|dτ

+

∫ T

t

|Φ(t, τ)| · |PD| · |∂2αmα(τ)− ∂2αmα′(τ)|dτ

+ |Φ(t, T )QfΓ1f | · |mα(T )−mα′(T )|. (25)

Denote |h|0 = |h|0;[0,T ] = supt∈[0,T ] |h(t)|. Hence by (25), we have

sup
α̸=α′,t∈[0,T ]

d−δ
r (α, α′)|Sα(t)− Sα′(t)|

≤ T sup
t,τ∈[0,T ]

|Φ(t, τ)| · (|QΓ1 − PD0|0 + |PD|0)

× ( sup
τ,α,α′

d−δ
r (α, α′)|mα(τ)−mα′(τ)|+ [m]1+δ/2,2+δ)

+ sup
t

|Φ(t, T )QfΓ1f | · sup
α,α′

d−δ
r (α, α′)|mα(T )−mα′(T )|

≤ {T sup
t,τ

|Φ(t, τ)| · (|QΓ1 − PD0|0 + |PD|0)

+ sup
t

|Φ(t, T )QfΓ1f |}

× (π1−δ|∂αm|0;Q + [m]1+δ/2,2+δ). (26)
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Next for 0 ≤ t < t′ ≤ T , we have

Sα(t)− Sα(t
′)

=

∫ T

t

Φ(t, τ)[(QΓ1 − PD0)mα(τ)− PD∂2αmα(τ)]dτ

−
∫ T

t′
Φ(t′, τ)[(QΓ1 − PD0)mα(τ)− PD∂2αmα(τ)]dτ

+ [Φ(t′, T )− Φ(t, T )]Qf [Γ1fmα(T ) + Γ2fη]

=

∫ t′

t

Φ(t, τ)[(QΓ1 − PD0)mα(τ)− PD∂2αmα(τ)]dτ

+

∫ T

t′
[Φ(t, τ)− Φ(t′, τ)][(QΓ1 − PD0)mα(τ)− PD∂2αmα(τ)]dτ

+ [Φ(t′, T )− Φ(t, T )]Qf [Γ1fmα(T ) + Γ2fη].

We use the differentiability of Φ to estimate

|t− t′|−δ/2 · |Sα(t)− Sα(t
′)|

≤ [T 1−δ/2 sup
t,τ

|Φ(t, τ)|+ T 2−δ/2 sup
t,τ

|∂tΦ(t, τ)|]

× (|QΓ1 − PD0|0 + |PD|0)(|m|0;Q + |∂2αm|0;Q)

+ T 1−δ/2 sup
t

|∂tΦ(t, T )| ·Qf · (|Γ1f | · |m|0;Q + |Γ2fη|). (27)

Now we conclude S = Λ2(m) ∈ Cδ/2,δ(Q).

Denote the constant

K0 =π1−δ(T + T 1−δ/2 + T 2−δ/2) sup
t,τ≤T

[|Φ(t, τ)|+ |∂tΦ(t, τ)|]

× (|QΓ1 − PD0|0 + |PD|0 +Qf |Γ1f |)
+ π1−δ sup

t,τ≤T
|Φ(t, τ)| · |QfΓ1f |. (28)

Now consider z1 = (t1, α1) and z2 = (t2, α2). We have

|S(z1)− S(z2)|
dδ(z1, z2)

≤|S(z1)− S(t1, α2) + S(t1, α2)− S(z2)|
dδ(z1, z2)

≤d−δ
r (α1, α2)|S(z1)− S(t1, α2)|
+ |t1 − t2|−δ/2|S(t1, α2)− S(z2)|,

which combined with estimates (26) and (27) along the direction of t and α, respectively, implies that

|S|δ/2,δ ≤K0|m|1+δ/2,2+δ + T 1−δ/2 sup
t

|∂tΦ(t, T )| ·Qf · |Γ2fη|

+ (T |QΓ2η|+ |QfΓ2fη|) sup
t,τ

|Φ(t, τ)| (29)

Theorem 7.3. The PDE system (16)–(17) for (S,m) has a unique solution if C0K0B
2/R < 1, where

C0 is given in Lemma 7.2.

Proof. For two arbitrary functions m,m′ in C1+δ/2,2+δ(Q), define S = Λ2(m), S′ = Λ2(m
′). Then we

follow the method used in establishing (29) to similarly obtain

|S − S′|δ/2,δ = |Λ2(m)− Λ2(m
′)|δ/2,δ

≤ K0|m−m′|1+δ/2,2+δ. (30)
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So by (30), we have

|Λ2Λ1(S)− Λ2Λ(S
′)|δ/2,δ ≤ K0|Λ1(S)− Λ1(S

′)|1+δ/2,2+δ

≤ (C0K0B
2/R)|S − S′|δ/2,δ,

where the last line follows from (23). The proof follows from a fixed point theorem on the Banach

space Cδ/2,δ(Q).

Remark 7.4. The contraction condition is satisfied when T is sufficiently small and the system has

weak coupling, i.e., |Γ1|+ |Γ1f |+ |D0|+ |D| is sufficiently small.

7.2 Numerical example

Example 7.5. In the LQ model we take A = 0.5, B = 1, D0 = 0.2, D = 0.5, Q = 2, R = 1, Γ1 = 0.8,

Γ2 = η = 0, Qf = Γ1f = Γ2f = 0, T = 2, and mα(0) = α(1− α), 0 ≤ α ≤ 1.

The system (16)–(17) is solved by a difference scheme, with stepsize ∆t = 0.0025 and ∆α = 0.05.

For convenience of numerical computation, the parameterization of the ring is normalized and denoted

as [0, 1) (instead of [0, 2π)). The numerical solution of S,m is displayed in Fig. 1.

Figure 1: Sα(t) and mα(t) under the second order diffusive interactions; computed by iterations with t ∈ [0, 2] and
α ∈ [0, 1).
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8 Conclusion

Future work will address general existence and uniqueness analyses for nonlinear GXMFG systems on

a variety of graphexon limits together with their corresponding ϵ-Nash properties.
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