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Abstract : For sequences of networks embedded in the unit cube [0,1]™, (weak) measure limits
of sequences of empirical measures of vertex densities (vertexon functions) exist, and the associated
(weak) measure limits of sequences of empirical measures of edge densities (graphexon functions) in
[0,1]?™ exist, regardless of the sparsity or density of the limit graphs. This paper presents an exten-
sion of Graphon Mean Field Game (GMFG) theory to the vertexon-graphexon MFG set-up (denoted
GXMFG). Specific second order dynamics are introduced for the inter-node influence mediated by the
singular part of a network graphexon measure; this is analyzed in the particular cases of a network limit
ring topology and a limit rectangular lattice topology. Existence and uniqueness results are presented
for the corresponding GXMFG equations.

Keywords : Mean field games, graphon, graphexon, Nash equilibria, decentralized control

Résumé : Pour les séquences de réseaux plongés dans le cube unité [0,1]™, il existe des limites de
mesure (faibles) de séquences de mesures empiriques de densités de sommets (nomées fonctions de
vertexons), et les limites de mesure (faibles) associées de séquences de mesures empiriques de densités
d’arétes (nomées fonctions de graphexons) dans [0, 1]?™ existent, indépendamment de la rareté ou de
la densité des graphes limites. Cet article présente une extension de la théorie du jeu de champ moyen
du graphon (GMFG) a la configuration MFG vertexon-graphexon (notée GXMFG). Une dynamique
spécifique du second ordre est introduite pour 'influence inter-nceuds médiatisée par la partie singuliere
d’une mesure de graphexon de réseau; ceci est analysé dans les cas particuliers d’une topologie en
anneau limite de réseau et d’une topologie en treillis rectangulaire limite. Les résultats d’existence et
d’unicité sont présentés pour les équations GXMFG correspondantes.

Mots clés: Jeux a champ moyen, graphon, graphexon, équilibres de Nash, contréle décentralisé
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1 Introduction

1.1 GMFG and GXMFG theory

In [8], the basic existence and uniqueness results were established for the Graphon Mean Field Game
equations, and a full derivation of the fundamental results was provided, including the key e-Nash
theory for GMFG systems which relates the infinite population equilibria on infinite networks to finite
population equilibria on finite networks [6, 7]. The GMFG equations are of great generality since
they permit the study, in the limit, of dense infinite networks of non-cooperative dynamical agents
concentrated in asymptotically infinite sub-populations on the asymptotically infinite set of nodes.
Moreover the classical MFG equations are retrieved when communication over the infinite network is
restricted to uniform weightings of direct influences of all agents on the network on every other agent
in the network.

In common with the GMFG scheme, the Graphexon MFG (GXMFG) system of equations [9]
is given by the linked equations on [0,7] for (i) the Hamilton-Jacobi-Bellman (HJB) PDE for the
value function V,, for a generic agent’s stochastic control problem at node «, (ii) the Fokker-Planck-
Kolmogorov (FPK) equation for the McKean-Vlasov stochastic differential equation (SDE) for the
local mean field u, of the generic agent, and (iii) the specification of the best response feedback law.

The GMFG framework is formulated in terms of graphons and hence is restricted to asymptotically
dense networks, whereas the GXMFG construction is formulated within the graphexon setting and
applies to networks which are asymptotically a combination of sparse and dense graph limits.

The GXMFG formalism in this paper incorporates a second order differential interaction term in the
dynamics. This interaction structure is used to model the influence of the neighboring subpopulations
through the spatial variations of their behaviors. This extends the first order interaction introduced
in previous work [9].

1.2 Graphons, vertexons and graphexons

Graphon theory ([23]) provides a natural framework for the formulation of game theoretic problems
involving agents distributed over large networks when the nodes can be indexed by the reals in [0, 1]
furnished only with the topology of the node set [0,1]. Graphons are then measurable bounded
functions on [0,1]? (interpreted as generalized adjacency matrices), and the topology on the space
of graphons is that of the cut metric (see [23, Chapter 8]). This is the graphon framework which is
commonly used in dynamics and games analysis on large networks (see e.g. [1-3, 8, 10, 12, 13, 18, 24—
26]).

An (embedded) vertexon in a connected compact set M in R™ is defined to be the vertex set of a
graph together with its empirical densities (and the associated measures) generated by an asymptoti-
cally dense partition hierarchy of M. It is shown in [4] that sequences of vertexons have subsequential
vertexon limit measures in M. Consequently, the differentiation of functions on vertexon limits with
open support is well defined, which is not the case for graphons where no metric topology is defined.
Moreover, along such sequences, the associated sequences of graphs have subsequential graph edge limit
measures, termed graphexons and, unlike the graphon case, non-empty graphexon limits are defined
for all non-empty graph sequences, including sparse graph sequences. Such large sparse graphs occur,
for instance, in biological neural networks and electrical power grids. [15-17, 19].

1.3 Organization

The paper is organized as follows. Section 2 provides a concise overview of the notion of vertexon-
graphexon measure limits. Section 3 introduces the second order mean field dynamics model for agent
interactions on certain singular graphexon network limits. The graphexon mean field game equations
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on the ring are presented in Section 4. The linear quadratic GXMFG problem on the ring is developed
in Section 5, and its extension to the infinite rectangular lattice is given in Section 6. Finally, the
corresponding existence and uniqueness results for the GXMFG equations are established together
with a numerical example in Section 7.

2 Vertexon-graphexon limits of embedded graph sequences

Let {Gn, = (Vi, Ey), n € N} be a sequence of (not necessarily increasing) finite non-empty simple
graphs, that is to say a sequence of vertex set — edge set pairs, where each finite non-empty graph G,
has no more than one undirected edge (v;,v;) € E, C V,, xV,, between any two nodes v;,v; € V,, and
no node v; has a self-loop (v, v;). The set of all infinite sequences of vertex sets shall be denoted V.

It will be assumed that {G,,,n € IN} is an embedded graph sequence, that is to say V,, C M,n € IN
where M := [0,1]™ C R™, and that each V,,, termed a vertezon, is non-empty. Henceforth, {G, =
(Va, En), n € IN} denotes a sequence of graphs with nodes in M, and edges (taken as line segments)
lie in M, but, as a set, F,, C V,, x V.

Definition 2.1. Let P := {Py, k € IN} denote a sequence of lattice equipartitions of M, where each
Py, k € IN, consists of the set of disjoint vozel sets

m ~l't -1 it
Pri = Ht:l 2k+1 7 9k+1
1’: (ilv"aitv"ui’m)a (1)

ip € M = {1, .., 28t e [m] = {1, ..., m},

JcM,

where [[;, denotes Cartesian product, (%=1, 5it<] denotes (;tk—ﬂ, g1 if iy > 1 and denotes [S=1, 4]

n case iy = 1.
Definition 2.2 (Vertexon (Voxel Stepping) Functions ([4])). For fixed m € IN, and any P, a vertezon
function, Up 1 ;(2), 2 € Py, of a vertexon V,,,n € IN, is defined by setting

1 card(V,, N Py;)
card(Vn)  p({Pri)}
2€ P, 0= (i1, s im), i € 2", ¢ € [m)],

Un,k,i(2) =

(2)

where p(A) denotes the Lebesgue measure of a Borel set A.

Evidently, U, xi(2), 2z € Py, equals the fraction of the vertices of V,, lying in Py ; per unit volume
of [0,1]™. Furthermore, the value of Uy ;(2) is independent of the value of z € Py ; and so Uy (+) is
constant over Py ; for each i.

Theorem 2.3 (Vertexon (Stepping Function) Limits [4]). Let VIl := {V,,,n € IN} be a sequence of
vertexons. Then, any sequence {U, 1(2);2 € M,n,k € N} of vertexon functions derived from V[
possesses a subsequence {Up, , (2); 2z € M} converging weakly in L; (M) to a limit vertezon (measure)
Voo(dz), z € M.

Definition 2.4 (Edge (Voxel Stepping) Functions [4])). For fixed m € IN, an edge vozel stepping function,,
E},i,j(2),2 € Pyix Py j; € Pk27 Py, € P, for the edge set E,, of a graph G,, = (V,,, E,,), with Card(V,,) >
2), Card(E,) > 1, is defined as

1 1
El. (2) =
623 2) = o d () P

z e szﬁl = Pk,g' X Pk,l'vl.: (ila'aim)7z: (jlw,jm.) C M, Z‘svjt € [2k+1]3 Svt € [m]

) [Zs,te;‘jt 10y € Vo N Py, v € Vo NPy jiesy € E™,

We shall refer to vertexon and edge function sequences and their limits as vertezon and graphezon
sequences, and on occasion, for simplicity, refer to the vertexon and graphexon sequence limits them-
selves as vertexons and graphexons.
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Definition 2.5. ([4]) A vertexon-graphexon measure pair V(dx) € Li(M*'),G(dz) € Li(M?), is a pair
of positive measures on the m + 2m dimensional unit cube M* x M? = [0,1]™ x [0, 1]>™.

Theorem 2.6 (Vertexon-Graphexon Limits (after [4])). Let {G,, = (V,,E,), n € N} be an em-
bedded graph sequence in M, together with the associated vertexon-graphexon function sequence
pairs {Uy,(x); E,(z);n € IN}. Then, there exists a sub-sequence {Up, (x); Ep,(2);np,p € N; (2, 2) €
M x M?} which converges weakly to the limit measure pair Vo (dx), Woo(dz), © € M, 2 € M>.

In other words, vertexon-graphexon sequences of empirical measures converge weakly to limiting
vertexon-graphexon measure pairs as in Gy, = (Un,, En,) — (Voo, W) as n, — 00.

Example 2.7. (Immediate Neighbour Connections on [0,1]) Let {G,, = (V,,, Ey,), n € IN} be such that
V.. consists of n nodes uniformly distributed along the unit interval [0, 1] and E,, consists of the two
edges of each node to its nearest neighbours in V,,. In this case, the unique limit vertexon V,,(dz), z €
M, is the unit density corresponding to the absolutely continuous unit measure on [0, 1], while the limit
graphexon Wy, is the unit measure G(z,dy) = 0, concentrated on the diagonal {(z,z)| z € [0,1]} in
the unit square [0, 1]2. This example may be specialized to the case where the end points indexed by
{0} and {1} are mutually identified.

Example 2.8. [4] (Erdos-Rényi Graphexon Limits in [0,1]*) Consider the iterative random construc-
tion of Erdos-Rényi type with vertices placed at random in [0, 1] and with edges assigned with proba-
bility p,0 < p < 1. Here the limiting edge measure for the sequence of graphexons possesses a constant
density function of value p, 0 < p < 1, on the 4-cube [0, 1]%.

Example 2.9. (Vertexon-Graphexon Ring Network) Consider a network of nodes uniformly distributed
in the infinite limit on a circle of radius % situated in [0,1]%. This graph limit is given by a ver-
texon measure uniformly distributed on {(1/2+ (1/2)cos#,1/2+ (1/2)sin#);6 € [0,2m)}, where 27 is
identified with 0.

Then it may be verified that the corresponding graphexon is given by the unit mass supported by
the circle, or ring, {(1/2+1/2c0s0,1/2 +1/2sin6,1/2+ 1/2cos0,1/2 4+ 1/2sin6];0 € [0,27)} lying
in the four dimensional cube [0,1]%; it is a one dimensional compact Riemannian manifold without
boundary where 27 is identified with O.

Example 2.10. (Vertexon-Graphexon of the Infinite Rectangular Lattice) Consider the limit of a uni-
formly distributed (uniformly) rectangular (i.e. square) grid in [0, 1]2. This gives rise to the vertexon
given by the uniform unit density on [0, 1]?, which is evidently not singular.

Then the corresponding graphexon is given by the sum of two measures supported on two foliations
of {[0,1]*} namely

1

{55(17 —x)d(g—y) + %5(17 —y)d(g—=x); 0 <z,y,p,q< 1}.

3 The ring topology: Second order interaction of immediate neigh-
bors

In this section we model homeomorphically the one dimensional ring graphexon of Example 3 with
the one dimensional line segment in the second case in Example 1 where the end points are identified
with each other, which here are indexed by {0} and {27}.

In previous work [9], the graphon framework of [8] was extended to include the graphexon case
of singular measures. In this paper, we first consider the limit of finite populations of stochastic
dynamical systems interacting over finite networks with the ring graphexon limit. Specifically we
adopt the following stochastic differential equation (SDE) model for the dynamics of a generic agent
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at a node « in the ring limit network:
dzo(t) =folra(t), ua(t), pa(t)]dt
+f / B) 1 (s 2) 115 (d=)d

T / fo(Tar e Dp (5, )N (v, dB)
B

+ odw, (t) (3)
=: (fo+ f1 + f2)dt + odwa(t).

Here f; describes the coupling with subpopulations at other locations of the dense subnetwork ex-
pressed via the absolutely continuous part of the graphexon measure given by the graphon function
g, while fy describes the coupling with subpopulations at other locations of the sparse subnetwork
expressed via the singular part N of the graphexon measure.

In these GXMFG equations on the ring the Lebesgue decomposition of the system graphexon
measure {G(a,df),a, 8 € [0,27)} consists of its absolutely continuous component {g(c, ), a, 5 €
[0,27)}, which is set to zero, and its singular component {N(«,df) = d,, @, 8 € [0, 27)}; this yields

G(a,dB) = g(a, B)dB + N(a,dp), (4)
= 0q a, B €10,2m).

To motivate the second order interaction model in the continuum modeling formulation, consider
the finite ring topology and three vertices at

(k—1)Aa, kAa, (k+1)Aa.

Let mgaqo denote the state average of the large number of agents residing at node kA«. Define

g = @[m(kqma(t) +Mr1)aa(t) = 2mraa(t)], (5)

where (Aa)? is selected as a scaling parameter so that in the limit = has a well defined value. For
subpopulations distributed on a finite ring network, a representative agent at vertex | = kA« has the
SDE

dzi(t) = (1, Xy(t), w(t), m(t))dt + DEdt + odWi(2), (6)

where = indicates the influence of the neighboring subpopulations.

If mq (t) has sufficient smoothness with respect to «, we have
=230 52m, (t)

and say that the model has second order spatial differential interaction dynamics. The interested reader
is referred to [11] for similar ideas of deriving second order diffusion dynamics based on immediate
neighbor interactions in a line network. We consider the case with D being a scalar and moreover
D > 0. If the immediate neighbour average (in one component of my) is higher than at vertex kAa,
then the state at kA« receives an upward lift along that direction. Such an interaction pattern implies
a smoothing effect across the sub-populations in that a subpopulation has a tendency to conform with
the neighboring sub-populations.

Employing the model of local influences in the sparse case outlined above and including them in
the general GXMFG equations (3) we arrive at the following system representation.
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At each vertex « € [0,27), a local subpopulation of a large number of agents is situated. We now
introduce the following simple nonlinear model for a generic agent at vertex a:

dzo(t) =f(a, 2a(t), ua(t), pa(t))dt + DOZmy(t)dt + odw,(t), (7)

where we have a € [0,27), z4(t) € R", us(t) € R", the Brownian motion w,(t) € R™, and

ma(t) = /n Tl (t, dx).

The function f is allowed to depend on « itself. In the above, p,(t) is the mean field generated
by the local subpopulation at vertex «, of which the constituent agents have i.i.d. initial states
and independent driving Brownian motions. The second order derivative term 92m, (), computed
componentwise in R™, is used to model the impact of the immediate neighbors. We call {p,(t)|a €
[0,27)} a mean field ensemble, as a collection of local mean fields.

Now we further introduce the cost of a generic agent

Jo=E /0 L(wa(t), ta (), pte(t))dt, (8)

where for simplicity the terminal cost is taken as zero.

4 The graphexon mean field game equations on a ring

For notational simplicity, we present the graph limit model with scalar individual states and controls,
i.e., n =r = 1. The Brownian motion is also a scalar. Its extension to the vector case is evident.

We have the HJB equation
[HIB](a)
— OVa(t,@) = inf {0, Va(t,) [ (2, . (1)) + DO2ma(D)

2
+ L(@,us 1a(®) } + T O2Valt ), (9)
Vo(T,2) =0, (t,z) €[0,T] xR, «€][0,2n).
The closed-loop state process satisfies the FPK equation

[FPK]()
o2
Opa(t, @) = =0x{[f (0, 2, 0", pa (1)) + DOgma(t)]pa(t )} + 5 0palt, @), (10)

BR(0) w(t,zalic) = o(t, zaliic).
We use pq(t,-) to denote the probability density function of the distribution pg (t).

As in standard mean field games, the HJB equation above is derived by solving an optimal control
problem of the a agent regarding i, (-) and mq(-) as fixed. The solution of the HIB-FPK equation
system consists of the functions (V,, ps) defined on [0,7T] x R, which are indexed by « € T. The term
me(t) is determined using p, (¢, ).

5 The Linear Quadratic (LQ) model

On the ring we take T = [0, 27) as the set of nodes, and the states x,, to lie in R™. Suppose all initial
states have the mean m,(0) and finite second moment at ¢ = 0. We take

f(famuow ,u'a) = Azq + Bug + Dym,
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where uq € R™, mq = [;. Ytta(dy) is the mean of the mean field distribution p, at node «, and we
take

L(xa,ua,ua) = ||x06 - Flma - FQT]H?Q + U’ZRUCH

where R > 0 and Q > 0, ||zHé = 27Qz, and 7 is a constant vector. By the above running cost, each
agent tries to track a position based on the local population average and a reference position n € R™.

Now for the best response control problem of the a-agent, we consider the dynamics
dzo(t) =(Axy(t) + Bue(t) + Doma(t) + DOZmy (t))dt + odw (t). (11)

The cost of the representative agent is given by

T
Ja :]E/ (|lza — I'ima — FQT’HQQ + ul Rug,)dt
0

+E|za(T) = Liyma(T) = Dopnlly, - (12)

The relevant Riccati equation for this MFG is given by
0=P+PA+A"P—-PBR'BTP+Q, (13)

where the terminal condition is P(T') = @, and which has a unique solution P on [0,7]. We further
introduce the linear ODE:

0 =0;54(t) + (AT — PBR™'B™)S, (1)
+ P[DOma(t) + D@ima(t)] - Q[Flma(t) + F277], (14)

where So(T) = —Q (I yma(T) + Ioyn). Here S,(-) is viewed as a function of ¢ for the given c.

Lemma 5.1. Suppose m,(-) is a given function on [0,7] in the optimal control problem (11)—(12).
Then the optimal control law is

o (t) = —R7'BT(P(t)zo(t) + Sa(t)), 0<t<T.

5.1 The mean field game equation system

Under the best response control law 1., the closed-loop state equation of the a-agent is

dzo(t) =[(A — BR™'BP)z,(t) — BR™'BTS,(t)
+ Dome(t) + DO2mg (t)]dt
+ odwq(t). (15)
Now we average the states of a large number of agents at vertex a. By the independence of the state

processes such an averaging regenerates the same quantity mg(t). So taking expectations on both
sides of (15) yields the equation of evolution of the state mean:

Oma(t) =[A — BR™'BT P(t) + DoJma(t) + DO2m(t) — BR™*BT S, (t),

where the initial condition is m(0). To determine the solution in the LQ case, it is sufficient to use
the equation of m,, instead of the FPK equation.

We summarize the mean field game equations on T = [0, 27) as follows

0:S4(t) = — (AT — PBR™'BT)S,(t)
+(QI — PDo)mq(t) — PDO2ma(t) + QLo (16)
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O4my(t) =(A — BR™'BT P + Dg)m (t) + DO2m (1)
— BR'BTS,(t), (17)
where mq(0) is given and So(T) = —Qs(I1yma(T) + I25n). The equations above constitute a PDE
system with an initial condition and a terminal condition, as a generalization of the standard forward-

backward ODE system in mean field games with symmetric players; see [14]. For convenience of further
analysis, we may use the alternative notation S(t, o), m(t, «).

The solution of the mean field game in the current case reduces to finding two R™-valued functions
S, m defined on Q = [0,T] x T satisfying (16) and (17).

6 The Linear Quadratic (LQ) model: Infinite rectangular network
case

Recall from Section II that the vertexon limit of a uniformly distributed rectangular (i.e. square) grid
in [0,1])? is a uniform unit density on [0, 1]?, which is evidently not singular, while the corresponding
graphexon is given by the sum of two singular measures supported on two foliations of [0, 1]* namely

1 1

{55(19 —2)0(q = y) + 50(p ~y)d(g — 2); 0 < 2,y,p,q < 1}.
Since no differentiation can occur except in the two directions parallel to the edges of the unit

square [0,1]2, the limit of second order interactions in this case is given by the Laplacian operator

Amap(t) = 02 + 0flma,s(t).

And the resulting model for the dynamics of a generic agent at vertex «, 8 is

dza,5(t) =foa, B, Ta,p(t); Ua,s(t), pa,p(t))dt
+ D[02 + 03ma,p(t))dt + odwa,z(t), (18)

Since the Laplacian here has a positive definite symbol, the existence and uniqueness analysis in
the subsequent section for the single network variable case applies to this more complex network case
when the following conditions are imposed: (i) the dynamical state dimension is kept to one, and (ii)
the dynamical periodic boundary conditions used for the ring topology are employed in the infinite
lattice case by making it into a two dimensional torus by identifying opposite edges in the standard
way.

Furthermore, it can be seen that this formulation generalizes yet further to infinite rectangular
networks of higher dimension.

7 Existence and uniqueness analysis

To analyze the PDE system (16)—(17). We consider the scalar case, i.e. n = 1. Accordingly, the state
process in (11) is a scalar. We make the following assumption.
Assumption 1. For the model (11), we have D > 0.

The condition D > 0 is important in existence analysis of the mean field game since (17) becomes
a parabolic equation (with spatial variable «) subject to an initial condition.

For a suitably general analysis yielding the existence of classical solutions we introduce certain
Holder spaces. We fix 6 € (0,1) to be used in the Hélder norm. For two points = and y on the ring T
parameterized by [0, 27), we define the distance

dr(z,y) = min{2m — [z —y|, [z — yl}. (19)
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Next, on the set Q = [0, 7] x T, we define the parabolic distance between two points (¢, ) and (s, y) as
d((t,2), (s,y)) = dp(a,y) + [t — 5| /2.
Based on the distance d we define the Holder semi-norm for a function v(t, ) defined on Q:

[v(z1) — v(22)]
Vls/2,5:Qq = SUp e
[ ] /259 2 €Q,z1#22 d5(21,2’2)

Denote [vo.q = sup,cq |v(2)|. We further define the Holder norms

|U|6/275;Q :|U|0;Q + [9]6/276;(27

|U|1+6/2,2+5;Q :|U|0;Q + ‘atU|O;Q + [Oav 0;Q
+ [020]0:q + [V]146/2,246:q>

where [0]145/2,2+5.Q = [010]s5/2,6.Q + [020]5/2,5.q- We use C°/%°(Q) (resp., C119/2:245(Q)) to denote
the space consisting of functions with |v[5/25,q < 00 (resp., |[v[145/2,245:q < 0o0). For a function
defined on the ring T = [0, 27), we similarly define the Hélder norm |v|a44 1 using the distance d,; we
may visualize v as a periodic function defined on R. In our further analysis, we will drop Q from the
subscript in the norm without causing confusion.

7.1 The fixed point method

We give some analytical preparation. Consider the following equation [21, Theorem 5.1] [22, Theorem
5.14], [5]

Duq(t, o) = DOaq(t, o) + F(t, a)q(t, o) + g(t, a), (20)
where D > 0, ¢(0,a) = ¢(a), p € C?>T(T), g € C*/?%(Q), and
|Fls5/2,6 < Ch.

Remark 7.1. We regard ¢ as a periodic function with one period [0, 27], twice differentiable with a
Holder continuous second derivative.

The following lemma is a corollary to Theorem 5.1 in [21].
Lemma 7.2. Suppose Q = [0,7] x T. Then there exists a unique solution ¢ € C12(Q) to (20) and
19l115/2,245 < Co(lgls/2,5 + [#l2+s), (21)

where the constant Cy only depends on (D, C1,T,9). O
We proceed to the existence analysis of (16)—(17) by formulating the following fixed point problem.
Given a general function S € C‘S/275(Q) in place of S in (17), by Lemma 7.2, we obtain a unique

solution m and define the following mapping

m = A1 (5),
which is well defined from C%/29(Q) to C1+9/22+5(Q).

Next with any m € C’H‘S/Q’Q*S(Q) in place of m in (16), we determine a unique solution S and
define the mapping
S = Ay(1h),

which will subsequently be shown to be from C1+%/2:2+9(Q) to C%/29(Q).
Thus, we have the following fixed point equation
S = A A4(5), (22)

which determines a solution of the PDE system (16)—(17).
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Consider m = A1 (S) and m' = A;(S’), with identical initial condition data mq(0) = m/ (0), where
S and S’ are any functions from C*/24(Q). By Lemma 7.2, we have

[m —m'[115/2,215 < (CoB?/R)|S — 5'|5/2,6- (23)
Below we show that Ay has its image in C%/29(Q). Let &(t,7) be the fundamental solution of

the ordinary differential equation 2 = —(AT — PBR™'BT)z. We take an arbitrary function m €
C'19/2:2+9(Q) in (16) and have

Sa(t) =P(t,0)5,(0) + /0 O(t, 7)[(QTy — PDo)me(T)
— PDO?my (1) + QIon)dr, (24)

where S,,(0) is to be determined. By the terminal condition in (16), we determine

Sa(0) = - /OT @(0,7)[(QI' — PDo)ma(r) — PDOima(r) + QIanldr

= &0, T)Qs [ yma(T) + Iapn].

Substituting the above S, (0) into (24), we have
Sa(t) =A2(m)(t)
== /tT b(t,7)[(QI1 — PDo)ma(r) — PDOyma(r)
+ QIpnldr — &(t, T)Q [ pma(T) + Iapn).

Now we calculate the Holder norm of S. We have

Sa(t) = Sar (1)]

T
< / (B(t,7)| - |QTs — PDo| - [ma(r) — mas (7)|dr
t

#1001 DI 5Ema(r) — )
t
+12(t, T)Q syl - [ma(T) — mas (T)]. (25)
Denote |hlo = |hlo;j0,1) = supsejo,ry [h(?)]- Hence by (25), we have
sup  d, (@, @")[Sa(t) — S (t)]

a#a’,te[0,T]

<T sup |(t,7)|- (|QI" — PDolo + [PDlo)
t,7€[0,T]

X (75;12/ dy % (o, &) |ma (1) — mar (T)] + [m]116/2,246)

+sup|[@(t, T)Qy L] - sup d,* (e, a")[ma(T) — mas(T)|
< {Tstqu |2(t,7)| - (|QIt — PDolo + |PD|o)

+sup [8(4, T)Qs Iy}

X (7' 700amloiq + [M145/2,2+5)- (26)
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Next for 0 <t <t < T, we have
Sa(t) — Sa(t)

T
= /t &(t,7)[(QI' — PDo)me(T) — PDO*m(7)]dr

— /f O(t', 7)[(QI'y — PDo)meo (1) — PDO2me(7)]dr

’

+ [é(tlv T) - ds(t? T)]Qf[rlfma (T) + F2f77]

= /tt ®(t,7)[(QI'1 — PDo)ma(7) — PDO2ma(7)]dr

T
+ /t [@(t,7) — D', T)][(QI — PDo)me(T) — PDO2m(1)]dr

’

+ (@, T) = (1, T)|Qy [T pma(T) + Tapn)-
We use the differentiability of @ to estimate
|t =172 |Sa(t) = Sa(t')]
< (112 stup |B(t,7)| + T2 stup |0:D(t, )]

x (|QIy — PDolo + |[PDlo)(Imlo:q + 102mlo:q)
+T19/2 sup 10:@(t, T)| - Qf - (|4 - Imlo,q + [L24n)-

Now we conclude S = Ay(m) € C%/2%(Q).
Denote the constant

Ko =rn'=(T + T 7%/2 4 T%7%/2) sup [|®(t, )| + |0,D(t, 7)]]

t,7<T
x (|QI't — PDglo + |PD|o + Qy|I'y])
+ 7170 sup [D(t,7)| - Qs Ll
t,7<T

Now consider z; = (f1, 1) and 2o = (t3, a2). We have
[5(21) = S(z2)| _[S(z1) = S(t1, @2) + 5(t, a2) — S(22)]
do(z1,29) dd(z1, 22)
<d; (a1, @2)[S(21) = S(t1, az))|
+ [t — 2| TO2[S (81, 2) = S(z2)]

which combined with estimates (26) and (27) along the direction of ¢ and «, respectively, implies that

1S]5/2,6 <Kolm|its5/2,245 + -9/ Sup |0:®(t, T)| - Qy - [T24n

+ (1@ + Q¢ Izpnl) sup (2, 7)]

(29)

Theorem 7.3. The PDE system (16)—(17) for (S,m) has a unique solution if CoKqB?/R < 1, where

Cy is given in Lemma 7.2.

Proof. For two arbitrary functions m,m’ in C**+%/22+9(Q), define S = Ay(m), S’ = Az(m’). Then we

follow the method used in establishing (29) to similarly obtain

1S — 8]5/2,56 = [A2(m) — Aa(m)|5/2,5
< Ko|m — m/|1+6/2,2+6-

(30)
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So by (30), we have

[A241(S) = A2A(5")]5/2,5 < Kol A1(S) = A1(S)146/2,246
< (CoKoB?*/R)|S = 552,55
where the last line follows from (23). The proof follows from a fixed point theorem on the Banach
space C%/29(Q). O

Remark 7.4. The contraction condition is satisfied when T is sufficiently small and the system has
weak coupling, i.e., [I't| + |I'¢| + |Do| + |D| is sufficiently small.

7.2 Numerical example

Example 7.5. In the LQ model we take A =05, B=1,Dy=02,D=0.5, Q=2 R=1,17 =0.8,
In=n=0,Q;=I1yy=1I5=0,T=2and my(0) =a(l —a), 0 <a <1

The system (16)—(17) is solved by a difference scheme, with stepsize At = 0.0025 and A« = 0.05.
For convenience of numerical computation, the parameterization of the ring is normalized and denoted
as [0,1) (instead of [0, 27)). The numerical solution of S, m is displayed in Fig. 1.

03,

Figure 1: S, (t) and mq(t) under the second order diffusive interactions; computed by iterations with ¢t € [0,2] and
a€l0,1).
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Conclusion

Future work will address general existence and uniqueness analyses for nonlinear GXMFG systems on
a variety of graphexon limits together with their corresponding e-Nash properties.
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