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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: M. Maftah, M. Gendreau, B. Agard,
M. Gamache (October 2024). Scheduling of drilling machines in
open-pit mines: Stochastic and non-probabilistic CP approaches,
Technical report, Les Cahiers du GERAD G–2024–62, GERAD, HEC
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– Bibliothèque et Archives Canada, 2024

The publication of these research reports is made possible thanks
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3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2024-62
https://www.gerad.ca/en/papers/G-2024-62
https://www.gerad.ca/en/papers/G-2024-62


Scheduling of drilling machines in open-pit mines: Stochas-
tic and non-probabilistic CP approaches

Mohamed Maftah a, b

Michel Gendreau a

Bruno Agard a

Michel Gamache a, b

a Department of Mathematics and Industrial Engi-
neering, Polytechnique Montréal, Montréal (Qc),
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Abstract : This paper addresses the scheduling of electrical drilling machines in open-pit mines,
proposing three constraint programming formulations to account for uncertain drilling durations: two-
stage stochastic, a novel probability-free method, and a chance-constrained model. These approaches
aim to create robust schedules for drilling operations. The probability-free method introduces a “Re-
silient” constraint for deterministic representation of uncertainty, while the chance-constrained ap-
proach combines elements of two-stage stochastic and resilient programming using scenario approxi-
mation. Evaluated using simulated instances from real coal mine data, all models efficiently handle
problem sizes comparable to or exceeding typical daily operations. The probability-free model demon-
strates particular efficiency and scalability. This study contributes to mining operations research by
providing flexible, robust constraint programming models for drill rig scheduling under uncertainty,
offering mining practitioners tools to optimize operations in uncertain environments.

Keywords: Open-pit mining, drill rig scheduling, constraint programming, stochastic optimization,
probability-free optimization, chance-constrained optimization

Résumé : Cet article traite de la planification des foreuses électriques dans les mines à ciel ouvert,
proposant trois formulations de programmation par contraintes pour tenir compte des durées de forage
incertaines : stochastique à deux étapes, une nouvelle méthode sans probabilité, et un modèle à con-
traintes de chance. Ces approches visent à créer des calendriers robustes pour les opérations de forage.
La méthode sans probabilité introduit une contrainte “Résiliente” pour une représentation déterministe
de l’incertitude, tandis que l’approche à contraintes de chance combine des éléments de la program-
mation stochastique à deux étapes et de la programmation résiliente en utilisant l’approximation par
scénarios. Évalués à l’aide d’instances simulées à partir de données réelles de mines de charbon, tous les
modèles gèrent efficacement des tailles de problèmes comparables ou supérieures aux opérations quo-
tidiennes typiques. Le modèle sans probabilité démontre une efficacité et une évolutivité particulières.
Cette étude contribue à la recherche opérationnelle minière en fournissant des modèles de program-
mation par contraintes flexibles et robustes pour la planification des foreuses sous incertitude, offrant
aux praticiens miniers des outils pour optimiser les opérations dans des environnements incertains.

Mots clés : Mines à ciel ouvert, ordonnancement de foreuses, programmation par contraintes, opti-
misation stochastique, optimisation sans probabilité, optimisation sous contraintes probabilistes
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1 Introduction

Open-pit mining occupies a major place in global mineral extraction. A pivotal stage in this operation

is the drilling phase, where tactical decisions can profoundly influence both the efficiency and cost of

the following mining activities. A specific challenge during this phase is scheduling electrical drill rigs

operating closely within the mine. Precise scheduling is crucial, ensuring not just timely task execution

but also the safety and efficiency of the entire operation.

In a recent contribution Maftah et al. (2024), we introduced a constraint programming (CP) model

addressing the drill rig scheduling challenge encountered in open-pit mining operations. This model

aimed to maximize the number of drilling tasks completed within a given time horizon, while adhering

to constraints related to drill rig positioning, collision avoidance, and task precedences.

While the deterministic CP model effectively produced high-quality schedules for practical problem

sizes, real-world drilling operations often face substantial uncertainties. Factors such as rock condi-

tions, equipment malfunctions, and unforeseen disruptions can cause variations in drilling durations.

To address the inherent unpredictability in drilling duration, we suggested indirectly managing this

uncertainty by re-solving the problem whenever we receive more precise estimates of drilling dura-

tions. This reactive approach was feasible because our deterministic model could generate solutions

with small optimality gaps for practical-sized instances in under 2 minutes when run on a standard

computer.

In this paper, we offer extensions to our previous CP model, focusing on proactive scheduling

approaches to address the uncertainty in drilling durations. A proactive approach, as opposed to

a reactive approach, seeks to account for uncertainty in the duration of drilling activities during the

construction of the drilling sequence, rather than reacting when drilling activity durations deviate from

what was planned. This anticipatory strategy aims to create robust schedules that can accommodate

variations in task durations without requiring frequent rescheduling. By incorporating uncertainty

directly into our extended scheduling models, we aim to produce more resilient and reliable drilling

plans. These extensions to our previous work represent a significant advancement in addressing the

inherent unpredictability of open-pit mining operations. In line with this proactive strategy, we propose

three scheduling approaches:

1. A two-stage stochastic programming formulation to optimize schedules across multiple task du-

ration scenarios.

2. A probability-free optimization model that protects against uncertainty in the problem data,

offering a middle-ground approach between deterministic and stochastic modeling.

3. A chance-constrained model that takes a risk-averse approach, ensuring that schedules meet a

predefined level of reliability.

The core contribution of this paper is the formulation, validation, and juxtaposition of three non-

deterministic constraint programming models intended for the coordination of multiple drill rigs in

open-pit mines. Our goal is to equip mining practitioners with a suite of models designed to hedge

against operational uncertainty in different ways. By comparing deterministic and non-deterministic

methodologies, we aim to highlight the flexibility and utility of CP approaches, ensuring optimal drill

rig scheduling in the face of potential uncertainties.

Following this introduction, Section 2 reviews related work on stochastic optimization for scheduling

challenges prevalent in mining operations. Section 3 presents a description of the problem. Section 4

presents the three non-deterministic CP models, while Section 5 showcases their application through

simulated instances derived from a coal mine’s drilling data. We conclude with insights gained and

directions for future research.
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2 Literature review

Mining is a domain replete with uncertainties, ranging from geological variability, task duration, equip-

ment reliability, to fluctuating demand and prices. Effective scheduling under such uncertain conditions

becomes crucial for optimizing productivity, reducing costs, and ensuring the safety of operations. The

literature has seen various approaches to tackle these challenges, including scenario-based optimization,

chance-constrained optimization, and probability-free optimization.

2.1 Scenario-based optimization

Scenario-based optimization makes use of multiple stochastically simulated scenarios to describe un-

certainties in the mining process. It is a proactive approach that prepares for various possible future

scenarios by developing solutions that perform well on average across them. Multiple authors have

tackled scheduling issues in the mining industry through the application of scenario-based optimization.

In the context of gold mining, Ramazan and Dimitrakopoulos (2013) utilized a two-stage stochastic

integer model to schedule annual production, incorporating uncertainty regarding the availability of

mineralized materials in the ground. Expanding on this, Lamghari and Dimitrakopoulos (2016) broad-

ened the scope of mine production scheduling by integrating decisions about potential destinations for

mined materials under metal uncertainty, developing a two-stage stochastic programming model solved

with a heuristic based on network flow techniques.

Focusing on mining complexes, Goodfellow and Dimitrakopoulos (2016a) explored global optimiza-

tion for generating economically viable production schedules across multiple mines and processing

streams, introducing a two-stage stochastic programming model for a copper-gold mining complex.

Similarly, Del Castillo and Dimitrakopoulos (2019) developed a multistage stochastic programming

model to determine the optimal annual production schedule for a copper mining complex, notably

integrating investment decisions throughout the asset’s life.

In the realm of open-pit mines, Khan (2018) addressed production scheduling under grade un-

certainty, proposing two population-based metaheuristics: one based on particle swarm optimization

and another utilizing the bat algorithm. These approaches offer computational advantages in terms of

tractability and feasibility compared to typical solvers used for two-stage stochastic programming mod-

els. Along similar lines, Danish et al. (2023) presented a stochastic optimization algorithm based on

Simulated Annealing, leveraging multiple simulated realizations of an orebody to account for geological

uncertainties.

Within the context of underground gold mines, Furtado E Faria et al. (2022) introduced a two-

stage stochastic integer program for optimizing stope and development network designs under grade

uncertainty and variability. Their model aims to maximize discounted revenues, minimize development

costs, and manage production target risks. In a similar vein, Aalian et al. (2024) proposed a two-

stage stochastic constraint programming model for short-term scheduling in underground mining,

determining robust sequences of activities for available resources based on various scenarios derived

from real data sets. Additionally, they introduce an alternative model based on the chance-constraint

paradigm, bridging the gap between scenario-based and chance-constrained optimization approaches.

2.2 Chance-constrained optimization

Chance-constrained optimization is a paradigm that seeks to find solutions that satisfy constraints

with a certain probability, making it particularly well-suited for environments like mining where un-

certainties abound. Several researchers have addressed scheduling challenges in the mining sector

using chance-constrained optimization techniques. In their work, Golamnejad et al. (2006) introduced

a long-term production scheduling model utilizing chance-constrained binary integer programming.

Their model adeptly accounts for the inherent uncertainty in ore block grades. Additionally, Kumral
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and Sari (2017) proposed an extraction sequencing methodology that prioritizes maximizing the net

present value of mining projects, all while maintaining a specified risk tolerance. Their approach com-

bines chance-constrained programming with Monte Carlo simulation techniques, drawing data from a

gold mine for validation. Moreover, Gholamnejad et al. (2020) applied a chance-constrained integer

programming approach to an open-pit iron and gold mine production scheduling problem with a single

stockpile for storing low-grade material.

Shifting the focus to short-term planning, Mohtasham et al. (2021) considered a truck allocation

problem in a copper open-pit mine. By employing a chance-constrained goal programming model, the

authors demonstrate how uncertainties in truck-shovel systems can be managed. Their model proves

effective across various confidence levels, ensuring the short-term production schedule’s objectives are

met even in high-risk scenarios. In a parallel context focusing on underground mines, Aalian et al.

(2024) studied short-term planning within an underground gold mine, considering the confined space

and numerous uncertainties such as activity duration variations. The authors employ a constraint pro-

gramming model with Confidence constraints, adapting chance-constrained programming techniques

as demonstrated by Mercier-Aubin et al. (2020) for use in constraint programming. This approach

allows mine planners to control the risk level of the generated solution, ensuring that the produced

schedule meets certain reliability criteria, given actual activity durations.

2.3 Probability-free optimization

Probability-free optimization approaches make decisions based solely on available data, without rely-

ing on probabilistic models or making assumptions about underlying probability distributions. This

approach is particularly valuable when such distributions are difficult to ascertain or when the avail-

able data does not conform to standard probability distributions. In the context of mining operations

scheduling, only one paper was found that presents solutions without explicitly relying on stochastic

or probabilistic parameters. Alipour et al. (2018) studied production scheduling problems in open-pit

mines with the goal of finding the best block extraction sequence to maximize profit. The authors

introduced a robust counterpart linear optimization model, incorporating the ellipsoidal set-based

counterpart to account for uncertainties in block economic value, block weights, and operational ca-

pacity. To solve the nonlinear ellipsoidal counterpart, the authors proposed a genetic algorithm.

While applications in mining are scarce, probability-free and robust optimization methods have

been successfully applied in various other fields. This scarcity in mining applications presents an

opportunity for novel research rather than indicating a lack of utility. In the context of Internet

of Things (IoT) applications, Martinez et al. (2022) employed robust optimization for the design

and dimensioning of fault-tolerant fog computing infrastructures. Chen et al. (2016) applied robust

optimization to daily maintenance routing problems in road networks with uncertain service times. In

facility location problems, Cheng et al. (2021) used robust optimization to address demand uncertainty

and facility disruptions.

Recent years have seen an increased interest in data-driven robust optimization across diverse

domains. Huang et al. (2023) applied this approach to industrial utility systems integrating wind and

solar energies. Asgari et al. (2024) developed a novel method based on position-regulated support vector

clustering for creating data-driven uncertainty sets. In the renewable energy sector, Sadeghi Darvazeh

et al. (2024) used data-driven robust optimization to design an integrated sustainable forest biomass-

to-electricity network. The versatility of these approaches is further demonstrated by their application

in steel supply chain network design (Khalili-Fard et al., 2024), operation optimization of industrial

power stations (Ashraf and Dua, 2024), and PVC production scheduling (Wang and Su, 2024).

These diverse applications underscore the potential of probability-free and robust optimization

methods to address complex uncertainties across various industries. Given the successful application

of these methods in other fields, there is significant potential for their adaptation and application to
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mining operations, particularly in addressing the inherent uncertainties in production scheduling and

resource allocation.

2.4 Hybrid approaches

While individual optimization paradigms have been extensively studied and applied in mining oper-

ations, there is a growing interest in hybrid approaches that combine elements from different opti-

mization methods to address complex uncertainties and improve overall system performance. These

hybrid approaches have shown promise not only in mining but also in various other fields dealing with

complex systems and uncertainties.

In the context of mining operations, several researchers have developed innovative hybrid meth-

ods. Goodfellow and Dimitrakopoulos (2016b) proposed a novel approach that integrates stochastic

integer programming with sequential Gaussian simulation to simultaneously optimize mining complexes

and mineral value chains. This method allows for the consideration of geological uncertainty through-

out the entire mineral value chain, from extraction to processing and transportation, demonstrating

improved net present value and risk management compared to conventional methods. Similarly, Ben-

ndorf and Yueksel (2015) developed an approach that combines simulation and optimization techniques

for continuous mining systems, integrating a detailed simulation model of the mining process with an

optimization algorithm to improve operational efficiency.

Beyond mining, hybrid approaches have been successfully applied in various fields, particularly in

the context of robust optimization and energy systems. Hashemi Doulabi et al. (2021) developed a

hybrid Benders algorithm for two-stage robust optimization models with exponential scenarios, apply-

ing it to nurse planning and supply chain problems. Cheng et al. (2018) proposed a two-stage robust

approach for reliable logistics network design, combining uncertainty sets with recourse decisions. In

the energy sector, Nourollahi et al. (2022) presented a hybrid approach combining robust optimization

and stochastic programming to optimize the operation of a residential hybrid energy system, effectively

handling different types of uncertainties. Similarly, Yan et al. (2022) developed a two-stage stochastic-

robust optimization model for a hybrid renewable energy system, addressing multiple scenario-interval

uncertainties.

Innovative hybrid methods have also emerged in other optimization domains. For instance, Butk-

eraites et al. (2022) introduced a sampling-based multi-objective iterative robust optimization method

for the Bandwidth Packing Problem, combining sampling techniques with unsupervised learning to

explore the topology of uncertain parameter sets.

These diverse applications of hybrid approaches demonstrate their potential to address complex

uncertainties and improve system performance across various fields. In the context of mining opera-

tions, such approaches offer promising avenues for addressing the multifaceted uncertainties inherent in

mining, from geological variability to operational complexities and market fluctuations. The success of

hybrid methods in other domains suggests their potential for enhancing the efficiency and robustness

of optimization in mining operations.

2.5 Conclusion

The mining sector, characterized by inherent uncertainties ranging from geological variances to eco-

nomic fluctuations, has long relied on optimization techniques to ensure optimal scheduling and, con-

sequently, maximize returns on investments. Through our review of the literature, three predominant

paradigms emerge as key avenues for addressing these uncertainties: scenario-based optimization,

chance-constrained optimization, and probability-free optimization.

Scenario-based optimization, given its robustness and ability to prepare for diverse potential future

events, remains a popular choice among researchers. It is evident from our study that many researchers
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have developed and proposed models under this paradigm, with applications ranging from production

scheduling of entire mining complexes to underground mine planning.

On the other hand, chance-constrained optimization offers an interesting alternative, aiming to find

solutions that satisfy constraints within specified probabilistic bounds. A fair amount of research has

been conducted in this space, with applications ranging from production scheduling with ore block

grade uncertainty to truck allocation problems in open-pit mines.

Probability-free optimization, the third paradigm, represents a departure from probabilistic models,

instead opting for data-driven decisions without probabilistic assumptions. Surprisingly, our literature

review reveals a conspicuous scarcity of research in this domain. Only a single paper was identified that

delves into mining operations scheduling without leaning on stochastic or probabilistic parameters.

While these paradigms have been widely studied and applied individually, there is growing interest

in hybrid approaches that combine elements from different optimization paradigms to address complex

uncertainties in mining operations. Such approaches could leverage the strengths of various methods to

provide more comprehensive solutions to the multifaceted uncertainties in mining. Examples from both

mining and other fields demonstrate the potential of these hybrid methods to enhance the robustness

and efficiency of optimization models.

It is worth noting that Constraint Programming (CP) has been successfully applied to various

mining problems, primarily focusing on deterministic scenarios. Recent years have seen an increased

interest in applying CP to mining operations. Strand et al. (2020) used CP for scheduling mobile

machines in underground mines. Valenca Mariz et al. (2024) proposed a multi-stage CP approach for

solving clustering problems in open-pit mine planning. Oleynik and Zuenko (2022) applied CP to open-

pit mine production scheduling. Campeau and Gamache (2022) optimized short- and medium-term

underground mine planning using CP. Kumar et al. (2023) explored CP for open-pit mine production

scheduling with stockpiling. Aalian et al. (2023) developed a CP model for short-term scheduling in an

underground gold mine. However, the application of CP to address uncertainties in mining operations

remains limited. The use of stochastic CP in mining, which could potentially address uncertainties

more comprehensively, is notably scarce, with only one identified study (Aalian et al., 2024) exploring

this approach.

Overall, the literature addresses a range of problems with a clear focus on production scheduling

and an overarching emphasis on maximizing profits. The reviewed studies not only provide theoretical

frameworks but also validate their proposed methodologies in real-world settings. Nevertheless, in

light of the existing literature, several gaps can be identified:

• While mining scheduling problems have been studied, there remains a largely unexplored domain

in terms of the unique scheduling challenges that arise during the drilling process.

• Although CP has been applied to various deterministic mining problems, its application to min-

ing scheduling problems under uncertainty remains largely unexplored, indicating a significant

research gap.

• As uncertainties in mining are manifold, there is a pressing need to explore diverse methods to

address parameter uncertainty. Our literature review indicates that while some methods have

been proposed, a comprehensive and comparative study of multiple paradigms, especially using

stochastic constraint programming models, remains largely unexplored.

In light of these observations, this paper seeks to bridge these gaps by:

• Introducing a novel scheduling problem under uncertainty specific to the drilling operations of

electrical drill rigs in open-pit mines.

• Employing constraint programming to model this new problem, building on the limited precedent

in the literature.
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• Proposing three distinct constraint programming models, each corresponding to the aforemen-

tioned paradigms, offering a comprehensive approach to tackle parameter uncertainty in mining

operations.

Through these contributions, this paper aims to enrich the existing body of knowledge, offering

innovative solutions to hitherto unaddressed challenges in the mining industry. By introducing a hybrid

model that combines multiple optimization paradigms, we seek to provide a more comprehensive and

flexible approach to addressing the complex uncertainties inherent in mining operations.

3 Problem description

In a previous work Maftah et al. (2024), we introduced a deterministic discrete optimization problem

encountered during the drilling phase in open-pit mines, which we called the Drill Coordination Prob-

lem (DCP). The objective of the DCP is to optimize the drilling operations of multiple machines while

satisfying various constraints. These constraints include maintaining safe distances between machines,

preserving the integrity of power cables, and adhering to specific movement restrictions.

The problem setting in this paper is similar to the one described in Maftah et al. (2024), where a

set of drilling machines M must visit and drill a set of targets J (also referred to as tasks) arranged in

a pattern of rows and columns, as depicted in Figure 1. The constraints on machine movements and

cable management remain the same. However, in this work, we consider the case where the drilling

durations at each target are uncertain.

To provide context for our current contribution, we briefly summarize the key elements of the

original drill scheduling problem:

• There is a set of targets J that must be drilled, with each target indexed by j ∈ {1, 2, . . . , |J |}.
• There is a set of drilling machines M, indexed by m ∈ {1, 2, . . . , |M|}, each connected to a power

source via a cable.

• The machines must transition from target to target in a specific order, which is determined by

the column structure of the drilling pattern C, indexed by c ∈ {1, 2, . . . , |C|}:

– Precedence constraints over targets within a column, represented by Jc.

– Direct lateral movement between adjacent columns is prohibited.

• Safety constraints enforce minimum distances between machines and cable locations, represented
by the parameter δ, which indicates the number of columns required as spacing between machine

pairs. For example, if δ = 2, machines must maintain at least two columns of separation at all

times.

• Collision avoidance constraints mandate that machines maintain their initial relative positions

with respect to each other throughout the drilling process. For example, if Machine A starts to

the left of Machine B, it must remain to the left of Machine B for the entire operation.

To visualize these elements and constraints, Figure 1 provides a schematic representation of a

typical DCP instance.

In this study, we focus on uncertainty in drilling durations (pjm) while treating travel times between

tasks (tmij ) as deterministic. This decision is based on several factors:

1. Drilling times are subject to greater variability due to factors such as rock hardness, equipment

performance, and unforeseen geological conditions.

2. Travel times between drilling locations are generally more predictable, with fixed distances and

relatively constant machine speeds.

3. The impact of drilling time uncertainty on the overall schedule is typically more significant than

that of travel time variations.
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4. Focusing on drilling time uncertainty allows us to capture the most significant source of variability

while maintaining model tractability.

Power  
source

Power  
source

D
ri

ll
in

g 
S

eq
u

en
ce

Tr af i c di r ect i on acr oss colum ns

Row  1

Column 1

Figure 1: An instance of the DCP.

While some level of uncertainty in travel times exists, we believe our approach adequately represents

the primary sources of operational uncertainty in the DCP. For a more detailed discussion of practical

considerations in open-pit mining operations, readers are directed to the second section of our earlier

paper Maftah et al. (2024). The goal of our study is to find a drilling schedule that maximizes the

total number of drilled targets within a specified timeframe H (planning horizon), while satisfying

all of the constraints. The planning horizon H represents the total available time for the drilling

operation, typically determined by operational constraints such as shift durations or project deadlines.

In practice, this could range from a single shift to multiple days, depending on the specific operational

context and planning needs. The planning horizon is typically discretized into fixed time intervals

to facilitate scheduling and resource allocation decisions. The granularity of time discretization can

impact both the precision of the resulting schedule and the computational complexity of solving the

problem.



Les Cahiers du GERAD G–2024–62 8

To model this discretized time framework and represent the scheduling decisions, we employ three

types of variables in our constraint programming formulation:

• Interval variables xjm: These represent the assignment and timing of task j to machine m. They

capture both the decision of whether machine m performs task j and, if so, when the task starts

and ends.

• Sequence variables zm: These represent the order of tasks on each machine m. They determine

the sequence in which machine m performs its assigned tasks, ensuring that the scheduling

respects the precedence and movement constraints described earlier.

• State functions lm: These denote the location of machine m throughout the scheduling horizon.

They track the column position of each machine at any given time, allowing us to enforce spatial

constraints such as safety distances and relative positioning between machines.

This combination of interval variables, sequence variables, and state functions allows us to compre-

hensively model the complex spatial and temporal aspects of the drill coordination problem, including

task assignments, execution order, and machine movements.

For a comprehensive understanding of the practical considerations leading to these constraints,

readers are directed to the second section of our earlier paper Maftah et al. (2024).

4 Constraint programming formulations

In this section, we enhance the deterministic model presented in our previous paper by introducing three

non-deterministic counterparts: a two-stage stochastic model, a probability-free model, and a chance-

constrained model. These models incorporate mechanisms to address the inherent unpredictability in

task durations.

Before delving into the various formulations, we will outline the elements that are common to all

three models. Additionally, we will reproduce the deterministic model from our previous paper Maftah

et al. (2024). This allows for a direct comparison with the extended models, facilitating a clear

understanding of how each model accounts for parameter uncertainty in their respective subsections.

In order to express the DCP, we use IBM ILOG CP Optimizer (CPO), a constraint programming

solver and modeling language specifically designed for scheduling problems. We chose CPO for its

robust set of global constraints tailored to scheduling applications and its efficient handling of complex

temporal relationships. Table 1 shows the constructs provided by this modeling language:

Table 1: Variables, constraints, and functions used in the CP models.

Variables

Interval Represents a time interval for an activity whose exact start time is not yet determined.
These variables can be designated as optional, allowing the solver to decide whether to
include or exclude the activity when finding a solution.

Sequence Represents the order in which a set of interval variables are scheduled. If an optional
interval variable is excluded from the solution, it is automatically omitted from the se-
quencing.

State function Represents the evolution of a system’s status over time. It derives its values from interval
variables, taking on non-negative integer values to signify the state when the associated
interval variable is included in the solution. Essentially, it encapsulates the change of a
system’s condition as influenced by the presence or absence of specific intervals in the
solution.

Functions

EndOf Given an interval variable i, this function returns an integer expression representing the
completion time of i. If i is included in the solution, the expression equals its end time.
Otherwise, it returns a predefined value (typically zero, but this can be customized).
This function is useful for coordinating the timing of different activities in a schedule.

Continued on next page
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SizeOf Given an interval variable i, this function yields an integer expression denoting the du-
ration of i. When i is part of the solution, the expression corresponds to its length. If i
is not included, the function returns a specified default value (usually zero, but can be
adjusted as needed). This function is particularly helpful in scenarios where the duration
of activities impacts the overall schedule or resource allocation.

PresenceOf Given an interval variable i, this function produces a boolean expression indicating
whether i is included in the solution. It returns 1 if i is present and 0 if it is absent. This
function is instrumental in formulating logical dependencies between different activities
in the schedule, such as ensuring that if one task is performed, another related task must
also be included. It can also be employed to calculate costs associated with the inclusion
or exclusion of specific activities in the final schedule.

Global constraints

Alternative Given a “parent” interval variable a and a collection of “child” interval variables
b1, . . . , bn, this constraint ensures that exactly one child interval from the set is se-
lected to represent the parent interval. The chosen child interval’s start and end times
must exactly match those of the parent interval a. If a is not present in the solution,
none of the child intervals are present, and vice versa. This constraint is useful for mod-
eling alternative ways to perform a task, where a represents the overall task and each bi
represents a specific method (i.e. machine) of performing it.

AlwaysEqual Given a state function f , an interval variable i, and a value v, this constraint ensures
that the state of function f must be equal to v within the time span defined by the start
and end times of interval variable i, if i is scheduled.

AlwaysIn Given a state function f , an interval variable i, and specified values min and max, this
constraint ensures that the state of function f must consistently remain within the defined
interval [min, max] during the time span indicated by the start and end times of interval
variable i, if i is scheduled.

EndBeforeStart Given two interval variables a1 and a2, this constraint ensures that the completion time
of a1 has to be less than or equal to the start time of a2.

NoOverlap Given a set of interval variables and the setup times between each pair of elements of
the set, this constraint ensures that the durations of the activities represented by the
interval variables do not overlap. Additionally, it guarantees that the time gap between
these activities exceeds or equals the specified setup time for each pair.

For a more detailed overview of this modeling language along with practical examples, we refer the

reader to Laborie et al. (2018).

4.1 Deterministic model

The deterministic model, which serves as the foundation for the three non-deterministic counterparts,

is outlined as follows:

Sets
M set of machines, indexed by m ∈ {1, 2, . . . , |M|}.

M∗ set of machines excluding its first element (i.e. M∗ = M\{1}).
J set of tasks, indexed by i and j ∈ {1, 2, . . . , |J |}.

J ∗ set of tasks excluding its first element (i.e. J ∗ = J\{1}).
Ij tasks that become inaccessible once task j is processed.
C set of columns, indexed by c ∈ {1, 2, . . . , |C|}.

Jc tasks associated with column c, indexed by j.

J−
c set Jc excluding its last element.

Note 1. The numbering of tasks and machines plays a crucial role in implementing the precedence and

safety constraints in our model:

• Tasks are numbered from 1 to |J | in a specific order:

– Task 1 is located at the top-left corner of the drilling pattern (see Figure 1).

– Numbering proceeds downward within each column, then continues from the top of the next

column to the right.

– The last task (|J |) is located at the bottom-right corner of the pattern.

• Machines are numbered from 1 to |M|, increasing from left to right as shown in Figure 1.
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This systematic numbering allows us to express precedence relationships and maintain safety distances

efficiently in our model constraints. For example, constraint set (0.4) uses this numbering to ensure the

correct drilling sequence within columns, while constraint sets (0.6) and (0.7) leverage it to preserve

relative positions and safety gaps between machines.

Parameters
colj column associated with task j.
pjm processing duration of task j on machine m.
tijm setup duration between tasks i and j when on machine m.

δ number of columns required as spacing between machine pairs.
H planning horizon.

Variables
xjm optional interval variable of size pjm indicating if task j is performed by machine m.
yj optional interval variable representing task j.
zm sequence of interval variables xjm for machine m.
lm state function denoting the location of machine m.

Note 2. The omission of an index from a variable or parameter within the model implies reference

to the array encompassing the omitted index. For example, xj. denotes the one-dimensional array

[xj1, xj2, . . . , xj|M|], while t..m denotes the two-dimensional array representing setup times between

each pair of tasks for a specific machine m.

Model 0

Maximize Z =
∑
j∈J

PresenceOf(yj) (0.1)

s.t. Alternative(yj , xj.), ∀j ∈ J , (0.2)

NoOverlap(zm, t..m), ∀m ∈ M, (0.3)

EndBeforeStart(yj , yj+1), ∀c ∈ C, ∀j ∈ J−
c , (0.4)

NoOverlap({yj | j ∈ Ij}), ∀j ∈ J , (0.5)

AlwaysEqual(lm, xjm, colj), ∀j ∈ J , ∀m ∈ M, (0.6)

AlwaysIn(lm, xj,m−1, colj + δ + 1, |C|+ δ + 1), ∀j ∈ J , ∀m ∈ M∗), (0.7)

PresenceOf(yj) =⇒ PresenceOf(yj−1), ∀j ∈ J ∗, (0.8)

Max(EndOf(y.)) ≤ H. (0.9)

To better understand the optimization model, let us explain its primary components:

The objective (0.1) seeks to maximize the count of tasks scheduled within the defined planning

horizon.

Constraint set (0.2) guarantees that any scheduled task is uniquely allocated to one machine.

Constraint set (0.3) mandates non-overlapping execution of tasks on the same machine.

Constraint set (0.4) upholds the prescribed drilling sequence within each column.

Constraint set (0.5) enforces a safety distance between active drilling machines.

Constraint set (0.6) monitors and records the position of each machine during its drilling operation.

Constraint set (0.7) preserves the relative positions and safety gaps between operating machines.

Constraint set (0.8) ensures a continuous schedule by requiring that if a task yj is scheduled, the

preceding task yj−1 must also be scheduled. This prevents gaps in the drilling sequence where

tasks might otherwise be skipped.

Constraint (0.9) limits the completion time of all scheduled tasks to be within the defined planning

horizon H, ensuring that the entire schedule fits within the allocated timeframe.

In the following subsections, we will introduce each of the non-deterministic models. While these

models share a significant portion of the same notation, we will reiterate the model’s notation in each
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subsection for the sake of clarity and ease of reference. To emphasize the distinctions between them,

we will use blue text to highlight the specific parts that vary within each model.

4.2 Two-stage stochastic model

Two-stage stochastic programming is a well-established approach for dealing with uncertainty in opti-

mization problems, introduced by Dantzig (1955). This seminal work laid the foundation for handling

uncertainty in linear programming, which was later extended to more general optimization problems.

The method is particularly suited to problems where decisions must be made before the realization of

uncertain parameters, which aligns well with the drill rig scheduling problem where task durations are

not known with certainty at the time of planning.

Our first extension involves a two-stage stochastic CP model, where uncertainty in drilling times is

considered. This approach builds on the concepts of stochastic constraint programming as discussed

by Walsh (2002) and further developed in the scenario-based framework proposed by Tarim et al.

(2006). The drilling times are modeled as random variables, and we aim to optimize the expected

performance under this stochastic setting. The key points of this approach are as follows:

First stage decision : In the first stage, decisions are made based on the available information and

known parameters such as the predetermined drilling locations and the set of available machines.

Within our model, the first stage decision variables are the sequence variables. These variables serve a

dual purpose: they denote task assignments to machines and also dictate the order in which tasks are

executed on these machines. To maintain consistency across all possible realizations of the uncertain

parameter, we enforce a uniform sequencing of tasks using the global constraint SameSequence.

Scenario set : Following the first stage of decision-making, uncertain events occur. To represent this

uncertainty, we define a set of equiprobable scenarios, S, with each scenario, s, representing a unique

realization of drilling durations.

Second stage decision : After observing the actual realization of uncertainty (which corresponds

to one of the scenarios), a second decision is made. In our model, second stage decisions consist in

determining the start and end times for each task.

Objective function : The aim of two-stage stochastic optimization is to find a decision strategy that

minimizes or maximizes an objective function, taking into account both the first and second stage
decisions, as well as the uncertainty in the outcomes. Specifically, our objective is to maximize the

expected total number of scheduled tasks within a predetermined planning horizon.

This approach provides a solution to the DCP that performs well on average over the long term, as

we detail in the formal two-stage constraint programming model that follows. Our model builds upon

the classical two-stage stochastic programming framework, adapting it to the specific constraints and

objectives of drill rig scheduling in open-pit mines.

Sets
S set of scenarios, indexed by s.

M set of machines, indexed by m ∈ {1, 2, . . . , |M|}.
M∗ set of machines excluding its first element.
J set of tasks, indexed by i and j ∈ {1, 2, . . . , |J |}.

J ∗ set of tasks excluding its first element.
Ij tasks that become inaccessible once task j starts.
C set of columns, indexed by c ∈ {1, 2, . . . , |C|}.

Jc tasks associated with column c, indexed by j.

J−
c set Jc excluding its last element.
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Parameters
colj column associated with task j.
psjm processing duration of task j on machine m in scenario s.

tijm setup duration between tasks i and j when on machine m.
δ number of columns required as spacing between machine pairs.
H planning horizon.

Variables
xs
jm optional interval variable of size psjm indicating if task j is performed by machine m in scenario s.

ysj optional interval variable representing task j in scenario s.

zsm sequence of interval variables xs
jm for machine m in scenario s.

lsm state function denoting the location of machine m in scenario s.

Model 1

Maximize Z =

∑
s∈S

∑
j∈J PresenceOf(ysj )

|S|
(1.1)

s.t. Alternative(ysj , xs
j.), ∀j ∈ J , ∀s ∈ S, (1.2)

NoOverlap(zsm, t..m), ∀m ∈ M, ∀s ∈ S, (1.3)

EndBeforeStart(ysj , ysj+1), ∀c ∈ C, ∀j ∈ J−
c , ∀s ∈ S, (1.4)

NoOverlap({ysj | j ∈ Ij}), ∀j ∈ J , ∀s ∈ S, (1.5)

AlwaysEqual(lsm, xs
jm, colj), ∀j ∈ J , ∀m ∈ M, ∀s ∈ S, (1.6)

AlwaysIn(lsm, xs
j,m−1, colj + δ + 1, |C|+ δ + 1), ∀j ∈ J , ∀m ∈ M∗, ∀s ∈ S, (1.7)

PresenceOf(ysj ) =⇒ PresenceOf(ysj−1), ∀j ∈ J ∗, ∀s ∈ S, (1.8)

Max(EndOf(ys
. )) ≤ H, ∀s ∈ S, (1.9)

SameSequence(zs1m , zs2m ), ∀m ∈ M, ∀s1, s2 ∈ S, s1 ̸= s2. (1.10)

To better understand this first extension, let us explain its primary components:

The objective (1.1) is to maximize the expected total number of tasks scheduled within the planning

horizon.

Formulation (1.2–1.9) enforces, for each scenario, the same constraints as found in formulation

(0.2–0.9)

Constraint set SameSequence(sequence1, sequence2) (1.10) enforces that the interval variables

comprising both sequence1 and sequence2 maintain identical relative positions. For example, if

task a precedes task b in sequence1, then its counterpart a′ must also precede b′ in sequence2.

This constraint is crucial for ensuring non-anticipativity in the model, a key principle in two-stage

stochastic optimization Birge and Louveaux (2011). Non-anticipativity requires that decisions

made in the first stage must be the same for all scenarios before the uncertainty is revealed.

By ensuring that the order of tasks on each machine remains consistent across all scenarios,

regardless of the specific realizations of drilling times, the SameSequence constraint prevents the

model from making first-stage decisions (task sequencing) based on second-stage information

(actual drilling times). This maintains the integrity and feasibility of the two-stage stochastic

formulation.

In the context of drill rig scheduling, this two-stage stochastic model allows for more robust decision-

making under uncertainty. The first-stage decisions (task sequencing) provide a consistent schedule

structure, while the second-stage decisions (start and end times) allow for adaptability to the realized

drilling times. This balance between consistency and flexibility is crucial in mining operations where

adhering to a general plan while accommodating unexpected delays or efficiencies is important.
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4.3 Probability-free model

In contrast to the stochastic model, our probability-free model considers a deterministic representa-

tion of uncertainty. We aim to find a solution that remains feasible across various scenarios of task

durations while maintaining computational tractability. To achieve this, we introduce a constraint in

our deterministic model, which we refer to as the Resilient constraint. This constraint places a lower

limit on the permissible delay in drilling duration, controlled by a user-defined threshold denoted as α

(ranging from 0 to 1). The Resilient constraint is formally defined as:

Resilient([X1, . . . , Xn], [D1, . . . , Dn], α) ⇔
n∑

i=1

Xi ≥ α

n∑
i=1

Di. (1)

Here, the variables X1, . . . , Xn are our decision variables representing uncertain parameters, while

D1, . . . , Dn signify the maximum allowable deviation from their respective minimal values. The pa-

rameter α serves as a threshold governing the degree of resilience we desire.

While our model represents uncertain parameters with sets, it differs significantly from traditional

robust optimization techniques. The key differences are:

• Objective: Robust optimization typically aims to optimize for the worst-case scenario within

an uncertainty set. Our model, in contrast, seeks to ensure a minimum level of delay tolerance

across various scenarios, providing a more flexible approach to uncertainty.

• Constraint handling: Robust optimization typically aims to optimize for the worst-case sce-

nario within an uncertainty set. Our model, in contrast, seeks to ensure a minimum level of

delay tolerance across various scenarios.

• Solution approach: Robust optimization often requires reformulation of the original problem.

Our model modifies the original constraint programming formulation by:

– Introducing a new variable for each uncertain parameter.

– Adding the Resilient constraint.

This approach maintains much of the original problem structure while incorporating uncertainty

considerations.

• Uncertainty distribution: Our approach distributes uncertainty across variables differently

than typical robust optimization approaches, which often focus on worst-case scenarios.

• Scope of uncertainty consideration: Our model considers the global impact of uncertainty

(total delay across all tasks), while robust optimization often addresses local worst-cases for

individual constraints or variables.

• Risk handling: Our approach ensures a certain level of deviation by requiring a minimum total

deviation, which differs from typical robust optimization approaches.

The parameter α in our model serves a similar role to the uncertainty budget in robust optimiza-

tion Bertsimas and Sim (2004), but with a different interpretation. While an uncertainty budget in

robust optimization typically limits the maximum deviation, our α parameter ensures a minimum level

of total deviation.

To implement this feature, we decompose the drilling time into two distinct components for a given

task j and machine m. The first component is the minimal drilling duration, denoted as pmin
jm . This is

a predefined parameter reflecting the shortest possible time for completing the drilling operation under

ideal conditions. The second component, d′jm, represents the delay. This delay is stochastic in nature,

accounting for various unpredictable factors that may prolong the drilling process. Therefore, the total

drilling duration, pjm, for task j and machine m is calculated as the sum of these two components:
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pjm = pmin
jm + d′jm. In this equation, pmin

jm is a given constant, while d′jm is a decision variable that

reflects the uncertain aspects of the drilling duration. The resulting Resilient constraint is:∑
j∈J

d′jm ≥ α
∑
j∈J

dmax
jm ∀m ∈ M. (2)

Although the constraint includes the “greater than or equal” sign, the solver avoids overestimating

the total delay due to the influence of the objective function and the upper bounds on individual

delays. Specifically, any increase in delay adversely impacts the total number of tasks that can be

completed within the planning horizon, and each task-specific delay d′jm is constrained by a maximum

allowable delay dmax
jm . Consequently, this guides the solver to keep the delay at a minimum, while still

meeting the threshold set by the Resilient constraint.

Such an approach is suitable for any deterministic CP model where the effects of uncertain param-

eters on the objective function are clearly discernible. The implementation involves following these

steps:

1. Identify the uncertain parameters.

2. Replace each uncertain parameter with a variable whose range encompasses possible realizations

of the uncertain parameter.

3. When an increase in the uncertain parameter negatively affects the objective function, impose

that the total value of the variables representing the uncertain parameter should exceed the sum

of the upper limits of the range, scaled by a factor α (which ranges from 0 to 1).

4. When an increase in the uncertain parameter positively affects the objective function, impose

that the total value of the variables representing the uncertain parameter should remain below

the total of the lower limits of the range, scaled by a factor α ∈ [0, 1].

Note 3. Selecting α as 1 corresponds to optimizing for the worst-case scenario, aligning our approach

with traditional robust optimization in this extreme case.

The simplicity and accessibility of the resilient model make it particularly valuable for practitioners

and decision-makers who may not have extensive training in operations research (OR). As highlighted

in Gurobi’s State of Mathematical Optimization Report 2023 Gurobi Optimization (2023), only half

(49%) of the surveyed commercial customers have an OR educational background. While this report

specifically focuses on Gurobi’s mathematical optimization software, it is reasonable to assume that

this trend of limited OR education among practitioners is likely similar across the broader optimization

community, including those working with constraint programming techniques.

This observation underscores the need for optimization approaches that can be readily adopted

and applied by a wider audience, including those without formal OR education. The resilient model

addresses this need by providing a straightforward process for transforming any deterministic con-

straint programming model into one that effectively accounts for uncertainty. By contrast, alternative

approaches such as two-stage stochastic programming, chance-constrained optimization, or traditional

robust optimization often require a deeper understanding of theoretical concepts, which may hinder

their adoption among practitioners lacking specialized knowledge.

Thus, the resilient model offers a practical and accessible solution for incorporating uncertainty

into optimization models, empowering a broader range of decision-makers to leverage the benefits

of resilient optimization techniques in their respective domains. It maintains the original problem

structure with just an additional constraint, potentially making it easier to implement in existing CP

solvers while providing a flexible approach to handling uncertainty. This method provides a resilient

solution to the DCP, as elaborated in the subsequent model description.
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Sets
M set of machines, indexed by m ∈ {1, 2, . . . , |M|}.

M∗ set of machines excluding its first element.
J set of tasks, indexed by i and j ∈ {1, 2, . . . , |J |}.

J ∗ set of tasks excluding its first element.
Ij tasks that become inaccessible once task j starts.
C set of columns, indexed by c ∈ {1, 2, . . . , |C|}.

Jc tasks associated with column c, indexed by j.

J−
c set Jc excluding its last element.

Parameters
colj column associated with task j.

pmin
jm minimum processing duration of task j on machine m.

dmax
jm maximum allowable delay for processing task j on machine m.

tijm setup duration between tasks i and j on machine m.
δ number of columns required as spacing between machine pairs.
α control parameter (ranging from 0 to 1) influencing model resilience.
H planning horizon.

Variables
xjm optional interval variable indicating if task j is performed by machine m.
d′jm integer variable representing the delay in the processing of task j on machine m, d′jm ∈ [0, dmax

jm ]

yj optional interval variable representing a task j.
zm sequence of interval variables xjm for machine m.
lm state function denoting the location of machine m.

Model 2

Maximize Z =
∑
j∈J

PresenceOf(yj) (2.1)

s.t. Alternative(yj , xj.), ∀j ∈ J , (2.2)

NoOverlap(zm, t..m), ∀m ∈ M, (2.3)

EndBeforeStart(yj , yj+1), ∀c ∈ C, ∀j ∈ J−
c , (2.4)

NoOverlap({yj | j ∈ Ij}), ∀j ∈ J , (2.5)

AlwaysEqual(lm, xjm, colj), ∀j ∈ J , ∀m ∈ M, (2.6)

AlwaysIn(lm, xj,m−1, colj + δ + 1, |C|+ δ + 1), ∀j ∈ J , ∀m ∈ M∗, (2.7)

PresenceOf(yj) =⇒ PresenceOf(yj−1), ∀j ∈ J ∗, (2.8)

Max(EndOf(y.)) ≤ H, (2.9)

SizeOf(xjm) = (pmin
mj + d′jm) · PresenceOf(xjm), ∀m ∈ M, ∀j ∈ J , (2.10)

Resilient(d′
.m, dmax

.m , α), ∀m ∈ M, (2.11)

0 ≤ d′jm ≤ dmax
jm ∀j ∈ J , ∀m ∈ M. (2.12)

To better understand this second extension, let us explain its primary components:

Formulation (2.1–2.9) is identical to the deterministic formulation (0.1–0.9).

Constraint set (2.10) defines the duration of each task, on each machine, as the sum of the known

minimal duration and the delay variable.

Constraint set (2.11) ensures that accumulated delays of scheduled tasks meet or exceed a propor-

tion α of the total allowable delay, where α is a fraction between 0 and 1.

Constraint set (2.12) define the domains of the delay variables.

In the context of the Drill Coordination Problem (DCP), our resilient model addresses the uncer-

tainty in drilling durations while preserving the core structure and constraints of the original problem.

By representing uncertain drilling times as the sum of a minimum duration and a delay variable, we can

apply the Resilient constraint to ensure a balanced distribution of delays across tasks and machines.
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This approach is particularly valuable in open-pit mining operations, where geological conditions can

vary unpredictably. The α parameter provides mine planners with a tool to adjust the balance between

optimistic and conservative schedules, allowing for tailored risk management strategies. Importantly,

this method maintains crucial safety and operational constraints such as machine spacing and move-

ment restrictions, while offering a computationally tractable way to account for drilling uncertainties.

The resulting model aims to maximize the number of drilled targets within the planning horizon, pro-

ducing schedules that can proactively absorb a certain level of delays without compromising overall

performance or safety requirements.

4.4 Chance-constrained model

Chance-constrained optimization, introduced by Charnes and Cooper (1959), provides a framework

for dealing with uncertainty in optimization problems by allowing constraints to be violated with

a small probability. This approach is particularly well-suited to mining operations, where the need

to maintain operational efficiency must be balanced against the inherent uncertainties in geological

conditions and equipment performance. Our approach builds on the scenario-based approximation

of chance constraints Nemirovski and Shapiro (2006), but innovates by incorporating a resilience

mechanism. This novel combination allows for a more nuanced treatment of uncertainty in drill rig

scheduling, balancing the need for operational efficiency with the desire for schedule resilience.

Building upon the two-stage stochastic model and the resilient approach, we propose a chance-

constrained resilient model. This hybrid approach aims to balance the benefits of stochastic optimiza-

tion with the robustness of the resilient model, while avoiding overly conservative solutions. The key

idea is to enforce a Resilient constraint on a subset of scenarios, similar to a chance constraint in

stochastic programming. This ensures a certain level of resilience without requiring it for every possible

scenario, which could be unnecessarily restrictive.

To do so, we introduce a constraint called ConditionalResilient, which incorporates a binary

variable for scenario selection:

ConditionalResilient([X1, . . . , Xn], [D1, . . . , Dn], α, b) ⇔
n∑

i=1

Xi ≥ (α · b)
n∑

i=1

Di (3)

Here, b is a binary variable that determines whether the Resilient constraint is enforced (b = 1)

or relaxed (b = 0) for a given scenario.

Key components of the model:

1. Scenario set: A set of scenarios S, each representing a possible realization of drilling times.

2. Conditional resilient constraint: The ConditionalResilient constraint applied for each

machine and scenario.

3. Scenario selection: Binary variables bs for each scenario s ∈ S, where bs = 1 if the Resilient

constraint is enforced for scenario s, and 0 otherwise.

4. Chance constraint on resilience: Ensuring the resilient condition is met for a specified

proportion of scenarios: ∑
s∈S

bs ≥ ⌈β · |S|⌉ (4)

where β ∈ [0, 1] is the desired proportion of scenarios that should satisfy the Resilient con-

straint.

5. Special case: When β = 1, this model becomes equivalent to a two-stage resilient model, as

the ConditionalResilient constraint is enforced for all scenarios.
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This approach complements recent advancements in incorporating chance-constrained program-

ming into constraint programming (CP). In particular, Mercier-Aubin et al. (2020) introduced the

Confidence constraint, a new global constraint in CP that implements chance-constrained program-

ming concepts. Their method offers a way to model chance constraints without relying on scenario

approximation. The authors present a linear-time filtering algorithm that leverages the cumulative

distribution functions (CDFs) of the random variables to iteratively refine variable domains. This

approach ensures that the constraint is satisfied with a given probability, enhancing its practical ap-

plicability in CP solvers. Moreover, they demonstrate its effectiveness in an industrial case study in

the textile industry, showing its potential for real-world applications. However, their method assumes

independence between random variables, which may not always hold in complex real-world scenarios.

In contrast, our scenario-based approach does not require this assumption of independence, potentially

allowing for more flexible modeling of interdependent uncertainties in drilling operations, as elaborated

in the subsequent model description.

Sets
S set of scenarios, indexed by s.

M set of machines, indexed by m ∈ {1, 2, . . . , |M|}.
M∗ set of machines excluding its first element.
J set of tasks, indexed by i and j ∈ {1, 2, . . . , |J |}.

J ∗ set of tasks excluding its first element.
Ij tasks that become inaccessible once task j starts.
C set of columns, indexed by c ∈ {1, 2, . . . , |C|}.

Jc tasks associated with column c, indexed by j.

J−
c set Jc excluding its last element.

Parameters
colj column associated with task j.

pmin,s
jm minimum processing duration of task j on machine m in scenario s.
dmax
jm

maximum allowable delay for processing task j on machine m.
tijm setup duration between tasks i and j when on machine m.

δ number of columns required as spacing between machine pairs.
α

control parameter (ranging from 0 to 1) influencing model resilience.
β

desired proportion of scenarios that should satisfy the Resilient constraint.
H planning horizon.

Variables
xs
jm optional interval variable indicating if task j is performed by machine m in scenario s.

d′sjm
integer variable representing the delay in the processing of task j on machine m

in scenario s, d′sjm ∈ [0, dmax
jm ].

bs
binary variable indicating if the Resilient constraint is enforced for scenario s.

ysj optional interval variable representing task j in scenario s.

zsm sequence of interval variables xs
jm for machine m in scenario s.

lsm state function denoting the location of machine m in scenario s.

Model 3

Maximize Z =

∑
s∈S

∑
j∈J PresenceOf(ysj )

|S|
(3.1)

s.t. Alternative(ysj , xs
j.), ∀j ∈ J , ∀s ∈ S, (3.2)

NoOverlap(zsm, t..m), ∀m ∈ M, ∀s ∈ S, (3.3)

EndBeforeStart(ysj , ysj+1), ∀c ∈ C, ∀j ∈ J−
c , ∀s ∈ S, (3.4)

NoOverlap({ysj | j ∈ Ij}), ∀j ∈ J , ∀s ∈ S, (3.5)

AlwaysEqual(lsm, xs
jm, colj), ∀j ∈ J , ∀m ∈ M, ∀s ∈ S, (3.6)

AlwaysIn(lsm, xs
j,m−1, colj + δ + 1, |C|+ δ + 1), ∀j ∈ J , ∀m ∈ M∗, ∀s ∈ S, (3.7)
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PresenceOf(ysj ) =⇒ PresenceOf(ysj−1), ∀j ∈ J ∗, ∀s ∈ S, (3.8)

Max(EndOf(ys
. )) ≤ H, ∀s ∈ S, (3.9)

SameSequence(zs1m , zs2m ), ∀m ∈ M, ∀s1, s2 ∈ S, s1 ̸= s2,
(3.10)

SizeOf(xs
jm) = (pmin,s

jm + d′sjm) · PresenceOf(xs
jm), ∀j ∈ J , ∀m ∈ M, ∀s ∈ S, (3.11)

ConditionalResilient(d′s
.m, dmax

.m , α, bs), ∀m ∈ M, ∀s ∈ S, (3.12)∑
s∈S

bs ≥ ⌈β · |S|⌉, (3.13)

bs ∈ {0, 1}, ∀s ∈ S, (3.14)

0 ≤ d′sjm ≤ dmax
jm , ∀j ∈ J , ∀m ∈ M, ∀s ∈ S. (3.15)

The key components of this model are:

The objective function (3.1) maximizes the average number of tasks completed across all scenar-

ios. This formulation aims to optimize the overall performance of the schedule, considering all

possible scenarios equally. By focusing on the average task completion across all scenarios, the

model seeks to create schedules that perform well under various conditions.

Constraints (3.2–3.10) ensure the basic structure and feasibility of the schedule across all scenarios.

Constraint (3.11) defines the duration of each task, including the potential delay.

Constraint (3.12) applies the ConditionalResilient constraint for each machine and scenario,

enforcing resilience only when bs = 1.

Constraint (3.13) ensures that the Resilient constraint is satisfied for at least β proportion of the

scenarios.

Constraints (3.14) and (3.15) define the domains of the new variables.

In the context of the Drill Coordination Problem (DCP), the chance-constrained resilient model of-

fers a nuanced approach to handling uncertainty in drilling times. By combining elements of stochastic

programming, resilient optimization, and chance-constrained programming, it creates a flexible frame-

work for drill rig scheduling that balances efficiency and robustness. This model allows mine planners

to tailor schedules to their specific risk tolerance and operational priorities by adjusting parameters α

and β. For instance, a lower β might be chosen during periods of stable geological conditions, allowing

for more aggressive scheduling, while a higher β could be used when facing more uncertain terrain,
ensuring greater overall schedule resilience. It is worth noting that when β = 1, this model reduces to

a two-stage resilient model, providing a direct link between these approaches and demonstrating the

flexibility of our formulation.

Compared to the two-stage stochastic model and the probability-free resilient model, this approach

offers a middle ground. It maintains the scenario-based structure of the stochastic model while in-

corporating the delay tolerance mechanism of the resilient model, all within a framework that allows

for controlled violation of the resilience constraint. This flexibility makes it particularly suitable for

the dynamic and uncertain environment of open-pit mining operations, where conditions can vary

significantly and rapid adaptability is crucial.

5 Computational experiments

This section presents the computational results obtained from testing our three constraint programming

models on simulated instances derived from a coal mine’s drilling data. The primary aim is to evaluate

and compare the performance of the deterministic model (Model 0), the two-stage stochastic model

(Model 1), the probability-free model (Model 2), and the new chance-constrained resilient model

(Model 3), under various scenarios reflecting the inherent uncertainties in drill rig scheduling.
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5.1 Experimental setup

To thoroughly evaluate the performance of our proposed models, we conducted a comprehensive set

of computational experiments using simulated instances derived from real-world drilling data obtained

from a coal mine over a nine-month period. Our experimental process consists of two main phases:

model solving and solution evaluation, as illustrated in Figure 3.

5.1.1 Phase 1: Model solving

As shown in Figure 3, we begin with historical data from which we generate model instances. To ensure

our experiments cover a representative range of drilling activities, we first analyzed the distribution of

daily drilling operations in our historical data. Figure 2 presents a histogram of the number of holes

drilled per day based on our historical data.

Figure 2: Histogram of the number of holes drilled per day.

As shown in Figure 2, the number of holes drilled per day in our historical data ranges from 0 to

about 100, with the majority of days seeing between 20 and 60 holes drilled. Based on this distribution,

we chose to generate instances with task numbers ranging from 20 to 110, covering the full spectrum

of observed daily drilling activities, from light days to exceptionally busy ones. This range ensures
that our models are tested on scenarios that reflect both typical operations and more extreme cases,

providing a comprehensive evaluation of their performance and adaptability.

In addition to the number of holes drilled per day, we also analyzed the distribution of individual

drilling durations. Here is a summary of the drilling duration distribution (in minutes):

• Minimum: 4

• 25th percentile: 9

• Median: 13

• Mean: 14.14

• 75th percentile: 19

• Maximum: 59

• Standard deviation: 8.14

This distribution reflects the variability in drilling times that our models aim to address, ranging

from quick operations lasting just a few minutes to more time-consuming tasks that may take nearly

an hour.
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Figure 3: Flowchart of the experimental setup process.
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With these insights from our historical data analysis, we proceeded to generate instances for our

four models. For each model, we created instances with 2 or 3 machines and varying numbers of

tasks (20, 30, 40, 50, 60, 70, 80, 90, 100, or 110), covering the full spectrum of observed daily drilling

activities. Each model approaches the uncertainty in drilling durations differently, and our instance

generation process reflects these different approaches. The following subsections detail how instances

were generated for each specific model:

Model 0 (Deterministic). For each combination of machine and task numbers, we created a single

instance with processing times set to the average observed drilling duration. This resulted in a

total of 20 instances.

Model 1 (Two-stage stochastic). For each combination of machine and task numbers, we created

ten instances with varying numbers of scenarios (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100).

Processing times for each scenario were sampled from the historical distribution. This resulted

in a total of 200 instances.

Model 2 (Probability-free). We generated instances with varying values of the resilience parameter

α (0.1, 0.3, 0.5, 0.7, 0.9). We used two settings for the minimum processing time: the 25th and

50th percentiles of the historical data. These percentiles were chosen to represent conservative

and moderate estimates of minimum processing times, respectively. Maximum delays were set to

5 and 10 minutes for all tasks. These delay values were determined through an empirical process,

testing various values to find a range that, in conjunction with other parameters, provided good

performance in preliminary simulation tests. This approach allows us to evaluate the model’s

robustness to both smaller and larger variations in task duration. This resulted in a total of 400

instances.

Model 3 (Chance-constrained resilient). Instances were created using a fixed set of 50 scenarios.

Minimum processing times for each scenario were sampled from the historical distribution, similar

to Model 1. We varied the resilience parameter α (0.1, 0.3, 0.5, 0.7, 0.9) and the proportion

parameter β (0.2, 0.4, 0.6, 0.8, 1.0). For each instance, the maximum delay was set uniformly

to either 5 or 10 minutes for all tasks, consistent with the delay settings used in Model 2.

This consistency allows for a more direct comparison between the probability-free and chance-

constrained approaches. This resulted in a total of 1000 instances.

In total, we generated and solved 1,620 instances across all four models. The planning horizon for

all instances was set to 24 hours (1440 minutes), with time discretized into 1-minute intervals. After

solving these instances, we extracted the task sequencing information from the obtained solutions, as
depicted in the flowchart.

5.1.2 Phase 2: Solution evaluation

To assess the robustness and adaptability of the obtained sequences, we evaluated their performance

against a common set of test scenarios. As illustrated in Figure 3, we generated a set of 1000 test

scenarios for each combination of machines and tasks, with processing times sampled from the historical

distribution to ensure a realistic representation of the observed variability. For each solution obtained in

Phase 1 (where a solution represents a sequence of tasks for each machine), we evaluated its performance

on these 1000 test scenarios by solving a constraint satisfaction problem. This problem aimed to

find feasible start and end times for each task within the 24-hour planning horizon, adhering to the

predetermined sequencing and ensuring that all constraints were satisfied. In total, this resulted in

1,620,000 simulations, providing a broad basis for evaluating our models’ performance.

As shown in the final step of our flowchart, we collected the following metrics common to all models

for each evaluation:

• Number of tasks scheduled within the time horizon.

• Computational time for solving the original instance in Phase 1.

• Number of scenarios where the pre-determined sequencing was feasible.
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It is important to note that the computational time metric refers specifically to the time taken to

solve each original problem instance in Phase 1 and obtain the initial solution, not including the time

for subsequent scenario evaluations in Phase 2. In addition to these common metrics, we also collected

and analyzed model-specific metrics, which are discussed in detail in the respective sections for each

model.

This two-phase approach, clearly visualized in Figure 3, allows us to compare the performance of

all four models across a wide range of scenarios and uncertainty levels, providing insights into the

trade-offs between solution quality, computational time, and robustness for each approach.

5.2 Results and analysis

This section presents a comprehensive analysis of the computational results obtained from our four

constraint programming models: the deterministic model (Model 0), the two-stage stochastic model

(Model 1), the probability-free model (Model 2), and the chance-constrained resilient model (Model 3).

We evaluate each model’s performance across various metrics, including computational efficiency, so-

lution quality, robustness to uncertainty, and scalability. Our analysis aims to provide insights into

the strengths and limitations of each approach in addressing the inherent uncertainties in drill rig

scheduling. We begin with the deterministic model as a baseline and progressively examine the more

sophisticated models, culminating in a comparative analysis that highlights the trade-offs between the

different approaches. This systematic evaluation will help inform the selection of the most appropriate

model for different operational scenarios in drilling operations.

5.2.1 Deterministic model

The performance of the deterministic model is presented in Table 2. This model provides optimal

solutions when the drilling durations are known with certainty and equal to their average observed

values.

Our analysis of the deterministic model reveals several key insights:

Computational efficiency. The model demonstrates excellent solving times across all instance sizes,

with all problems solved in less than one second. This indicates high computational efficiency

regardless of the problem size or number of machines.

Feasibility. The model shows perfect feasibility (1000 out of 1000 scenarios) for instances up to 70

tasks, regardless of the number of machines. However, feasibility begins to decrease for larger

instances:

• 80 tasks: Still highly feasible (997/1000 for 2 machines, 996/1000 for 3 machines).

• 90 tasks: Feasibility drops to about 78% (785/1000 for 2 machines, 773/1000 for 3 machines).

• 100 tasks: Further decrease to about 59% (597/1000 for 2 machines, 576/1000 for 3 ma-

chines).

• 110 tasks: Significant drop to 44% (440/1000) for 2 machines and 26.2% (262/1000) for 3

machines.

Impact of problem size. The model’s performance in terms of feasibility clearly deteriorates as the

number of tasks increases beyond 80, suggesting limitations in handling larger, more complex

scheduling scenarios.

Machine quantity. Interestingly, increasing the number of machines from 2 to 3 does not consistently

improve feasibility, and in some cases, slightly reduces it. This result stems from the increased

complexity in resource allocation and scheduling constraints when an additional machine is in-

troduced.
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These findings highlight that while the deterministic model is computationally efficient, its ability

to produce feasible solutions decreases for larger problem instances. This underscores the challenges

in deterministic approaches when handling the inherent variability in drill rig scheduling, particularly

for larger-scale operations. The model’s performance provides a solid foundation for comparing with

more advanced modeling approaches in subsequent sections.

Table 2: Results for the deterministic model

Tasks
2 machines 3 machines

Time (seconds) Feasible Time (seconds) Feasible

20 ¡ 1 1000 ¡ 1 1000
30 ¡ 1 1000 ¡ 1 1000
40 ¡ 1 1000 ¡ 1 1000
50 ¡ 1 1000 ¡ 1 1000
60 ¡ 1 1000 ¡ 1 1000
70 ¡ 1 1000 ¡ 1 1000
80 ¡ 1 997 ¡ 1 996
90 ¡ 1 785 ¡ 1 773
100 ¡ 1 597 ¡ 1 576
110 ¡ 1 440 ¡ 1 262

5.2.2 Two-stage stochastic model

The two-stage stochastic model was tested with varying numbers of scenarios (10 to 100) for different

combinations of tasks (20 to 110) and machines (2 and 3). This model optimizes the task sequencing

considering the uncertainty in drilling durations by incorporating multiple scenarios. The model can

schedule all tasks for instances with up to 110 tasks, regardless of the number of machines (2 or

3), while ensuring the feasibility of the obtained task sequencing across most evaluated scenarios. A

summary of the key findings is presented here, with the full results available in Appendix A.

Computational efficiency: Solving times generally increased with the number of tasks and scenar-

ios, with a notable turning point observed around 90 tasks. For instance, with 100 scenarios:

• For 2 machines:

– 20 tasks: 7.61s.

– 80 tasks: 28.86s.

– 90 tasks: 369.84s (marking a significant turning point).

– 110 tasks: 1652.06s.

• For 3 machines:

– 20 tasks: 9.98s.

– 80 tasks: 16.70s.

– 90 tasks: 528.74s (similar turning point).

– 110 tasks: 705.63s.

The behavior is similar for both 2 and 3 machines, with a sharp increase in solving time around

90 tasks. However, the increase for larger instances is less dramatic with 3 machines. Notably,

even the longest solving time was less than 30 minutes, indicating reasonable computational

efficiency for practical use.

Feasibility: The model demonstrated high feasibility across most instances:

• Perfect feasibility (1000/1000 scenarios) for most instances up to 70 tasks.

• Slight decrease in feasibility for 80 tasks (consistently 997/1000 for 2 machines, 996/1000

for 3 machines).
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• High performance maintained for larger instances (90-110 tasks), with feasibility often reach-

ing 1000/1000, especially with higher numbers of scenarios.

Impact of scenario number: Increasing the number of scenarios generally improved solution ro-

bustness, particularly for larger instances (90-110 tasks). Perfect feasibility was often achieved

with 60 or more scenarios, and in some cases, even with fewer scenarios.

Machine quantity: The impact of increasing from 2 to 3 machines varied:

• Generally similar feasibility for smaller instances (up to 80 tasks).

• For larger instances (90-110 tasks), both 2 and 3 machines often achieved high feasibility,

especially with higher numbers of scenarios.

The increased solving times for larger instances can be attributed to the complexity introduced by

considering multiple scenarios. As the number of tasks grows, the model must account for a larger

number of potential realizations of drilling durations, leading to a more computationally demanding

optimization process.

Overall, the two-stage stochastic model demonstrates its effectiveness in addressing the uncertainty

in the drilling coordination problem. It provides robust task sequencing that remains feasible across

most evaluated scenarios, even for larger instances with up to 110 tasks. The model’s ability to

achieve high feasibility, often perfect feasibility, for larger instances highlights its robustness in handling

uncertain drilling durations.

These results suggest that the two-stage stochastic model offers improved robustness compared

to the deterministic model, particularly for larger instances and with higher numbers of scenarios.

The trade-off between solution quality and computational expense becomes more pronounced as the

problem size and number of scenarios increase, but the model maintains high feasibility even for the

largest instances tested.

Table 3 provides a snapshot of the model’s performance for selected instance sizes and scenario

numbers. The full results, including all scenario numbers and instance sizes, are available in Ap-

pendix A.

Table 3: Selected results for the two-stage stochastic model (10 and 100 scenarios).

Tasks

10 Scenarios 100 Scenarios

2 machines 3 machines 2 machines 3 machines

Time (s) Feasible Time (s) Feasible Time (s) Feasible Time (s) Feasible

20 0.82 1000 1.2 1000 7.61 1000 9.98 1000
50 2.63 1000 2.84 1000 19.75 1000 24.33 1000
90 8.35 968 17.09 998 369.84 1000 528.74 1000
100 14.06 1000 12.37 802 625.72 1000 817.95 1000
110 65.08 1000 68.55 1000 1652.06 999 705.63 1000

5.2.3 Probability-free model

The probability-free model incorporates a deterministic representation of uncertainty by ensuring that

the accumulated delays of scheduled tasks meet or exceed a specified fraction of the total allowable

delay, controlled by the α parameter. This model was tested with various combinations of parameters:

number of tasks (20 to 110), number of machines (2 or 3), maximum delay (5 or 10 minutes), α values

(0.1, 0.3, 0.5, 0.7, 0.9), and two percentile settings for minimum processing times (25th and 50th

percentiles).

Table 4 presents a selection of results from the probability-free model. The complete set of results

is available in Appendix B.
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Table 4: Selected results for the probability-free model.

Tasks Machines Max delay α Percentile Time (s) Feasible Delay per machine

110 2 10 0.9 50 3.92 1000 990
110 3 10 0.9 50 3.80 1000 990
100 2 10 0.7 50 1.40 1000 700
100 3 5 0.9 25 0.40 598 450
90 2 5 0.1 25 0.07 785 45

Key findings from the analysis include:

Minimum total delay and delay per machine: The resilient constraint in our model introduces

a minimum amount of delay that must be incorporated into the schedule. This minimum delay

is a key feature of our approach to handling uncertainty. The mechanism operates as follows:

1. Resilient constraint: Our model requires that the total delay across all tasks and machines

must be at least a certain fraction (α) of the maximum possible delay. This fraction is

controlled by the resilience parameter α.

2. Minimum total delay: Based on the resilient constraint, we can calculate the minimum

total delay as:

Minimum total delay = α · |J | · dmax · |M|, (6)

where α is the resilience parameter, |J | is the number of tasks, dmax is the maximum

allowable delay per task (set to either 5 or 10 minutes as described in the experimental

setup), and |M| is the number of machines.

3. Minimum delay per machine: From this, we can derive the minimum delay per machine:

Minimum delay per machine =
Minimum total delay

|M|
= α · |J | · dmax. (7)

4. Actual delay: While the model must incorporate at least this minimum delay, it could

potentially include more. The actual delay per machine is calculated as:

Actual delay per machine =

∑
j∈J

∑
m∈M

d′jm

|M|
, (8)

where d′jm represents the delay variable for job j on machine m.

5. Solver behavior: In practice, we observe that the solver typically sets the actual delay

to the minimum required by the resilient constraint. This allows the model to schedule as

many tasks as possible while still meeting the resilience requirement.

To illustrate, let us consider an example with 110 tasks, maximum delay of 10 minutes, and

α = 0.1:

• Minimum total delay: 0.1× 110× 10× |M| = 110|M| minutes.

• For 2 machines:

– Minimum total delay: 110× 2 = 220 minutes.

– Minimum delay per machine: 220/2 = 110 minutes.

• For 3 machines:

– Minimum total delay: 110× 3 = 330 minutes.

– Minimum delay per machine: 330/3 = 110 minutes.
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Note that while the minimum total delay increases with the number of machines, the minimum

delay per machine remains constant. This pattern holds across different parameter combinations,

with the minimum total delay scaling proportionally with the number of tasks, maximum delay,

α value, and number of machines.

Feasibility: For specific combinations of percentile, delay, and alpha values, the model achieves a

1000/1000 success rate, even for the largest instances. For example, with 110 tasks, 2 machines,

max delay = 10, α = 0.9, and 50th percentile, we achieve 1000/1000 feasible scenarios with a

solve time of 3.92 seconds.

Computational efficiency: The model solves most instances in under 1 second, with even the most

challenging scenarios (110 tasks) typically solved in less than 5 seconds. It is worth noting that

despite its effectiveness in managing uncertainty, the Resilient constraint is fundamentally a

linear constraint. This means it can be directly implemented and efficiently handled by standard

CP solvers without requiring custom filtering algorithms. Linear constraints are generally well-

supported by CP solvers, which have efficient propagation techniques for such constraints. This

simplicity in implementation, combined with its power in addressing uncertainty, contributes to

the model’s computational efficiency and makes our approach both practical and accessible for

real-world applications.

Scalability: As the problem size increases, the model continues to perform well. For instance, with

100 tasks, 2 machines, max delay = 10, α = 0.7, and 50th percentile, we achieve 1000/1000

feasible scenarios in 1.4 seconds.

Parameter impact: Higher α values often lead to improved feasibility for larger instances. Increasing

max delay from 5 to 10 minutes generally improves feasibility. Using the 50th percentile for

minimum processing times often results in better feasibility compared to the 25th percentile,

particularly for larger instances.

Machine configurations: The model performs well with both 2 and 3 machine configurations. In

some cases, especially for larger instances and higher α values, using 3 machines can lead to

improved feasibility.

While the model faces some challenges with very large instances under certain parameter combi-

nations, these limitations can often be overcome by adjusting the parameters. The model’s ability to

achieve 1000/1000 feasibility for even the largest instances under appropriate settings is noteworthy.

Compared to the deterministic model, the probability-free model exhibits a significant improvement

in handling uncertainty. While the deterministic model struggles with infeasible scenarios for instances

with 90, 100, and 110 tasks, the probability-free model consistently generates proactive task sequencing,

even for the largest instances considered. This highlights the effectiveness of the resilient approach in

addressing the inherent variability in drilling durations.

In conclusion, the probability-free model meets its primary objective of creating proactive, practical

schedules for a wide range of problem sizes. Its combination of computational efficiency, scalability, and

adaptability through parameter tuning makes it a useful tool for drill rig scheduling under uncertainty.

5.2.4 Chance-constrained model

The chance-constrained resilient model aims to balance stochastic optimization benefits with resilient

approach robustness while avoiding overly conservative solutions. It introduces a chance constraint

on schedule resilience, ensuring a specified proportion of scenarios incorporate a minimum level of

proactive delay allocation. The model employs two key parameters: α, determining the minimum pro-

portion of maximum allowable delay to be proactively incorporated, and β, specifying the proportion of

scenarios that must satisfy this resilience condition. Testing involved various parameter combinations:

number of tasks (20 to 110), number of machines (2 or 3), maximum delay per task (5 or 10 minutes),

α values (0.1, 0.3, 0.5, 0.7, 0.9), and β values (0.2, 0.4, 0.6, 0.8, 1.0). The results reveal several key

insights:



Les Cahiers du GERAD G–2024–62 27

Table 5 presents a selection of results from the chance-constrained model. The complete set of

results is available in Appendix C.

Table 5: Selected results for the chance-constrained model.

Tasks Machines Delay α β Solve time (s) Considered scenarios Delay per machine Feasible

110 2 10 0.9 0.2 3811.36 10 990 1000
110 3 10 0.9 0.2 2460.59 10 990 1000
100 2 5 0.1 0.4 1556.30 20 50 981
90 3 5 0.3 0.6 1171.38 30 270 1000
80 2 5 0.1 0.2 26.35 10 40 999

Key findings from the analysis include:

Scenario selection: The model consistently selects the minimum number of scenarios required to

satisfy the β constraint, as defined by: ∑
s∈S

bs ≥ β|S|, (9)

where S is the set of all scenarios, bs is a binary variable indicating whether scenario s is

considered, and |S| is the total number of scenarios (50 in this case). The number of considered

scenarios is always equal to β|S|. For example, when β = 0.2, the number of considered scenarios

is 10 (0.2 * 50).

This behavior is expected, as selecting more scenarios than necessary would hamper the solver’s

ability to schedule more tasks. Each additional scenario considered introduces more constraints

that the solution must satisfy, potentially reducing the flexibility of the schedule and limiting the

number of tasks that can be feasibly included. By selecting only the minimum required number

of scenarios, the model maintains the desired level of resilience specified by β while maximizing

its ability to schedule tasks efficiently.

Total delay per machine: We observe the same behavior as in the probability-free model. The

solver consistently chooses to set this value to its minimum, as defined by the resilient constraint,

to maximize the number of scheduled tasks.

Impact of α and β: Increasing α leads to higher total and average delays, as directly computed from

the delay constraint. Increasing β results in a higher number of considered scenarios, directly

proportional to the β value as per the scenario selection constraint, but does not affect the

average delay per scenario.

Computational efficiency: Solving times vary significantly based on problem size and parameter

settings. Smaller instances (up to 70 tasks) typically solve in under 30 seconds, while larger

instances, especially with 90 or more tasks, can take from a few minutes to over an hour. For

example, with α = 0.1, β = 0.2, delay = 5, and 2 machines:

• 20 tasks: 7.5s.

• 80 tasks: 26.35s.

• 110 tasks: 1256.63s.

Feasibility: The model maintains high feasibility across most parameter combinations, often achieving

1000/1000 feasible scenarios even for the largest instances (110 tasks). This demonstrates the

model’s effectiveness in managing uncertainty while maintaining schedule feasibility.

Impact of delay setting: Increasing the maximum delay from 5 to 10 minutes results in proportion-

ally higher average delays but does not significantly impact feasibility. It often leads to longer

solving times for larger instances.

Number of machines: The effect of increasing from 2 to 3 machines varies. For smaller instances, it

often leads to slightly longer solving times. For larger instances, especially with higher α values,

3 machines can sometimes lead to shorter solving times and improved feasibility.
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In conclusion, the chance-constrained model demonstrates the ability to create robust schedules

across a wide range of problem sizes and uncertainty levels. It offers a flexible approach to balancing

schedule robustness and computational efficiency through the α and β parameters. The model’s

behavior in selecting the minimum number of scenarios and implementing the minimum required delay

showcases its optimization capability, while its high feasibility rates, even for large instances, suggest

its potential for practical application in complex drill rig scheduling scenarios under uncertainty.

5.2.5 Comparative analysis

To provide a comprehensive comparison of the four models developed in this study, we analyze their

performance across various metrics: computational efficiency, solution quality, robustness to uncer-

tainty, and applicability based on data quality. Table 6 presents a summary of key results for each

model.

Table 6: Comparative summary of model performance.

Metric
Model 0 Model 1 Model 2 Model 3

(Deterministic) (Two-stage) (Resilient) (Chance-constrained)

Avg. Solve Time (110 tasks, 2 machines) ¡ 1s 1652.06s 3.61s 1256.63s
Feasibility (110 tasks, 2 machines) 440/1000 999/1000 1000/1000 1000/1000
Scalability (Solve time increase 20 to 110 tasks) Minimal Significant Moderate Significant
Robustness to Uncertainty Low High High High
Flexibility in Uncertainty Management None Limited Moderate High
Data Dependency High High Low Moderate

Computational efficiency: Model 0 (deterministic) consistently demonstrates the fastest solving

times, typically under 1 second even for large instances. Model 2 (resilient) also shows impressive

efficiency, with solving times generally under 5 seconds for most instances. Models 1 (two-stage)

and 3 (chance-constrained) exhibit longer solving times, especially for larger instances, due to

their more complex handling of uncertainty.

Solution quality and feasibility: All models can achieve optimal solutions (scheduling all tasks)

for smaller instances. However, as the problem size increases, differences emerge:

• Model 0 struggles with feasibility for larger instances, dropping to 440/1000 feasible scenar-

ios for 110 tasks.

• Model 1 maintains high feasibility (999/1000 for 110 tasks) with 100 scenarios, showing

improved robustness over Model 0.

• Models 2 and 3 consistently achieve perfect or near-perfect feasibility (1000/1000) even for

the largest instances, demonstrating superior robustness to uncertainty.

Notably, these models allow for scheduling 90 to 110 tasks consistently, a level of productivity

that was very rarely achieved in the historical data, as evident from the histogram in Figure 2.

This capability represents a significant potential for operational improvement.

Scalability: Model 0 and Model 2 show the best scalability, with solving times increasing only mod-

erately as the number of tasks grows. Models 1 and 3 exhibit more significant increases in solving

time for larger instances, reflecting the increased complexity of their uncertainty handling mech-

anisms. Despite this, all models can handle the full range of task numbers observed in the

historical data (see Figure 2), and even beyond, up to 110 tasks.

Robustness to uncertainty: Models 1, 2, and 3 all show significant improvements in robustness

compared to Model 0:

• Model 1 achieves this through scenario-based optimization.

• Model 2 incorporates a minimum level of delay directly into the schedule.
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• Model 3 combines scenario-based optimization with chance constraints on schedule re-

silience.

This enhanced robustness is particularly valuable for handling the variability in daily drilling

operations observed in the historical data (Figure 2).

Flexibility in uncertainty management: Model 3 offers the highest flexibility, allowing fine-tuning

of both the proportion of scenarios considered (β) and the level of resilience (α). Model 2 provides

moderate flexibility through the α parameter, while Model 1’s flexibility is limited to adjusting

the number of scenarios. Model 0 does not provide any mechanism for uncertainty management.

This flexibility is crucial for adapting to the wide range of daily drilling rates observed in the

historical data.

Applicability based on data quality: The choice of model also depends significantly on the quality

and availability of historical data:

• Models 0 and 1 are most suitable when historical data (like that shown in Figure 2) is

reliable, complete, and can be reasonably assumed to be representative of future conditions.

Model 1, in particular, leverages this data to consider multiple possible realizations of

uncertainty, similar to how machine learning models are trained on historical data to make

future predictions.

• Model 2 is particularly valuable when historical data is unavailable, unreliable, or not rep-

resentative of future conditions. This might occur in new mining locations, unexplored

geological formations, or when using new equipment. By incorporating a minimum level of

delay directly into the schedule, it provides robustness without relying on historical data.

• Model 3 offers a hybrid approach, suitable for situations where data is partially available

or trustworthy. It combines the scenario-based approach of Model 1 with the resilience

mechanism of Model 2, allowing for a more nuanced treatment of uncertainty when data

quality is mixed.

In conclusion, each model presents distinct trade-offs and is suited to different scenarios:

• Model 0 offers unparalleled speed but at the cost of robustness for larger instances and requires

reliable historical data.

• Model 1 provides a balanced approach, improving robustness significantly over Model 0 while

maintaining reasonable solve times, and is ideal when historical data is representative of future

conditions.

• Model 2 combines excellent computational efficiency with high robustness, making it particularly

suitable for time-sensitive applications or when historical data is unreliable.

• Model 3 offers the most comprehensive approach to uncertainty management, at the cost of

increased computational complexity, and is well-suited for situations with mixed data quality.

The choice between these models would depend on the specific requirements of the drilling op-

eration, balancing the need for computational speed, solution robustness, flexibility in uncertainty

management, and the quality and availability of historical data. This approach to decision-making

under uncertainty shares similarities with machine learning methodologies, where the quality and

representativeness of historical data play a crucial role in model selection and performance.

Importantly, all models demonstrate the capability to consistently schedule a number of tasks that

falls in the upper range or even exceeds the typical daily drilling rates observed in the historical data

(Figure 2). This suggests that these models have the potential to significantly improve operational

efficiency in drilling operations, potentially pushing productivity beyond historically observed levels

while maintaining robustness to uncertainty.
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6 Conclusion

This paper has addressed the challenge of scheduling electrical drill rigs in open-pit mines under

uncertain drilling durations. We proposed three non-deterministic CP models incorporating different

optimization paradigms: a two-stage stochastic approach, a probability-free (resilient) approach, and

a chance-constrained model.

Our computational experiments, based on simulated instances derived from real-world drilling

data, demonstrated the effectiveness of these models in generating robust and reliable schedules. The

comparative analysis highlighted trade-offs between computational efficiency, solution quality, and

robustness:

• The deterministic model, while computationally efficient, struggled with feasibility under drilling

duration variations, emphasizing the need for robust approaches.

• The two-stage stochastic model showed excellent robustness but at the cost of increased compu-

tational effort, especially for larger instances.

• The probability-free model emerged as a promising approach, balancing computational efficiency

and robustness without relying on probabilistic assumptions.

• The chance-constrained model offered the most comprehensive approach to uncertainty man-

agement, providing unparalleled flexibility in balancing schedule robustness and operational ef-

ficiency.

For mining practitioners, our study underscores the importance of explicitly considering uncertainty

in drill rig scheduling. The proposed models, particularly the probability-free and chance-constrained

approaches, can serve as valuable decision support tools, enhancing the efficiency and effectiveness of

drilling operations.

From a research perspective, our work highlights the value of constraint programming in modeling

and solving complex scheduling problems under uncertainty. Future research could explore integrating

these models with other aspects of the mining supply chain and investigating their performance under

different types of uncertainty.

In conclusion, this paper has made significant contributions to drill rig scheduling in open-pit mines

under uncertainty. The proposed non-deterministic CP models provide mining practitioners with a

suite of tools to effectively manage uncertain drilling durations, potentially driving more efficient and

robust drilling operations and contributing to the overall success and sustainability of the mining

industry.

Appendix A

Table A1: Results for the Two-Stage Stochastic Model.

Tasks Machines Scenarios Objective function Solve Time (s) Feasible

20 2 10 20 0.82 1000
30 2 10 30 0.87 1000
40 2 10 40 0.94 1000
50 2 10 50 2.63 1000
60 2 10 60 2.57 1000
70 2 10 70 3.71 1000
80 2 10 80 3.76 997
90 2 10 90 8.35 968
100 2 10 100 14.06 1000
110 2 10 110 65.08 1000

20 3 10 20 1.2 1000
30 3 10 30 0.31 1000

Continued on next page
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Table A1 – continued

Tasks Machines Scenarios Objective Solve Feasible

40 3 10 40 1.13 1000
50 3 10 50 2.84 1000
60 3 10 60 3.09 1000
70 3 10 70 3.67 1000
80 3 10 80 4.49 996
90 3 10 90 17.09 998
100 3 10 100 12.37 802
110 3 10 110 68.55 1000

20 2 20 20 1.41 1000
30 2 20 30 3.18 1000
40 2 20 40 1.67 1000
50 2 20 50 3.96 1000
60 2 20 60 2.5 1000
70 2 20 70 2.99 1000
80 2 20 80 6.15 997
90 2 20 90 37.67 968
100 2 20 100 276.26 998
110 2 20 110 243.62 1000

20 3 20 20 2.65 1000
30 3 20 30 2.89 1000
40 3 20 40 2.17 1000
50 3 20 50 6.21 1000
60 3 20 60 6.3 1000
70 3 20 70 4.05 1000
80 3 20 80 7.34 996
90 3 20 90 38.39 985
100 3 20 100 68.09 972
110 3 20 110 599.47 1000

20 2 30 20 2.6 1000
30 2 30 30 4.42 1000
40 2 30 40 4.18 1000
50 2 30 50 3.35 1000
60 2 30 60 6.25 1000
70 2 30 70 7.38 1000
80 2 30 80 8.42 997
90 2 30 90 73.54 975
100 2 30 100 997.66 1000
110 2 30 110 1323.73 1000

20 3 30 20 3.59 1000
30 3 30 30 2.39 1000
40 3 30 40 5.25 1000
50 3 30 50 6.73 1000
60 3 30 60 8.54 1000
70 3 30 70 10 1000
80 3 30 80 11.74 996
90 3 30 90 85.88 999
100 3 30 100 100.31 970
110 3 30 110 1443.02 1000

20 2 40 20 3.92 1000
30 2 40 30 5.81 1000
40 2 40 40 6.45 1000
50 2 40 50 6.84 1000
60 2 40 60 9.67 1000
70 2 40 70 11.44 1000
80 2 40 80 7.7 997
90 2 40 90 95.5 986
100 2 40 100 1364.18 1000
110 2 40 110 3296.25 1000

20 3 40 20 4.03 1000
30 3 40 30 3.43 1000
40 3 40 40 8.92 1000

Continued on next page
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Table A1 – continued

Tasks Machines Scenarios Objective Solve Feasible

50 3 40 50 5.88 1000
60 3 40 60 13.03 1000
70 3 40 70 13.57 1000
80 3 40 80 16.52 996
90 3 40 90 192.33 990
100 3 40 100 102.99 1000
110 3 40 110 246.9 1000

20 2 50 20 3.7 1000
30 2 50 30 5.3 1000
40 2 50 40 4.46 1000
50 2 50 50 9.7 1000
60 2 50 60 14.1 1000
70 2 50 70 8.67 1000
80 2 50 80 15.23 997
90 2 50 90 325.06 981
100 2 50 100 202.69 1000
110 2 50 110 571.41 1000

20 3 50 20 5.3 1000
30 3 50 30 7.23 1000
40 3 50 40 5.93 1000
50 3 50 50 11.83 1000
60 3 50 60 9.42 1000
70 3 50 70 18.76 1000
80 3 50 80 6.8 996
90 3 50 90 116.9 998
100 3 50 100 191.25 1000
110 3 50 110 279.87 1000

20 2 60 20 4.64 1000
30 2 60 30 8.34 1000
40 2 60 40 5.61 1000
50 2 60 50 7.23 1000
60 2 60 60 8.74 1000
70 2 60 70 16.7 1000
80 2 60 80 20.9 997
90 2 60 90 129.51 1000
100 2 60 100 321.71 1000
110 2 60 110 340.54 1000

20 3 60 20 8.55 1000
30 3 60 30 8.8 1000
40 3 60 40 11.84 1000
50 3 60 50 15.67 1000
60 3 60 60 18.67 1000
70 3 60 70 7.15 1000
80 3 60 80 13.54 996
90 3 60 90 170.71 1000
100 3 60 100 170.33 999
110 3 60 110 237.84 1000

20 2 70 20 6.49 1000
30 2 70 30 4.82 1000
40 2 70 40 10.13 1000
50 2 70 50 14.97 1000
60 2 70 60 16.42 1000
70 2 70 70 21.1 1000
80 2 70 80 14.07 997
90 2 70 90 131.96 1000
100 2 70 100 341.71 1000
110 2 70 110 765.69 1000

20 3 70 20 7.16 1000
30 3 70 30 10.4 1000
40 3 70 40 8.89 1000
50 3 70 50 18.66 1000

Continued on next page
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Table A1 – continued

Tasks Machines Scenarios Objective Solve Feasible

60 3 70 60 7.32 1000
70 3 70 70 16.47 1000
80 3 70 80 27.74 996
90 3 70 90 319.65 1000
100 3 70 100 313.25 1000
110 3 70 110 299.76 1000

20 2 80 20 7.8 1000
30 2 80 30 8.99 1000
40 2 80 40 12.03 1000
50 2 80 50 10.29 1000
60 2 80 60 20.62 1000
70 2 80 70 14.42 1000
80 2 80 80 8.11 997
90 2 80 90 217.23 1000
100 2 80 100 402.3 1000
110 2 80 110 1479.37 1000

20 3 80 20 5.05 1000
30 3 80 30 7.53 1000
40 3 80 40 17.95 1000
50 3 80 50 13.75 1000
60 3 80 60 14.31 1000
70 3 80 70 9.14 1000
80 3 80 80 25.25 996
90 3 80 90 349.88 1000
100 3 80 100 295.9 1000
110 3 80 110 416.73 1000

20 2 90 20 7.64 1000
30 2 90 30 10.05 1000
40 2 90 40 13.83 1000
50 2 90 50 19.67 1000
60 2 90 60 7.09 1000
70 2 90 70 8.84 1000
80 2 90 80 30.64 997
90 2 90 90 440.81 1000
100 2 90 100 589.03 1000
110 2 90 110 1812.63 1000

20 3 90 20 8.88 1000
30 3 90 30 9.12 1000
40 3 90 40 12.37 1000
50 3 90 50 8 1000
60 3 90 60 26.79 1000
70 3 90 70 24.92 1000
80 3 90 80 30 996
90 3 90 90 400.49 1000
100 3 90 100 176.39 1000
110 3 90 110 903.22 1000

20 2 100 20 7.61 1000
30 2 100 30 11.48 1000
40 2 100 40 16.03 1000
50 2 100 50 19.75 1000
60 2 100 60 14.97 1000
70 2 100 70 19.86 1000
80 2 100 80 28.86 997
90 2 100 90 369.84 1000
100 2 100 100 625.72 1000
110 2 100 110 1652.06 999

20 3 100 20 9.98 1000
30 3 100 30 14.72 1000
40 3 100 40 14.19 1000
50 3 100 50 24.33 1000
60 3 100 60 25.45 1000

Continued on next page



Les Cahiers du GERAD G–2024–62 34

Table A1 – continued

Tasks Machines Scenarios Objective Solve Feasible

70 3 100 70 23.49 1000
80 3 100 80 16.7 996
90 3 100 90 528.74 1000
100 3 100 100 817.95 1000
110 3 100 110 705.63 1000

Appendix B

Table B1: Results for the Probability-Free Model.

Tasks Machines Max α Percentile Objective Solve Total Feasible
delay function Time (s) machine delay

20 2 5 0.1 25 20 0.16 10 1000
30 2 5 0.1 25 30 0.03 15 1000
40 2 5 0.1 25 40 0.04 20 1000
50 2 5 0.1 25 50 0.04 25 1000
60 2 5 0.1 25 60 0.05 30 1000
70 2 5 0.1 25 70 0.05 35 1000
80 2 5 0.1 25 80 0.06 40 997
90 2 5 0.1 25 90 0.07 45 785
100 2 5 0.1 25 100 0.07 50 116
110 2 5 0.1 25 110 0.69 55 2

20 3 5 0.1 25 20 0.24 10 1000
30 3 5 0.1 25 30 0.04 15 1000
40 3 5 0.1 25 40 0.04 20 1000
50 3 5 0.1 25 50 0.05 25 1000
60 3 5 0.1 25 60 0.06 30 1000
70 3 5 0.1 25 70 0.06 35 1000
80 3 5 0.1 25 80 0.08 40 996
90 3 5 0.1 25 90 0.09 45 773
100 3 5 0.1 25 100 0.09 50 124
110 3 5 0.1 25 110 0.55 55 2

20 2 5 0.3 25 20 0.17 30 1000
30 2 5 0.3 25 30 0.03 45 1000
40 2 5 0.3 25 40 0.04 60 1000
50 2 5 0.3 25 50 0.05 75 1000
60 2 5 0.3 25 60 0.05 90 1000
70 2 5 0.3 25 70 0.05 105 1000
80 2 5 0.3 25 80 0.06 120 997
90 2 5 0.3 25 90 0.06 135 785
100 2 5 0.3 25 100 0.07 150 116
110 2 5 0.3 25 110 0.67 165 2

20 3 5 0.3 25 20 0.25 30 1000
30 3 5 0.3 25 30 0.04 45 1000
40 3 5 0.3 25 40 0.04 60 1000
50 3 5 0.3 25 50 0.05 75 1000
60 3 5 0.3 25 60 0.06 90 1000
70 3 5 0.3 25 70 0.06 105 1000
80 3 5 0.3 25 80 0.07 120 996
90 3 5 0.3 25 90 0.08 135 773
100 3 5 0.3 25 100 0.09 150 124
110 3 5 0.3 25 110 0.96 165 2

20 2 5 0.5 25 20 0.17 50 1000
30 2 5 0.5 25 30 0.04 75 1000
40 2 5 0.5 25 40 0.04 100 1000
50 2 5 0.5 25 50 0.04 125 1000
60 2 5 0.5 25 60 0.05 150 1000
70 2 5 0.5 25 70 0.05 175 1000
80 2 5 0.5 25 80 0.06 200 997

Continued on next page
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Table B1 – continued

Tasks Machines Max α Percentile Objective Solve Total Feasible
delay function Time (s) machine delay

90 2 5 0.5 25 90 0.07 225 785
100 2 5 0.5 25 100 0.07 250 116
110 2 5 0.5 25 110 1.73 275 31

20 3 5 0.5 25 20 0.22 50 1000
30 3 5 0.5 25 30 0.04 75 1000
40 3 5 0.5 25 40 0.04 100 1000
50 3 5 0.5 25 50 0.05 125 1000
60 3 5 0.5 25 60 0.05 150 1000
70 3 5 0.5 25 70 0.07 175 1000
80 3 5 0.5 25 80 0.07 200 996
90 3 5 0.5 25 90 0.09 225 773
100 3 5 0.5 25 100 0.09 250 124
110 3 5 0.5 25 110 1.91 275 103

20 2 5 0.7 25 20 0.17 70 1000
30 2 5 0.7 25 30 0.03 105 1000
40 2 5 0.7 25 40 0.04 140 1000
50 2 5 0.7 25 50 0.04 175 1000
60 2 5 0.7 25 60 0.05 210 1000
70 2 5 0.7 25 70 0.06 245 1000
80 2 5 0.7 25 80 0.06 280 997
90 2 5 0.7 25 90 0.07 315 785
100 2 5 0.7 25 100 0.32 350 467
110 2 5 0.7 25 110 2.17 385 35

20 3 5 0.7 25 20 0.24 70 1000
30 3 5 0.7 25 30 0.04 105 1000
40 3 5 0.7 25 40 0.04 140 1000
50 3 5 0.7 25 50 0.05 175 1000
60 3 5 0.7 25 60 0.06 210 1000
70 3 5 0.7 25 70 0.07 245 1000
80 3 5 0.7 25 80 0.07 280 996
90 3 5 0.7 25 90 0.08 315 773
100 3 5 0.7 25 100 0.39 350 758
110 3 5 0.7 25 110 2.53 385 90

20 2 5 0.9 25 20 0.15 90 1000
30 2 5 0.9 25 30 0.03 135 1000
40 2 5 0.9 25 40 0.04 180 1000
50 2 5 0.9 25 50 0.05 225 1000
60 2 5 0.9 25 60 0.05 270 1000
70 2 5 0.9 25 70 0.06 315 1000
80 2 5 0.9 25 80 0.06 360 997
90 2 5 0.9 25 90 0.07 405 785
100 2 5 0.9 25 100 0.33 450 498
110 2 5 0.9 25 110 3.77 495 1000

20 3 5 0.9 25 20 0.23 90 1000
30 3 5 0.9 25 30 0.04 135 1000
40 3 5 0.9 25 40 0.04 180 1000
50 3 5 0.9 25 50 0.05 225 1000
60 3 5 0.9 25 60 0.06 270 1000
70 3 5 0.9 25 70 0.06 315 1000
80 3 5 0.9 25 80 0.07 360 996
90 3 5 0.9 25 90 0.08 405 773
100 3 5 0.9 25 100 0.4 450 598
110 3 5 0.9 25 110 2.31 495 171

20 2 10 0.1 25 20 0.18 20 1000
30 2 10 0.1 25 30 0.04 30 1000
40 2 10 0.1 25 40 0.04 40 1000
50 2 10 0.1 25 50 0.04 50 1000
60 2 10 0.1 25 60 0.05 60 1000
70 2 10 0.1 25 70 0.06 70 1000
80 2 10 0.1 25 80 0.06 80 997

Continued on next page
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Table B1 – continued

Tasks Machines Max α Percentile Objective Solve Total Feasible
delay function Time (s) machine delay

90 2 10 0.1 25 90 0.07 90 785
100 2 10 0.1 25 100 0.07 100 116
110 2 10 0.1 25 110 0.08 110 2

20 3 10 0.1 25 20 0.27 20 1000
30 3 10 0.1 25 30 0.04 30 1000
40 3 10 0.1 25 40 0.05 40 1000
50 3 10 0.1 25 50 0.05 50 1000
60 3 10 0.1 25 60 0.06 60 1000
70 3 10 0.1 25 70 0.07 70 1000
80 3 10 0.1 25 80 0.07 80 996
90 3 10 0.1 25 90 0.08 90 773
100 3 10 0.1 25 100 0.09 100 124
110 3 10 0.1 25 110 0.81 110 2

20 2 10 0.3 25 20 0.22 60 1000
30 2 10 0.3 25 30 0.03 90 1000
40 2 10 0.3 25 40 0.04 120 1000
50 2 10 0.3 25 50 0.04 150 1000
60 2 10 0.3 25 60 0.05 180 1000
70 2 10 0.3 25 70 0.06 210 1000
80 2 10 0.3 25 80 0.06 240 997
90 2 10 0.3 25 90 0.07 270 785
100 2 10 0.3 25 100 0.07 300 116
110 2 10 0.3 25 110 0.38 330 42

20 3 10 0.3 25 20 0.24 60 1000
30 3 10 0.3 25 30 0.04 90 1000
40 3 10 0.3 25 40 0.05 120 1000
50 3 10 0.3 25 50 0.05 150 1000
60 3 10 0.3 25 60 0.06 180 1000
70 3 10 0.3 25 70 0.06 210 1000
80 3 10 0.3 25 80 0.07 240 996
90 3 10 0.3 25 90 0.1 270 773
100 3 10 0.3 25 100 0.09 300 124
110 3 10 0.3 25 110 2.42 330 51

20 2 10 0.5 25 20 0.18 100 1000
30 2 10 0.5 25 30 0.03 150 1000
40 2 10 0.5 25 40 0.04 200 1000
50 2 10 0.5 25 50 0.05 250 1000
60 2 10 0.5 25 60 0.05 300 1000
70 2 10 0.5 25 70 0.06 350 1000
80 2 10 0.5 25 80 0.06 400 997
90 2 10 0.5 25 90 0.07 450 785
100 2 10 0.5 25 100 0.34 500 560
110 2 10 0.5 25 110 0.38 550 47

20 3 10 0.5 25 20 0.21 100 1000
30 3 10 0.5 25 30 0.04 150 1000
40 3 10 0.5 25 40 0.04 200 1000
50 3 10 0.5 25 50 0.05 250 1000
60 3 10 0.5 25 60 0.06 300 1000
70 3 10 0.5 25 70 0.06 350 1000
80 3 10 0.5 25 80 0.08 400 996
90 3 10 0.5 25 90 0.08 450 773
100 3 10 0.5 25 100 0.4 500 779
110 3 10 0.5 25 110 2.52 550 103

20 2 10 0.7 25 20 0.19 140 1000
30 2 10 0.7 25 30 0.04 210 1000
40 2 10 0.7 25 40 0.04 280 1000
50 2 10 0.7 25 50 0.05 350 1000
60 2 10 0.7 25 60 0.05 420 1000
70 2 10 0.7 25 70 0.06 490 1000
80 2 10 0.7 25 80 0.06 560 997

Continued on next page
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Table B1 – continued

Tasks Machines Max α Percentile Objective Solve Total Feasible
delay function Time (s) machine delay

90 2 10 0.7 25 90 0.34 630 934
100 2 10 0.7 25 100 0.34 700 467
110 2 10 0.7 25 110 1.6 770 1000

20 3 10 0.7 25 20 0.22 140 1000
30 3 10 0.7 25 30 0.04 210 1000
40 3 10 0.7 25 40 0.05 280 1000
50 3 10 0.7 25 50 0.05 350 1000
60 3 10 0.7 25 60 0.06 420 1000
70 3 10 0.7 25 70 0.07 490 1000
80 3 10 0.7 25 80 0.08 560 996
90 3 10 0.7 25 90 0.35 630 994
100 3 10 0.7 25 100 0.41 700 758
110 3 10 0.7 25 110 4.08 770 110

20 2 10 0.9 25 20 0.17 180 1000
30 2 10 0.9 25 30 0.04 270 1000
40 2 10 0.9 25 40 0.04 360 1000
50 2 10 0.9 25 50 0.05 450 1000
60 2 10 0.9 25 60 0.05 540 1000
70 2 10 0.9 25 70 0.06 630 1000
80 2 10 0.9 25 80 0.42 720 1000
90 2 10 0.9 25 90 1.14 810 1000
100 2 10 0.9 25 100 1.36 900 1000
110 2 10 0.9 25 110 1.95 990 1000

20 3 10 0.9 25 20 0.25 180 1000
30 3 10 0.9 25 30 0.04 270 1000
40 3 10 0.9 25 40 0.04 360 1000
50 3 10 0.9 25 50 0.07 450 1000
60 3 10 0.9 25 60 0.06 540 1000
70 3 10 0.9 25 70 0.06 630 1000
80 3 10 0.9 25 80 0.35 720 1000
90 3 10 0.9 25 90 0.56 810 997
100 3 10 0.9 25 100 1.49 900 998
110 3 10 0.9 25 110 4.24 990 1000

20 2 5 0.1 50 20 0.17 10 1000
30 2 5 0.1 50 30 0.03 15 1000
40 2 5 0.1 50 40 0.04 20 1000
50 2 5 0.1 50 50 0.04 25 1000
60 2 5 0.1 50 60 0.05 30 1000
70 2 5 0.1 50 70 0.05 35 1000
80 2 5 0.1 50 80 0.06 40 997
90 2 5 0.1 50 90 0.07 45 785
100 2 5 0.1 50 100 0.32 50 387
110 2 5 0.1 50 110 4.05 55 287

20 3 5 0.1 50 20 0.25 10 1000
30 3 5 0.1 50 30 0.03 15 1000
40 3 5 0.1 50 40 0.04 20 1000
50 3 5 0.1 50 50 0.05 25 1000
60 3 5 0.1 50 60 0.06 30 1000
70 3 5 0.1 50 70 0.07 35 1000
80 3 5 0.1 50 80 0.07 40 996
90 3 5 0.1 50 90 0.08 45 773
100 3 5 0.1 50 100 0.4 50 821
110 3 5 0.1 50 110 3.97 55 508

20 2 5 0.3 50 20 0.17 30 1000
30 2 5 0.3 50 30 0.03 45 1000
40 2 5 0.3 50 40 0.04 60 1000
50 2 5 0.3 50 50 0.04 75 1000
60 2 5 0.3 50 60 0.05 90 1000
70 2 5 0.3 50 70 0.05 105 1000
80 2 5 0.3 50 80 0.06 120 997

Continued on next page
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Table B1 – continued

Tasks Machines Max α Percentile Objective Solve Total Feasible
delay function Time (s) machine delay

90 2 5 0.3 50 90 0.34 135 946
100 2 5 0.3 50 100 0.33 150 590
110 2 5 0.3 50 110 4.04 165 988

20 3 5 0.3 50 20 0.21 30 1000
30 3 5 0.3 50 30 0.04 45 1000
40 3 5 0.3 50 40 0.05 60 1000
50 3 5 0.3 50 50 0.05 75 1000
60 3 5 0.3 50 60 0.06 90 1000
70 3 5 0.3 50 70 0.07 105 1000
80 3 5 0.3 50 80 0.07 120 996
90 3 5 0.3 50 90 0.37 135 990
100 3 5 0.3 50 100 0.39 150 439
110 3 5 0.3 50 110 3.71 165 292

20 2 5 0.5 50 20 0.17 50 1000
30 2 5 0.5 50 30 0.03 75 1000
40 2 5 0.5 50 40 0.04 100 1000
50 2 5 0.5 50 50 0.04 125 1000
60 2 5 0.5 50 60 0.05 150 1000
70 2 5 0.5 50 70 0.05 175 1000
80 2 5 0.5 50 80 0.06 200 997
90 2 5 0.5 50 90 0.34 225 966
100 2 5 0.5 50 100 0.35 250 616
110 2 5 0.5 50 110 3.33 275 985

20 3 5 0.5 50 20 0.03 50 1000
30 3 5 0.5 50 30 0.04 75 1000
40 3 5 0.5 50 40 0.05 100 1000
50 3 5 0.5 50 50 0.06 125 1000
60 3 5 0.5 50 60 0.06 150 1000
70 3 5 0.5 50 70 0.06 175 1000
80 3 5 0.5 50 80 0.08 200 996
90 3 5 0.5 50 90 0.38 225 991
100 3 5 0.5 50 100 0.4 250 659
110 3 5 0.5 50 110 3.53 275 218

20 2 5 0.7 50 20 0.18 70 1000
30 2 5 0.7 50 30 0.03 105 1000
40 2 5 0.7 50 40 0.04 140 1000
50 2 5 0.7 50 50 0.05 175 1000
60 2 5 0.7 50 60 0.05 210 1000
70 2 5 0.7 50 70 0.05 245 1000
80 2 5 0.7 50 80 0.32 280 1000
90 2 5 0.7 50 90 0.45 315 986
100 2 5 0.7 50 100 1.5 350 1000
110 2 5 0.7 50 110 3.8 385 1000

20 3 5 0.7 50 20 0.24 70 1000
30 3 5 0.7 50 30 0.04 105 1000
40 3 5 0.7 50 40 0.04 140 1000
50 3 5 0.7 50 50 0.05 175 1000
60 3 5 0.7 50 60 0.06 210 1000
70 3 5 0.7 50 70 0.06 245 1000
80 3 5 0.7 50 80 0.36 280 1000
90 3 5 0.7 50 90 0.37 315 991
100 3 5 0.7 50 100 0.46 350 803
110 3 5 0.7 50 110 5 385 1000

20 2 5 0.9 50 20 0.19 90 1000
30 2 5 0.9 50 30 0.03 135 1000
40 2 5 0.9 50 40 0.04 180 1000
50 2 5 0.9 50 50 0.04 225 1000
60 2 5 0.9 50 60 0.05 270 1000
70 2 5 0.9 50 70 0.05 315 1000
80 2 5 0.9 50 80 0.39 360 1000
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Table B1 – continued

Tasks Machines Max α Percentile Objective Solve Total Feasible
delay function Time (s) machine delay

90 2 5 0.9 50 90 1.04 405 1000
100 2 5 0.9 50 100 1.51 450 1000
110 2 5 0.9 50 110 3.61 495 1000

20 3 5 0.9 50 20 0.21 90 1000
30 3 5 0.9 50 30 0.04 135 1000
40 3 5 0.9 50 40 0.05 180 1000
50 3 5 0.9 50 50 0.05 225 1000
60 3 5 0.9 50 60 0.06 270 1000
70 3 5 0.9 50 70 0.07 315 1000
80 3 5 0.9 50 80 0.35 360 1000
90 3 5 0.9 50 90 0.59 405 1000
100 3 5 0.9 50 100 1.4 450 1000
110 3 5 0.9 50 110 4.17 495 1000

20 2 10 0.1 50 20 0.19 20 1000
30 2 10 0.1 50 30 0.03 30 1000
40 2 10 0.1 50 40 0.04 40 1000
50 2 10 0.1 50 50 0.04 50 1000
60 2 10 0.1 50 60 0.05 60 1000
70 2 10 0.1 50 70 0.06 70 1000
80 2 10 0.1 50 80 0.06 80 997
90 2 10 0.1 50 90 0.07 90 785
100 2 10 0.1 50 100 0.32 100 387
110 2 10 0.1 50 110 1.62 110 267

20 3 10 0.1 50 20 0.22 20 1000
30 3 10 0.1 50 30 0.04 30 1000
40 3 10 0.1 50 40 0.04 40 1000
50 3 10 0.1 50 50 0.05 50 1000
60 3 10 0.1 50 60 0.06 60 1000
70 3 10 0.1 50 70 0.07 70 1000
80 3 10 0.1 50 80 0.07 80 996
90 3 10 0.1 50 90 0.08 90 773
100 3 10 0.1 50 100 0.4 100 821
110 3 10 0.1 50 110 4.12 110 462

20 2 10 0.3 50 20 0.18 60 1000
30 2 10 0.3 50 30 0.04 90 1000
40 2 10 0.3 50 40 0.04 120 1000
50 2 10 0.3 50 50 0.04 150 1000
60 2 10 0.3 50 60 0.05 180 1000
70 2 10 0.3 50 70 0.05 210 1000
80 2 10 0.3 50 80 0.06 240 997
90 2 10 0.3 50 90 0.35 270 942
100 2 10 0.3 50 100 0.33 300 590
110 2 10 0.3 50 110 1.35 330 630

20 3 10 0.3 50 20 0.24 60 1000
30 3 10 0.3 50 30 0.04 90 1000
40 3 10 0.3 50 40 0.05 120 1000
50 3 10 0.3 50 50 0.05 150 1000
60 3 10 0.3 50 60 0.05 180 1000
70 3 10 0.3 50 70 0.07 210 1000
80 3 10 0.3 50 80 0.07 240 996
90 3 10 0.3 50 90 0.37 270 990
100 3 10 0.3 50 100 0.4 300 439
110 3 10 0.3 50 110 4.38 330 458

20 2 10 0.5 50 20 0.21 100 1000
30 2 10 0.5 50 30 0.04 150 1000
40 2 10 0.5 50 40 0.04 200 1000
50 2 10 0.5 50 50 0.04 250 1000
60 2 10 0.5 50 60 0.05 300 1000
70 2 10 0.5 50 70 0.06 350 1000
80 2 10 0.5 50 80 0.3 400 1000
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Table B1 – continued

Tasks Machines Max α Percentile Objective Solve Total Feasible
delay function Time (s) machine delay

90 2 10 0.5 50 90 0.34 450 979
100 2 10 0.5 50 100 0.37 500 616
110 2 10 0.5 50 110 1.33 550 1000

20 3 10 0.5 50 20 0.21 100 1000
30 3 10 0.5 50 30 0.04 150 1000
40 3 10 0.5 50 40 0.04 200 1000
50 3 10 0.5 50 50 0.05 250 1000
60 3 10 0.5 50 60 0.06 300 1000
70 3 10 0.5 50 70 0.07 350 1000
80 3 10 0.5 50 80 0.36 400 1000
90 3 10 0.5 50 90 0.37 450 991
100 3 10 0.5 50 100 0.4 500 659
110 3 10 0.5 50 110 3.77 550 517

20 2 10 0.7 50 20 0.2 140 1000
30 2 10 0.7 50 30 0.03 210 1000
40 2 10 0.7 50 40 0.04 280 1000
50 2 10 0.7 50 50 0.05 350 1000
60 2 10 0.7 50 60 0.05 420 1000
70 2 10 0.7 50 70 0.26 490 1000
80 2 10 0.7 50 80 0.38 560 1000
90 2 10 0.7 50 90 1.07 630 1000
100 2 10 0.7 50 100 1.4 700 1000
110 2 10 0.7 50 110 1.9 770 1000

20 3 10 0.7 50 20 0.21 140 1000
30 3 10 0.7 50 30 0.04 210 1000
40 3 10 0.7 50 40 0.04 280 1000
50 3 10 0.7 50 50 0.05 350 1000
60 3 10 0.7 50 60 0.06 420 1000
70 3 10 0.7 50 70 0.33 490 1000
80 3 10 0.7 50 80 0.36 560 1000
90 3 10 0.7 50 90 0.45 630 999
100 3 10 0.7 50 100 0.87 700 843
110 3 10 0.7 50 110 3.79 770 754

20 2 10 0.9 50 20 0.19 180 1000
30 2 10 0.9 50 30 0.03 270 1000
40 2 10 0.9 50 40 0.04 360 1000
50 2 10 0.9 50 50 0.05 450 1000
60 2 10 0.9 50 60 0.1 540 1000
70 2 10 0.9 50 70 0.5 630 1000
80 2 10 0.9 50 80 1 720 1000
90 2 10 0.9 50 90 1.36 810 1000
100 2 10 0.9 50 100 1.61 900 1000
110 2 10 0.9 50 110 3.92 990 1000

20 3 10 0.9 50 20 0.25 180 1000
30 3 10 0.9 50 30 0.04 270 1000
40 3 10 0.9 50 40 0.04 360 1000
50 3 10 0.9 50 50 0.05 450 1000
60 3 10 0.9 50 60 0.27 540 1000
70 3 10 0.9 50 70 0.37 630 1000
80 3 10 0.9 50 80 0.7 720 1000
90 3 10 0.9 50 90 1.28 810 1000
100 3 10 0.9 50 100 1.68 900 1000
110 3 10 0.9 50 110 3.8 990 1000
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Appendix C

Table C1: Results for the Chance-Constrained Model (50 Scenarios).

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

20 2 5 0.2 0.1 20 7.5 10 10 1000
30 2 5 0.2 0.1 30 12.63 10 15 1000
40 2 5 0.2 0.1 40 17.75 10 20 1000
50 2 5 0.2 0.1 50 22.8 10 25 1000
60 2 5 0.2 0.1 60 27.09 10 30 1000
70 2 5 0.2 0.1 70 15.9 10 35 1000
80 2 5 0.2 0.1 80 26.35 10 40 999
90 2 5 0.2 0.1 90 544.1 10 45 1000
100 2 5 0.2 0.1 100 815.13 10 50 1000
110 2 5 0.2 0.1 110 1256.63 10 55 1000

20 3 5 0.2 0.1 20 11.96 10 10 1000
30 3 5 0.2 0.1 30 17.58 10 15 1000
40 3 5 0.2 0.1 40 26.07 10 20 1000
50 3 5 0.2 0.1 50 16.78 10 25 1000
60 3 5 0.2 0.1 60 20.19 10 30 1000
70 3 5 0.2 0.1 70 29.16 10 35 1000
80 3 5 0.2 0.1 80 17.32 10 40 995
90 3 5 0.2 0.1 90 1114.96 10 45 1000
100 3 5 0.2 0.1 100 2506.38 10 50 1000
110 3 5 0.2 0.1 110 3186.55 10 55 1000

20 2 5 0.2 0.3 20 6.71 10 30 1000
30 2 5 0.2 0.3 30 11.76 10 45 1000
40 2 5 0.2 0.3 40 18.15 10 60 1000
50 2 5 0.2 0.3 50 25.55 10 75 1000
60 2 5 0.2 0.3 60 29.25 10 90 1000
70 2 5 0.2 0.3 70 15.17 10 105 1000
80 2 5 0.2 0.3 80 10.46 10 120 999
90 2 5 0.2 0.3 90 446.05 10 135 1000
100 2 5 0.2 0.3 100 539.46 10 150 999
110 2 5 0.2 0.3 110 1240.66 10 165 1000

20 3 5 0.2 0.3 20 10.88 10 30 1000
30 3 5 0.2 0.3 30 17.45 10 45 1000
40 3 5 0.2 0.3 40 24.36 10 60 1000
50 3 5 0.2 0.3 50 13.67 10 75 1000
60 3 5 0.2 0.3 60 23.52 10 90 1000
70 3 5 0.2 0.3 70 20.78 10 105 1000
80 3 5 0.2 0.3 80 701.94 10 120 1000
90 3 5 0.2 0.3 90 1050.02 10 135 1000
100 3 5 0.2 0.3 100 2347.12 10 150 1000
110 3 5 0.2 0.3 110 2931.68 10 165 1000

20 2 5 0.2 0.5 20 8.25 10 50 1000
30 2 5 0.2 0.5 30 11.98 10 75 1000
40 2 5 0.2 0.5 40 19.25 10 100 1000
50 2 5 0.2 0.5 50 25.46 10 125 1000
60 2 5 0.2 0.5 60 29.08 10 150 1000
70 2 5 0.2 0.5 70 15.84 10 175 1000
80 2 5 0.2 0.5 80 661.78 10 200 1000
90 2 5 0.2 0.5 90 478.41 10 225 1000
100 2 5 0.2 0.5 100 1623.09 10 250 1000
110 2 5 0.2 0.5 110 457.75 10 275 994

20 3 5 0.2 0.5 20 11.5 10 50 1000
30 3 5 0.2 0.5 30 18.02 10 75 1000
40 3 5 0.2 0.5 40 25.12 10 100 1000
50 3 5 0.2 0.5 50 13.07 10 125 1000
60 3 5 0.2 0.5 60 19.59 10 150 1000
70 3 5 0.2 0.5 70 24.5 10 175 1000
80 3 5 0.2 0.5 80 494.44 10 200 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 5 0.2 0.5 90 754 10 225 1000
100 3 5 0.2 0.5 100 2278.95 10 250 1000
110 3 5 0.2 0.5 110 2409.7 10 275 1000

20 2 5 0.2 0.7 20 8.73 10 70 1000
30 2 5 0.2 0.7 30 12.41 10 105 1000
40 2 5 0.2 0.7 40 17.84 10 140 1000
50 2 5 0.2 0.7 50 21.88 10 175 1000
60 2 5 0.2 0.7 60 26.43 10 210 1000
70 2 5 0.2 0.7 70 18.71 10 245 1000
80 2 5 0.2 0.7 80 262.41 10 280 1000
90 2 5 0.2 0.7 90 788.72 10 315 1000
100 2 5 0.2 0.7 100 636.61 10 350 1000
110 2 5 0.2 0.7 110 1140.82 10 385 1000

20 3 5 0.2 0.7 20 10.13 10 70 1000
30 3 5 0.2 0.7 30 17.67 10 105 1000
40 3 5 0.2 0.7 40 24.71 10 140 1000
50 3 5 0.2 0.7 50 16.48 10 175 1000
60 3 5 0.2 0.7 60 19.1 10 210 1000
70 3 5 0.2 0.7 70 384.74 10 245 1000
80 3 5 0.2 0.7 80 434.34 10 280 1000
90 3 5 0.2 0.7 90 662.42 10 315 1000
100 3 5 0.2 0.7 100 1414.05 10 350 1000
110 3 5 0.2 0.7 110 1903.21 10 385 1000

20 2 5 0.2 0.9 20 9.67 10 90 1000
30 2 5 0.2 0.9 30 13.75 10 135 1000
40 2 5 0.2 0.9 40 17.32 10 180 1000
50 2 5 0.2 0.9 50 22.73 10 225 1000
60 2 5 0.2 0.9 60 27.3 10 270 1000
70 2 5 0.2 0.9 70 151.44 10 315 1000
80 2 5 0.2 0.9 80 690.29 10 360 1000
90 2 5 0.2 0.9 90 1486.26 10 405 1000
100 2 5 0.2 0.9 100 783.61 10 450 1000
110 2 5 0.2 0.9 110 1211.49 10 495 1000

20 3 5 0.2 0.9 20 10.07 10 90 1000
30 3 5 0.2 0.9 30 18.05 10 135 1000
40 3 5 0.2 0.9 40 25.23 10 180 1000
50 3 5 0.2 0.9 50 15.55 10 225 1000
60 3 5 0.2 0.9 60 23.13 10 270 1000
70 3 5 0.2 0.9 70 378.17 10 315 1000
80 3 5 0.2 0.9 80 347.13 10 360 1000
90 3 5 0.2 0.9 90 624.59 10 405 1000
100 3 5 0.2 0.9 100 2018.46 10 450 1000
110 3 5 0.2 0.9 110 970.48 10 495 1000

20 2 5 0.4 0.1 20 8.84 20 10 1000
30 2 5 0.4 0.1 30 11.93 20 15 1000
40 2 5 0.4 0.1 40 20.32 20 20 1000
50 2 5 0.4 0.1 50 21.03 20 25 1000
60 2 5 0.4 0.1 60 29.63 20 30 1000
70 2 5 0.4 0.1 70 18.07 20 35 1000
80 2 5 0.4 0.1 80 17.03 20 40 999
90 2 5 0.4 0.1 90 1024.15 20 45 1000
100 2 5 0.4 0.1 100 1556.3 20 50 981
110 2 5 0.4 0.1 110 1704.17 20 55 1000

20 3 5 0.4 0.1 20 11.57 20 10 1000
30 3 5 0.4 0.1 30 17.5 20 15 1000
40 3 5 0.4 0.1 40 25.47 20 20 1000
50 3 5 0.4 0.1 50 18 20 25 1000
60 3 5 0.4 0.1 60 20.09 20 30 1000
70 3 5 0.4 0.1 70 22.06 20 35 1000
80 3 5 0.4 0.1 80 31.06 20 40 995
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 5 0.4 0.1 90 774.47 20 45 1000
100 3 5 0.4 0.1 100 1716.26 20 50 1000
110 3 5 0.4 0.1 110 1912.12 20 55 1000

20 2 5 0.4 0.3 20 7.34 20 30 1000
30 2 5 0.4 0.3 30 13.23 20 45 1000
40 2 5 0.4 0.3 40 16.88 20 60 1000
50 2 5 0.4 0.3 50 22.97 20 75 1000
60 2 5 0.4 0.3 60 27.33 20 90 1000
70 2 5 0.4 0.3 70 13.37 20 105 1000
80 2 5 0.4 0.3 80 325.96 20 120 1000
90 2 5 0.4 0.3 90 953.02 20 135 1000
100 2 5 0.4 0.3 100 815.77 20 150 1000
110 2 5 0.4 0.3 110 740.89 20 165 1000

20 3 5 0.4 0.3 20 10.96 20 30 1000
30 3 5 0.4 0.3 30 20.42 20 45 1000
40 3 5 0.4 0.3 40 23.12 20 60 1000
50 3 5 0.4 0.3 50 17.09 20 75 1000
60 3 5 0.4 0.3 60 19.3 20 90 1000
70 3 5 0.4 0.3 70 25.04 20 105 1000
80 3 5 0.4 0.3 80 501.42 20 120 1000
90 3 5 0.4 0.3 90 334.17 20 135 1000
100 3 5 0.4 0.3 100 1236.9 20 150 1000
110 3 5 0.4 0.3 110 3256.09 20 165 1000

20 2 5 0.4 0.5 20 6.9 20 50 1000
30 2 5 0.4 0.5 30 12 20 75 1000
40 2 5 0.4 0.5 40 12.71 20 100 1000
50 2 5 0.4 0.5 50 22.63 20 125 1000
60 2 5 0.4 0.5 60 30.51 20 150 1000
70 2 5 0.4 0.5 70 13.97 20 175 1000
80 2 5 0.4 0.5 80 266.55 20 200 1000
90 2 5 0.4 0.5 90 445.59 20 225 1000
100 2 5 0.4 0.5 100 734.31 20 250 1000
110 2 5 0.4 0.5 110 2996.55 20 275 1000

20 3 5 0.4 0.5 20 11.87 20 50 1000
30 3 5 0.4 0.5 30 16.41 20 75 1000
40 3 5 0.4 0.5 40 23.96 20 100 1000
50 3 5 0.4 0.5 50 16.84 20 125 1000
60 3 5 0.4 0.5 60 22.18 20 150 1000
70 3 5 0.4 0.5 70 28.85 20 175 1000
80 3 5 0.4 0.5 80 537.61 20 200 1000
90 3 5 0.4 0.5 90 1003.03 20 225 1000
100 3 5 0.4 0.5 100 1184.9 20 250 1000
110 3 5 0.4 0.5 110 2696.74 20 275 1000

20 2 5 0.4 0.7 20 9.25 20 70 1000
30 2 5 0.4 0.7 30 11.95 20 105 1000
40 2 5 0.4 0.7 40 18.59 20 140 1000
50 2 5 0.4 0.7 50 23.5 20 175 1000
60 2 5 0.4 0.7 60 30.04 20 210 1000
70 2 5 0.4 0.7 70 21 20 245 1000
80 2 5 0.4 0.7 80 288.05 20 280 1000
90 2 5 0.4 0.7 90 328.28 20 315 1000
100 2 5 0.4 0.7 100 488.3 20 350 1000
110 2 5 0.4 0.7 110 587.22 20 385 1000

20 3 5 0.4 0.7 20 12.63 20 70 1000
30 3 5 0.4 0.7 30 12.53 20 105 1000
40 3 5 0.4 0.7 40 26.24 20 140 1000
50 3 5 0.4 0.7 50 20.25 20 175 1000
60 3 5 0.4 0.7 60 22.05 20 210 1000
70 3 5 0.4 0.7 70 300.94 20 245 1000
80 3 5 0.4 0.7 80 422.24 20 280 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 5 0.4 0.7 90 596.84 20 315 1000
100 3 5 0.4 0.7 100 1065.55 20 350 1000
110 3 5 0.4 0.7 110 1273.32 20 385 1000

20 2 5 0.4 0.9 20 5.3 20 90 1000
30 2 5 0.4 0.9 30 11.71 20 135 1000
40 2 5 0.4 0.9 40 16.94 20 180 1000
50 2 5 0.4 0.9 50 23.78 20 225 1000
60 2 5 0.4 0.9 60 30.56 20 270 1000
70 2 5 0.4 0.9 70 146.75 20 315 1000
80 2 5 0.4 0.9 80 132.15 20 360 1000
90 2 5 0.4 0.9 90 443.68 20 405 1000
100 2 5 0.4 0.9 100 639.96 20 450 1000
110 2 5 0.4 0.9 110 642.53 20 495 1000

20 3 5 0.4 0.9 20 11.68 20 90 1000
30 3 5 0.4 0.9 30 11.52 20 135 1000
40 3 5 0.4 0.9 40 22.09 20 180 1000
50 3 5 0.4 0.9 50 16.5 20 225 1000
60 3 5 0.4 0.9 60 19.93 20 270 1000
70 3 5 0.4 0.9 70 219 20 315 1000
80 3 5 0.4 0.9 80 463.65 20 360 1000
90 3 5 0.4 0.9 90 607.2 20 405 1000
100 3 5 0.4 0.9 100 1112.03 20 450 1000
110 3 5 0.4 0.9 110 804.54 20 495 1000

20 2 5 0.6 0.1 20 8.89 30 10 1000
30 2 5 0.6 0.1 30 12.02 30 15 1000
40 2 5 0.6 0.1 40 18.86 30 20 1000
50 2 5 0.6 0.1 50 22.79 30 25 1000
60 2 5 0.6 0.1 60 28.42 30 30 1000
70 2 5 0.6 0.1 70 13.75 30 35 1000
80 2 5 0.6 0.1 80 9.64 30 40 999
90 2 5 0.6 0.1 90 490.3 30 45 1000
100 2 5 0.6 0.1 100 982 30 50 1000
110 2 5 0.6 0.1 110 884.84 30 55 1000

20 3 5 0.6 0.1 20 10.88 30 10 1000
30 3 5 0.6 0.1 30 17.6 30 15 1000
40 3 5 0.6 0.1 40 23.24 30 20 1000
50 3 5 0.6 0.1 50 14.07 30 25 1000
60 3 5 0.6 0.1 60 23.89 30 30 1000
70 3 5 0.6 0.1 70 23.91 30 35 1000
80 3 5 0.6 0.1 80 26.99 30 40 995
90 3 5 0.6 0.1 90 486.37 30 45 984
100 3 5 0.6 0.1 100 1459.1 30 50 1000
110 3 5 0.6 0.1 110 3595.62 30 55 1000

20 2 5 0.6 0.3 20 7.45 30 30 1000
30 2 5 0.6 0.3 30 12.07 30 45 1000
40 2 5 0.6 0.3 40 16.41 30 60 1000
50 2 5 0.6 0.3 50 24.29 30 75 1000
60 2 5 0.6 0.3 60 25.82 30 90 1000
70 2 5 0.6 0.3 70 15.5 30 105 1000
80 2 5 0.6 0.3 80 250.17 30 120 1000
90 2 5 0.6 0.3 90 435.86 30 135 1000
100 2 5 0.6 0.3 100 1185.08 30 150 1000
110 2 5 0.6 0.3 110 1292.92 30 165 1000

20 3 5 0.6 0.3 20 10.31 30 30 1000
30 3 5 0.6 0.3 30 17.45 30 45 1000
40 3 5 0.6 0.3 40 26.1 30 60 1000
50 3 5 0.6 0.3 50 12.96 30 75 1000
60 3 5 0.6 0.3 60 17.28 30 90 1000
70 3 5 0.6 0.3 70 21.62 30 105 1000
80 3 5 0.6 0.3 80 569.9 30 120 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 5 0.6 0.3 90 875.95 30 135 1000
100 3 5 0.6 0.3 100 1564.63 30 150 1000
110 3 5 0.6 0.3 110 1538.72 30 165 998

20 2 5 0.6 0.5 20 6.63 30 50 1000
30 2 5 0.6 0.5 30 12.44 30 75 1000
40 2 5 0.6 0.5 40 18.57 30 100 1000
50 2 5 0.6 0.5 50 24.55 30 125 1000
60 2 5 0.6 0.5 60 27.21 30 150 1000
70 2 5 0.6 0.5 70 17.65 30 175 1000
80 2 5 0.6 0.5 80 268.61 30 200 1000
90 2 5 0.6 0.5 90 484.5 30 225 1000
100 2 5 0.6 0.5 100 720.29 30 250 1000
110 2 5 0.6 0.5 110 738.1 30 275 1000

20 3 5 0.6 0.5 20 11.23 30 50 1000
30 3 5 0.6 0.5 30 18.17 30 75 1000
40 3 5 0.6 0.5 40 24.28 30 100 1000
50 3 5 0.6 0.5 50 16.73 30 125 1000
60 3 5 0.6 0.5 60 21.67 30 150 1000
70 3 5 0.6 0.5 70 27.59 30 175 1000
80 3 5 0.6 0.5 80 337.71 30 200 1000
90 3 5 0.6 0.5 90 848.04 30 225 1000
100 3 5 0.6 0.5 100 1544.91 30 250 1000
110 3 5 0.6 0.5 110 1876.78 30 275 1000

20 2 5 0.6 0.7 20 8.81 30 70 1000
30 2 5 0.6 0.7 30 11.77 30 105 1000
40 2 5 0.6 0.7 40 17.52 30 140 1000
50 2 5 0.6 0.7 50 22.92 30 175 1000
60 2 5 0.6 0.7 60 32.08 30 210 1000
70 2 5 0.6 0.7 70 20.75 30 245 1000
80 2 5 0.6 0.7 80 405.48 30 280 1000
90 2 5 0.6 0.7 90 486.02 30 315 1000
100 2 5 0.6 0.7 100 493.06 30 350 1000
110 2 5 0.6 0.7 110 519.17 30 385 1000

20 3 5 0.6 0.7 20 11.2 30 70 1000
30 3 5 0.6 0.7 30 17.16 30 105 1000
40 3 5 0.6 0.7 40 24.59 30 140 1000
50 3 5 0.6 0.7 50 14.53 30 175 1000
60 3 5 0.6 0.7 60 22.7 30 210 1000
70 3 5 0.6 0.7 70 266.34 30 245 1000
80 3 5 0.6 0.7 80 365.05 30 280 1000
90 3 5 0.6 0.7 90 432.5 30 315 1000
100 3 5 0.6 0.7 100 900.19 30 350 1000
110 3 5 0.6 0.7 110 1072.25 30 385 1000

20 2 5 0.6 0.9 20 8.26 30 90 1000
30 2 5 0.6 0.9 30 12.3 30 135 1000
40 2 5 0.6 0.9 40 17.26 30 180 1000
50 2 5 0.6 0.9 50 20.87 30 225 1000
60 2 5 0.6 0.9 60 27.72 30 270 1000
70 2 5 0.6 0.9 70 229.3 30 315 1000
80 2 5 0.6 0.9 80 363.8 30 360 1000
90 2 5 0.6 0.9 90 440.05 30 405 1000
100 2 5 0.6 0.9 100 738.79 30 450 1000
110 2 5 0.6 0.9 110 390.55 30 495 1000

20 3 5 0.6 0.9 20 9.98 30 90 1000
30 3 5 0.6 0.9 30 19.66 30 135 1000
40 3 5 0.6 0.9 40 26.2 30 180 1000
50 3 5 0.6 0.9 50 19.62 30 225 1000
60 3 5 0.6 0.9 60 16.12 30 270 1000
70 3 5 0.6 0.9 70 216.11 30 315 1000
80 3 5 0.6 0.9 80 294.17 30 360 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 5 0.6 0.9 90 365.84 30 405 1000
100 3 5 0.6 0.9 100 468.07 30 450 1000
110 3 5 0.6 0.9 110 1654.32 30 495 1000

20 2 5 0.8 0.1 20 7.38 40 10 1000
30 2 5 0.8 0.1 30 11.73 40 15 1000
40 2 5 0.8 0.1 40 20.5 40 20 1000
50 2 5 0.8 0.1 50 23.92 40 25 1000
60 2 5 0.8 0.1 60 30.75 40 30 1000
70 2 5 0.8 0.1 70 17.03 40 35 1000
80 2 5 0.8 0.1 80 11.12 40 40 999
90 2 5 0.8 0.1 90 533.21 40 45 1000
100 2 5 0.8 0.1 100 880.7 40 50 996
110 2 5 0.8 0.1 110 842.22 40 55 1000

20 3 5 0.8 0.1 20 11.73 40 10 1000
30 3 5 0.8 0.1 30 17.8 40 15 1000
40 3 5 0.8 0.1 40 24.8 40 20 1000
50 3 5 0.8 0.1 50 14.3 40 25 1000
60 3 5 0.8 0.1 60 22.7 40 30 1000
70 3 5 0.8 0.1 70 24.05 40 35 1000
80 3 5 0.8 0.1 80 30.75 40 40 995
90 3 5 0.8 0.1 90 1133 40 45 1000
100 3 5 0.8 0.1 100 1323.37 40 50 1000
110 3 5 0.8 0.1 110 2041.68 40 55 1000

20 2 5 0.8 0.3 20 6.54 40 30 1000
30 2 5 0.8 0.3 30 11.09 40 45 1000
40 2 5 0.8 0.3 40 16.7 40 60 1000
50 2 5 0.8 0.3 50 23.81 40 75 1000
60 2 5 0.8 0.3 60 31.93 40 90 1000
70 2 5 0.8 0.3 70 13.28 40 105 1000
80 2 5 0.8 0.3 80 223.63 40 120 1000
90 2 5 0.8 0.3 90 330.75 40 135 1000
100 2 5 0.8 0.3 100 424.92 40 150 1000
110 2 5 0.8 0.3 110 2348.27 40 165 1000

20 3 5 0.8 0.3 20 10.43 40 30 1000
30 3 5 0.8 0.3 30 18.89 40 45 1000
40 3 5 0.8 0.3 40 23.48 40 60 1000
50 3 5 0.8 0.3 50 15.02 40 75 1000
60 3 5 0.8 0.3 60 21.61 40 90 1000
70 3 5 0.8 0.3 70 27.42 40 105 1000
80 3 5 0.8 0.3 80 586.76 40 120 1000
90 3 5 0.8 0.3 90 1632.76 40 135 1000
100 3 5 0.8 0.3 100 2035.7 40 150 1000
110 3 5 0.8 0.3 110 2511.47 40 165 1000

20 2 5 0.8 0.5 20 8.5 40 50 1000
30 2 5 0.8 0.5 30 12.71 40 75 1000
40 2 5 0.8 0.5 40 11.84 40 100 1000
50 2 5 0.8 0.5 50 21.59 40 125 1000
60 2 5 0.8 0.5 60 29 40 150 1000
70 2 5 0.8 0.5 70 21.61 40 175 1000
80 2 5 0.8 0.5 80 263.41 40 200 1000
90 2 5 0.8 0.5 90 698.31 40 225 1000
100 2 5 0.8 0.5 100 1241.97 40 250 1000
110 2 5 0.8 0.5 110 930.91 40 275 1000

20 3 5 0.8 0.5 20 12.34 40 50 1000
30 3 5 0.8 0.5 30 17.59 40 75 1000
40 3 5 0.8 0.5 40 23.25 40 100 1000
50 3 5 0.8 0.5 50 16.52 40 125 1000
60 3 5 0.8 0.5 60 22.48 40 150 1000
70 3 5 0.8 0.5 70 23.99 40 175 1000
80 3 5 0.8 0.5 80 392.09 40 200 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 5 0.8 0.5 90 786.59 40 225 1000
100 3 5 0.8 0.5 100 1475.46 40 250 1000
110 3 5 0.8 0.5 110 1234.04 40 275 1000

20 2 5 0.8 0.7 20 7.85 40 70 1000
30 2 5 0.8 0.7 30 12.75 40 105 1000
40 2 5 0.8 0.7 40 18.81 40 140 1000
50 2 5 0.8 0.7 50 24.55 40 175 1000
60 2 5 0.8 0.7 60 27.75 40 210 1000
70 2 5 0.8 0.7 70 16.37 40 245 1000
80 2 5 0.8 0.7 80 210.75 40 280 1000
90 2 5 0.8 0.7 90 470.41 40 315 1000
100 2 5 0.8 0.7 100 440.07 40 350 1000
110 2 5 0.8 0.7 110 891.71 40 385 1000

20 3 5 0.8 0.7 20 10.6 40 70 1000
30 3 5 0.8 0.7 30 17.84 40 105 1000
40 3 5 0.8 0.7 40 25.24 40 140 1000
50 3 5 0.8 0.7 50 13.18 40 175 1000
60 3 5 0.8 0.7 60 19.34 40 210 1000
70 3 5 0.8 0.7 70 229.9 40 245 1000
80 3 5 0.8 0.7 80 237.36 40 280 1000
90 3 5 0.8 0.7 90 756.48 40 315 1000
100 3 5 0.8 0.7 100 523.04 40 350 1000
110 3 5 0.8 0.7 110 768.17 40 385 1000

20 2 5 0.8 0.9 20 7.92 40 90 1000
30 2 5 0.8 0.9 30 13.42 40 135 1000
40 2 5 0.8 0.9 40 16.8 40 180 1000
50 2 5 0.8 0.9 50 22.65 40 225 1000
60 2 5 0.8 0.9 60 29.17 40 270 1000
70 2 5 0.8 0.9 70 202.51 40 315 1000
80 2 5 0.8 0.9 80 308.05 40 360 1000
90 2 5 0.8 0.9 90 275.88 40 405 1000
100 2 5 0.8 0.9 100 683.96 40 450 1000
110 2 5 0.8 0.9 110 579.35 40 495 1000

20 3 5 0.8 0.9 20 10.85 40 90 1000
30 3 5 0.8 0.9 30 18.34 40 135 1000
40 3 5 0.8 0.9 40 23.89 40 180 1000
50 3 5 0.8 0.9 50 15.14 40 225 1000
60 3 5 0.8 0.9 60 20.67 40 270 1000
70 3 5 0.8 0.9 70 116.82 40 315 1000
80 3 5 0.8 0.9 80 130.69 40 360 1000
90 3 5 0.8 0.9 90 246.87 40 405 1000
100 3 5 0.8 0.9 100 1083.72 40 450 1000
110 3 5 0.8 0.9 110 987.14 40 495 1000

20 2 5 1 0.1 20 6.96 50 10 1000
30 2 5 1 0.1 30 13.34 50 15 1000
40 2 5 1 0.1 40 17.17 50 20 1000
50 2 5 1 0.1 50 23.76 50 25 1000
60 2 5 1 0.1 60 25.38 50 30 1000
70 2 5 1 0.1 70 17.88 50 35 1000
80 2 5 1 0.1 80 19.12 50 40 999
90 2 5 1 0.1 90 592.64 50 45 1000
100 2 5 1 0.1 100 757.91 50 50 1000
110 2 5 1 0.1 110 1312.9 50 55 1000

20 3 5 1 0.1 20 11.3 50 10 1000
30 3 5 1 0.1 30 18.13 50 15 1000
40 3 5 1 0.1 40 25.72 50 20 1000
50 3 5 1 0.1 50 19.98 50 25 1000
60 3 5 1 0.1 60 22.12 50 30 1000
70 3 5 1 0.1 70 28 50 35 1000
80 3 5 1 0.1 80 16.79 50 40 995
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 5 1 0.1 90 1445.37 50 45 1000
100 3 5 1 0.1 100 1326.04 50 50 1000
110 3 5 1 0.1 110 1834.58 50 55 1000

20 2 5 1 0.3 20 8.25 50 30 1000
30 2 5 1 0.3 30 12.65 50 45 1000
40 2 5 1 0.3 40 18.27 50 60 1000
50 2 5 1 0.3 50 23.84 50 75 1000
60 2 5 1 0.3 60 27.54 50 90 1000
70 2 5 1 0.3 70 14.7 50 105 1000
80 2 5 1 0.3 80 258.26 50 120 1000
90 2 5 1 0.3 90 571.86 50 135 1000
100 2 5 1 0.3 100 565.62 50 150 1000
110 2 5 1 0.3 110 1172.27 50 165 1000

20 3 5 1 0.3 20 9.64 50 30 1000
30 3 5 1 0.3 30 15.68 50 45 1000
40 3 5 1 0.3 40 23.45 50 60 1000
50 3 5 1 0.3 50 16.63 50 75 1000
60 3 5 1 0.3 60 21.65 50 90 1000
70 3 5 1 0.3 70 23.73 50 105 1000
80 3 5 1 0.3 80 565.3 50 120 1000
90 3 5 1 0.3 90 1437.2 50 135 1000
100 3 5 1 0.3 100 1453.65 50 150 1000
110 3 5 1 0.3 110 2454.4 50 165 1000

20 2 5 1 0.5 20 8.33 50 50 1000
30 2 5 1 0.5 30 12.46 50 75 1000
40 2 5 1 0.5 40 16.95 50 100 1000
50 2 5 1 0.5 50 22.2 50 125 1000
60 2 5 1 0.5 60 30.47 50 150 1000
70 2 5 1 0.5 70 13.59 50 175 1000
80 2 5 1 0.5 80 100.89 50 200 1000
90 2 5 1 0.5 90 492.09 50 225 1000
100 2 5 1 0.5 100 501.31 50 250 1000
110 2 5 1 0.5 110 1366.55 50 275 1000

20 3 5 1 0.5 20 13.31 50 50 1000
30 3 5 1 0.5 30 16.88 50 75 1000
40 3 5 1 0.5 40 26.96 50 100 1000
50 3 5 1 0.5 50 15.15 50 125 1000
60 3 5 1 0.5 60 18.18 50 150 1000
70 3 5 1 0.5 70 25.21 50 175 1000
80 3 5 1 0.5 80 550.7 50 200 1000
90 3 5 1 0.5 90 711.93 50 225 1000
100 3 5 1 0.5 100 1556.85 50 250 1000
110 3 5 1 0.5 110 3757.09 50 275 1000

20 2 5 1 0.7 20 8.81 50 70 1000
30 2 5 1 0.7 30 11.01 50 105 1000
40 2 5 1 0.7 40 16.88 50 140 1000
50 2 5 1 0.7 50 19.51 50 175 1000
60 2 5 1 0.7 60 26.55 50 210 1000
70 2 5 1 0.7 70 121.99 50 245 1000
80 2 5 1 0.7 80 326.2 50 280 1000
90 2 5 1 0.7 90 439.11 50 315 1000
100 2 5 1 0.7 100 281.5 50 350 1000
110 2 5 1 0.7 110 915.14 50 385 1000

20 3 5 1 0.7 20 12.39 50 70 1000
30 3 5 1 0.7 30 17.99 50 105 1000
40 3 5 1 0.7 40 25.37 50 140 1000
50 3 5 1 0.7 50 18.62 50 175 1000
60 3 5 1 0.7 60 14.89 50 210 1000
70 3 5 1 0.7 70 173.23 50 245 1000
80 3 5 1 0.7 80 250.5 50 280 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 5 1 0.7 90 257.08 50 315 1000
100 3 5 1 0.7 100 478.03 50 350 1000
110 3 5 1 0.7 110 736.36 50 385 1000

20 2 5 1 0.9 20 8.17 50 90 1000
30 2 5 1 0.9 30 7.8 50 135 1000
40 2 5 1 0.9 40 17.87 50 180 1000
50 2 5 1 0.9 50 23.95 50 225 1000
60 2 5 1 0.9 60 28.21 50 270 1000
70 2 5 1 0.9 70 203 50 315 1000
80 2 5 1 0.9 80 174.15 50 360 1000
90 2 5 1 0.9 90 175.94 50 405 1000
100 2 5 1 0.9 100 321.63 50 450 1000
110 2 5 1 0.9 110 966.49 50 495 1000

20 3 5 1 0.9 20 11.09 50 90 1000
30 3 5 1 0.9 30 17.52 50 135 1000
40 3 5 1 0.9 40 25.71 50 180 1000
50 3 5 1 0.9 50 15.63 50 225 1000
60 3 5 1 0.9 60 18.62 50 270 1000
70 3 5 1 0.9 70 124.16 50 315 1000
80 3 5 1 0.9 80 233.09 50 360 1000
90 3 5 1 0.9 90 309.97 50 405 1000
100 3 5 1 0.9 100 439.81 50 450 1000
110 3 5 1 0.9 110 567.71 50 495 1000

20 2 10 0.2 0.1 20 8.54 10 20 1000
30 2 10 0.2 0.1 30 13.52 10 30 1000
40 2 10 0.2 0.1 40 17.84 10 40 1000
50 2 10 0.2 0.1 50 24.04 10 50 1000
60 2 10 0.2 0.1 60 29.78 10 60 1000
70 2 10 0.2 0.1 70 16.8 10 70 1000
80 2 10 0.2 0.1 80 21.94 10 80 999
90 2 10 0.2 0.1 90 600.15 10 90 1000
100 2 10 0.2 0.1 100 868.55 10 100 1000
110 2 10 0.2 0.1 110 1649.84 10 110 1000

20 3 10 0.2 0.1 20 10.47 10 20 1000
30 3 10 0.2 0.1 30 11.38 10 30 1000
40 3 10 0.2 0.1 40 23.24 10 40 1000
50 3 10 0.2 0.1 50 14.5 10 50 1000
60 3 10 0.2 0.1 60 19.26 10 60 1000
70 3 10 0.2 0.1 70 25.81 10 70 1000
80 3 10 0.2 0.1 80 644.08 10 80 1000
90 3 10 0.2 0.1 90 924.27 10 90 1000
100 3 10 0.2 0.1 100 1199.65 10 100 1000
110 3 10 0.2 0.1 110 1347.09 10 110 1000

20 2 10 0.2 0.3 20 8.03 10 60 1000
30 2 10 0.2 0.3 30 12.08 10 90 1000
40 2 10 0.2 0.3 40 17.88 10 120 1000
50 2 10 0.2 0.3 50 24.42 10 150 1000
60 2 10 0.2 0.3 60 27.39 10 180 1000
70 2 10 0.2 0.3 70 20.7 10 210 1000
80 2 10 0.2 0.3 80 212.66 10 240 1000
90 2 10 0.2 0.3 90 631.34 10 270 993
100 2 10 0.2 0.3 100 801.65 10 300 1000
110 2 10 0.2 0.3 110 586.25 10 330 1000

20 3 10 0.2 0.3 20 10.71 10 60 1000
30 3 10 0.2 0.3 30 18.7 10 90 1000
40 3 10 0.2 0.3 40 26.77 10 120 1000
50 3 10 0.2 0.3 50 16.52 10 150 1000
60 3 10 0.2 0.3 60 22.83 10 180 1000
70 3 10 0.2 0.3 70 29.77 10 210 1000
80 3 10 0.2 0.3 80 986.74 10 240 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 10 0.2 0.3 90 884.67 10 270 1000
100 3 10 0.2 0.3 100 1345.78 10 300 1000
110 3 10 0.2 0.3 110 2385.05 10 330 1000

20 2 10 0.2 0.5 20 5.45 10 100 1000
30 2 10 0.2 0.5 30 13.44 10 150 1000
40 2 10 0.2 0.5 40 19.76 10 200 1000
50 2 10 0.2 0.5 50 22.66 10 250 1000
60 2 10 0.2 0.5 60 27.55 10 300 1000
70 2 10 0.2 0.5 70 135.06 10 350 1000
80 2 10 0.2 0.5 80 269.18 10 400 1000
90 2 10 0.2 0.5 90 510.51 10 450 1000
100 2 10 0.2 0.5 100 539 10 500 1000
110 2 10 0.2 0.5 110 2485.08 10 550 1000

20 3 10 0.2 0.5 20 10.22 10 100 1000
30 3 10 0.2 0.5 30 18.82 10 150 1000
40 3 10 0.2 0.5 40 25.51 10 200 1000
50 3 10 0.2 0.5 50 16.33 10 250 1000
60 3 10 0.2 0.5 60 22.09 10 300 1000
70 3 10 0.2 0.5 70 379.18 10 350 1000
80 3 10 0.2 0.5 80 755 10 400 1000
90 3 10 0.2 0.5 90 982.55 10 450 1000
100 3 10 0.2 0.5 100 1495.86 10 500 1000
110 3 10 0.2 0.5 110 2087.35 10 550 1000

20 2 10 0.2 0.7 20 8.13 10 140 1000
30 2 10 0.2 0.7 30 11.19 10 210 1000
40 2 10 0.2 0.7 40 19.32 10 280 1000
50 2 10 0.2 0.7 50 21.55 10 350 1000
60 2 10 0.2 0.7 60 30.25 10 420 1000
70 2 10 0.2 0.7 70 215.4 10 490 1000
80 2 10 0.2 0.7 80 561.6 10 560 1000
90 2 10 0.2 0.7 90 242.19 10 630 1000
100 2 10 0.2 0.7 100 682.21 10 700 1000
110 2 10 0.2 0.7 110 1313.84 10 770 1000

20 3 10 0.2 0.7 20 10.02 10 140 1000
30 3 10 0.2 0.7 30 18.61 10 210 1000
40 3 10 0.2 0.7 40 24.41 10 280 1000
50 3 10 0.2 0.7 50 15.95 10 350 1000
60 3 10 0.2 0.7 60 232.05 10 420 1000
70 3 10 0.2 0.7 70 289.55 10 490 1000
80 3 10 0.2 0.7 80 546.71 10 560 1000
90 3 10 0.2 0.7 90 630.2 10 630 1000
100 3 10 0.2 0.7 100 1764.25 10 700 1000
110 3 10 0.2 0.7 110 2990.46 10 770 1000

20 2 10 0.2 0.9 20 7.24 10 180 1000
30 2 10 0.2 0.9 30 13.59 10 270 1000
40 2 10 0.2 0.9 40 17.07 10 360 1000
50 2 10 0.2 0.9 50 23.62 10 450 1000
60 2 10 0.2 0.9 60 89.25 10 540 1000
70 2 10 0.2 0.9 70 286.91 10 630 1000
80 2 10 0.2 0.9 80 1193.13 10 720 1000
90 2 10 0.2 0.9 90 339.31 10 810 1000
100 2 10 0.2 0.9 100 1634.88 10 900 1000
110 2 10 0.2 0.9 110 3811.36 10 990 1000

20 3 10 0.2 0.9 20 11.65 10 180 1000
30 3 10 0.2 0.9 30 18.44 10 270 1000
40 3 10 0.2 0.9 40 24.67 10 360 1000
50 3 10 0.2 0.9 50 18.23 10 450 1000
60 3 10 0.2 0.9 60 121.95 10 540 1000
70 3 10 0.2 0.9 70 452.13 10 630 1000
80 3 10 0.2 0.9 80 856.67 10 720 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 10 0.2 0.9 90 984.25 10 810 1000
100 3 10 0.2 0.9 100 1612.59 10 900 1000
110 3 10 0.2 0.9 110 2460.59 10 990 1000

20 2 10 0.4 0.1 20 8.19 20 20 1000
30 2 10 0.4 0.1 30 12.66 20 30 1000
40 2 10 0.4 0.1 40 21.2 20 40 1000
50 2 10 0.4 0.1 50 21.96 20 50 1000
60 2 10 0.4 0.1 60 29.58 20 60 1000
70 2 10 0.4 0.1 70 18.91 20 70 1000
80 2 10 0.4 0.1 80 21.51 20 80 999
90 2 10 0.4 0.1 90 263.58 20 90 990
100 2 10 0.4 0.1 100 853.49 20 100 998
110 2 10 0.4 0.1 110 741.17 20 110 1000

20 3 10 0.4 0.1 20 11.39 20 20 1000
30 3 10 0.4 0.1 30 19.58 20 30 1000
40 3 10 0.4 0.1 40 23.66 20 40 1000
50 3 10 0.4 0.1 50 18.4 20 50 1000
60 3 10 0.4 0.1 60 22.49 20 60 1000
70 3 10 0.4 0.1 70 27.77 20 70 1000
80 3 10 0.4 0.1 80 722.66 20 80 1000
90 3 10 0.4 0.1 90 1139.96 20 90 1000
100 3 10 0.4 0.1 100 2050.44 20 100 1000
110 3 10 0.4 0.1 110 3075.67 20 110 1000

20 2 10 0.4 0.3 20 7.66 20 60 1000
30 2 10 0.4 0.3 30 12.42 20 90 1000
40 2 10 0.4 0.3 40 16.07 20 120 1000
50 2 10 0.4 0.3 50 23.51 20 150 1000
60 2 10 0.4 0.3 60 28.24 20 180 1000
70 2 10 0.4 0.3 70 20.92 20 210 1000
80 2 10 0.4 0.3 80 262.63 20 240 998
90 2 10 0.4 0.3 90 600.28 20 270 1000
100 2 10 0.4 0.3 100 1427.96 20 300 1000
110 2 10 0.4 0.3 110 1391.67 20 330 1000

20 3 10 0.4 0.3 20 11.13 20 60 1000
30 3 10 0.4 0.3 30 18.16 20 90 1000
40 3 10 0.4 0.3 40 22.96 20 120 1000
50 3 10 0.4 0.3 50 14.94 20 150 1000
60 3 10 0.4 0.3 60 23.68 20 180 1000
70 3 10 0.4 0.3 70 22.84 20 210 1000
80 3 10 0.4 0.3 80 408.12 20 240 1000
90 3 10 0.4 0.3 90 585.74 20 270 998
100 3 10 0.4 0.3 100 2164.85 20 300 1000
110 3 10 0.4 0.3 110 2565.53 20 330 1000

20 2 10 0.4 0.5 20 7.96 20 100 1000
30 2 10 0.4 0.5 30 13.26 20 150 1000
40 2 10 0.4 0.5 40 12.15 20 200 1000
50 2 10 0.4 0.5 50 23.59 20 250 1000
60 2 10 0.4 0.5 60 27.89 20 300 1000
70 2 10 0.4 0.5 70 262.84 20 350 1000
80 2 10 0.4 0.5 80 318.18 20 400 1000
90 2 10 0.4 0.5 90 367.09 20 450 1000
100 2 10 0.4 0.5 100 582.74 20 500 1000
110 2 10 0.4 0.5 110 449.01 20 550 1000

20 3 10 0.4 0.5 20 11.31 20 100 1000
30 3 10 0.4 0.5 30 19.23 20 150 1000
40 3 10 0.4 0.5 40 24.88 20 200 1000
50 3 10 0.4 0.5 50 13.38 20 250 1000
60 3 10 0.4 0.5 60 19.03 20 300 1000
70 3 10 0.4 0.5 70 368.68 20 350 1000
80 3 10 0.4 0.5 80 566.21 20 400 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 10 0.4 0.5 90 1021.75 20 450 1000
100 3 10 0.4 0.5 100 1435.67 20 500 1000
110 3 10 0.4 0.5 110 2121.25 20 550 1000

20 2 10 0.4 0.7 20 8.25 20 140 1000
30 2 10 0.4 0.7 30 11.48 20 210 1000
40 2 10 0.4 0.7 40 11.86 20 280 1000
50 2 10 0.4 0.7 50 24.52 20 350 1000
60 2 10 0.4 0.7 60 30.28 20 420 1000
70 2 10 0.4 0.7 70 112.34 20 490 1000
80 2 10 0.4 0.7 80 345.39 20 560 1000
90 2 10 0.4 0.7 90 463.14 20 630 1000
100 2 10 0.4 0.7 100 364.65 20 700 1000
110 2 10 0.4 0.7 110 1860.1 20 770 1000

20 3 10 0.4 0.7 20 10.15 20 140 1000
30 3 10 0.4 0.7 30 15.77 20 210 1000
40 3 10 0.4 0.7 40 23.13 20 280 1000
50 3 10 0.4 0.7 50 15.13 20 350 1000
60 3 10 0.4 0.7 60 167.83 20 420 1000
70 3 10 0.4 0.7 70 473.06 20 490 1000
80 3 10 0.4 0.7 80 430.5 20 560 1000
90 3 10 0.4 0.7 90 654.08 20 630 1000
100 3 10 0.4 0.7 100 837.59 20 700 1000
110 3 10 0.4 0.7 110 880.13 20 770 1000

20 2 10 0.4 0.9 20 7.71 20 180 1000
30 2 10 0.4 0.9 30 12.09 20 270 1000
40 2 10 0.4 0.9 40 16.85 20 360 1000
50 2 10 0.4 0.9 50 22.01 20 450 1000
60 2 10 0.4 0.9 60 120.13 20 540 1000
70 2 10 0.4 0.9 70 392.65 20 630 1000
80 2 10 0.4 0.9 80 393.12 20 720 1000
90 2 10 0.4 0.9 90 218.25 20 810 1000
100 2 10 0.4 0.9 100 1753.86 20 900 1000
110 2 10 0.4 0.9 110 2366.63 20 990 1000

20 3 10 0.4 0.9 20 11.83 20 180 1000
30 3 10 0.4 0.9 30 13.34 20 270 1000
40 3 10 0.4 0.9 40 26 20 360 1000
50 3 10 0.4 0.9 50 15.97 20 450 1000
60 3 10 0.4 0.9 60 138.09 20 540 1000
70 3 10 0.4 0.9 70 403.65 20 630 1000
80 3 10 0.4 0.9 80 549.4 20 720 1000
90 3 10 0.4 0.9 90 690.72 20 810 1000
100 3 10 0.4 0.9 100 1953.3 20 900 1000
110 3 10 0.4 0.9 110 621.14 20 990 1000

20 2 10 0.6 0.1 20 7.85 30 20 1000
30 2 10 0.6 0.1 30 12.75 30 30 1000
40 2 10 0.6 0.1 40 18.3 30 40 1000
50 2 10 0.6 0.1 50 20.93 30 50 1000
60 2 10 0.6 0.1 60 28.5 30 60 1000
70 2 10 0.6 0.1 70 14.82 30 70 1000
80 2 10 0.6 0.1 80 17.25 30 80 999
90 2 10 0.6 0.1 90 690.02 30 90 1000
100 2 10 0.6 0.1 100 1157.55 30 100 998
110 2 10 0.6 0.1 110 2713.77 30 110 999

20 3 10 0.6 0.1 20 9.77 30 20 1000
30 3 10 0.6 0.1 30 11.49 30 30 1000
40 3 10 0.6 0.1 40 27.21 30 40 1000
50 3 10 0.6 0.1 50 13.58 30 50 1000
60 3 10 0.6 0.1 60 22.48 30 60 1000
70 3 10 0.6 0.1 70 24.79 30 70 1000
80 3 10 0.6 0.1 80 513.01 30 80 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 10 0.6 0.1 90 960.26 30 90 1000
100 3 10 0.6 0.1 100 1555.21 30 100 1000
110 3 10 0.6 0.1 110 2450.92 30 110 1000

20 2 10 0.6 0.3 20 8.1 30 60 1000
30 2 10 0.6 0.3 30 11.88 30 90 1000
40 2 10 0.6 0.3 40 17.16 30 120 1000
50 2 10 0.6 0.3 50 22.77 30 150 1000
60 2 10 0.6 0.3 60 25.55 30 180 1000
70 2 10 0.6 0.3 70 17.21 30 210 1000
80 2 10 0.6 0.3 80 292.66 30 240 1000
90 2 10 0.6 0.3 90 295.63 30 270 999
100 2 10 0.6 0.3 100 1035.38 30 300 1000
110 2 10 0.6 0.3 110 1063.38 30 330 1000

20 3 10 0.6 0.3 20 11.49 30 60 1000
30 3 10 0.6 0.3 30 17.94 30 90 1000
40 3 10 0.6 0.3 40 22.05 30 120 1000
50 3 10 0.6 0.3 50 15.45 30 150 1000
60 3 10 0.6 0.3 60 16.77 30 180 1000
70 3 10 0.6 0.3 70 404.97 30 210 1000
80 3 10 0.6 0.3 80 691.48 30 240 1000
90 3 10 0.6 0.3 90 1171.38 30 270 1000
100 3 10 0.6 0.3 100 2013.85 30 300 1000
110 3 10 0.6 0.3 110 2121.68 30 330 1000

20 2 10 0.6 0.5 20 7.84 30 100 1000
30 2 10 0.6 0.5 30 12.13 30 150 1000
40 2 10 0.6 0.5 40 18.55 30 200 1000
50 2 10 0.6 0.5 50 22.75 30 250 1000
60 2 10 0.6 0.5 60 27.76 30 300 1000
70 2 10 0.6 0.5 70 232.07 30 350 1000
80 2 10 0.6 0.5 80 229.28 30 400 1000
90 2 10 0.6 0.5 90 435.13 30 450 992
100 2 10 0.6 0.5 100 1206.64 30 500 1000
110 2 10 0.6 0.5 110 1396.21 30 550 998

20 3 10 0.6 0.5 20 11.42 30 100 1000
30 3 10 0.6 0.5 30 17.66 30 150 1000
40 3 10 0.6 0.5 40 23.28 30 200 1000
50 3 10 0.6 0.5 50 15.8 30 250 1000
60 3 10 0.6 0.5 60 18.84 30 300 1000
70 3 10 0.6 0.5 70 339.84 30 350 1000
80 3 10 0.6 0.5 80 598.14 30 400 1000
90 3 10 0.6 0.5 90 843.54 30 450 1000
100 3 10 0.6 0.5 100 1277.76 30 500 1000
110 3 10 0.6 0.5 110 2218.18 30 550 1000

20 2 10 0.6 0.7 20 7.24 30 140 1000
30 2 10 0.6 0.7 30 12.34 30 210 1000
40 2 10 0.6 0.7 40 17.46 30 280 1000
50 2 10 0.6 0.7 50 22.11 30 350 1000
60 2 10 0.6 0.7 60 108.24 30 420 1000
70 2 10 0.6 0.7 70 151.42 30 490 1000
80 2 10 0.6 0.7 80 426.21 30 560 1000
90 2 10 0.6 0.7 90 266.03 30 630 1000
100 2 10 0.6 0.7 100 1000.55 30 700 1000
110 2 10 0.6 0.7 110 2189.05 30 770 1000

20 3 10 0.6 0.7 20 10.68 30 140 1000
30 3 10 0.6 0.7 30 17.83 30 210 1000
40 3 10 0.6 0.7 40 24.86 30 280 1000
50 3 10 0.6 0.7 50 15.59 30 350 1000
60 3 10 0.6 0.7 60 166.02 30 420 1000
70 3 10 0.6 0.7 70 230.55 30 490 1000
80 3 10 0.6 0.7 80 215.43 30 560 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 10 0.6 0.7 90 551.92 30 630 1000
100 3 10 0.6 0.7 100 708.58 30 700 1000
110 3 10 0.6 0.7 110 874.35 30 770 1000

20 2 10 0.6 0.9 20 7.31 30 180 1000
30 2 10 0.6 0.9 30 12.94 30 270 1000
40 2 10 0.6 0.9 40 18.3 30 360 1000
50 2 10 0.6 0.9 50 23.37 30 450 1000
60 2 10 0.6 0.9 60 111.34 30 540 1000
70 2 10 0.6 0.9 70 335.05 30 630 1000
80 2 10 0.6 0.9 80 239.38 30 720 1000
90 2 10 0.6 0.9 90 587.46 30 810 1000
100 2 10 0.6 0.9 100 903 30 900 1000
110 2 10 0.6 0.9 110 9795.83 30 990 1000

20 3 10 0.6 0.9 20 12.1 30 180 1000
30 3 10 0.6 0.9 30 18.48 30 270 1000
40 3 10 0.6 0.9 40 25.94 30 360 1000
50 3 10 0.6 0.9 50 19.84 30 450 1000
60 3 10 0.6 0.9 60 139.73 30 540 1000
70 3 10 0.6 0.9 70 313.88 30 630 1000
80 3 10 0.6 0.9 80 170.96 30 720 1000
90 3 10 0.6 0.9 90 316.66 30 810 1000
100 3 10 0.6 0.9 100 742.71 30 900 1000
110 3 10 0.6 0.9 110 1262.49 30 990 1000

20 2 10 0.8 0.1 20 7.67 40 20 1000
30 2 10 0.8 0.1 30 12.84 40 30 1000
40 2 10 0.8 0.1 40 18.45 40 40 1000
50 2 10 0.8 0.1 50 21.07 40 50 1000
60 2 10 0.8 0.1 60 26.66 40 60 1000
70 2 10 0.8 0.1 70 16.14 40 70 1000
80 2 10 0.8 0.1 80 24.38 40 80 999
90 2 10 0.8 0.1 90 1178.05 40 90 1000
100 2 10 0.8 0.1 100 1425.71 40 100 1000
110 2 10 0.8 0.1 110 844.05 40 110 1000

20 3 10 0.8 0.1 20 11.88 40 20 1000
30 3 10 0.8 0.1 30 19.05 40 30 1000
40 3 10 0.8 0.1 40 25.66 40 40 1000
50 3 10 0.8 0.1 50 15.07 40 50 1000
60 3 10 0.8 0.1 60 19.41 40 60 1000
70 3 10 0.8 0.1 70 24.55 40 70 1000
80 3 10 0.8 0.1 80 658.16 40 80 1000
90 3 10 0.8 0.1 90 394.38 40 90 999
100 3 10 0.8 0.1 100 2515.95 40 100 1000
110 3 10 0.8 0.1 110 2326.63 40 110 1000

20 2 10 0.8 0.3 20 7.97 40 60 1000
30 2 10 0.8 0.3 30 13 40 90 1000
40 2 10 0.8 0.3 40 18.27 40 120 1000
50 2 10 0.8 0.3 50 24.91 40 150 1000
60 2 10 0.8 0.3 60 26.32 40 180 1000
70 2 10 0.8 0.3 70 18.51 40 210 1000
80 2 10 0.8 0.3 80 295.89 40 240 1000
90 2 10 0.8 0.3 90 426.17 40 270 979
100 2 10 0.8 0.3 100 534.39 40 300 1000
110 2 10 0.8 0.3 110 1241.23 40 330 1000

20 3 10 0.8 0.3 20 12.42 40 60 1000
30 3 10 0.8 0.3 30 17.8 40 90 1000
40 3 10 0.8 0.3 40 23.35 40 120 1000
50 3 10 0.8 0.3 50 13.52 40 150 1000
60 3 10 0.8 0.3 60 17.3 40 180 1000
70 3 10 0.8 0.3 70 329.8 40 210 1000
80 3 10 0.8 0.3 80 431.38 40 240 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 10 0.8 0.3 90 1360.69 40 270 1000
100 3 10 0.8 0.3 100 2512.76 40 300 1000
110 3 10 0.8 0.3 110 1906.34 40 330 1000

20 2 10 0.8 0.5 20 6.84 40 100 1000
30 2 10 0.8 0.5 30 12 40 150 1000
40 2 10 0.8 0.5 40 16.81 40 200 1000
50 2 10 0.8 0.5 50 22.88 40 250 1000
60 2 10 0.8 0.5 60 29.52 40 300 1000
70 2 10 0.8 0.5 70 182.67 40 350 1000
80 2 10 0.8 0.5 80 150.88 40 400 1000
90 2 10 0.8 0.5 90 481.88 40 450 1000
100 2 10 0.8 0.5 100 554.42 40 500 999
110 2 10 0.8 0.5 110 816.17 40 550 1000

20 3 10 0.8 0.5 20 11.34 40 100 1000
30 3 10 0.8 0.5 30 16.95 40 150 1000
40 3 10 0.8 0.5 40 26.19 40 200 1000
50 3 10 0.8 0.5 50 15.74 40 250 1000
60 3 10 0.8 0.5 60 22.21 40 300 1000
70 3 10 0.8 0.5 70 370.21 40 350 1000
80 3 10 0.8 0.5 80 589.13 40 400 1000
90 3 10 0.8 0.5 90 842.23 40 450 1000
100 3 10 0.8 0.5 100 1225.36 40 500 997
110 3 10 0.8 0.5 110 1308.59 40 550 1000

20 2 10 0.8 0.7 20 8.45 40 140 1000
30 2 10 0.8 0.7 30 12 40 210 1000
40 2 10 0.8 0.7 40 18.56 40 280 1000
50 2 10 0.8 0.7 50 22.73 40 350 1000
60 2 10 0.8 0.7 60 111.2 40 420 1000
70 2 10 0.8 0.7 70 162.23 40 490 1000
80 2 10 0.8 0.7 80 303.29 40 560 1000
90 2 10 0.8 0.7 90 1353.99 40 630 1000
100 2 10 0.8 0.7 100 419.8 40 700 1000
110 2 10 0.8 0.7 110 710.25 40 770 1000

20 3 10 0.8 0.7 20 9.95 40 140 1000
30 3 10 0.8 0.7 30 17.33 40 210 1000
40 3 10 0.8 0.7 40 21.75 40 280 1000
50 3 10 0.8 0.7 50 17.58 40 350 1000
60 3 10 0.8 0.7 60 158.92 40 420 1000
70 3 10 0.8 0.7 70 298.1 40 490 1000
80 3 10 0.8 0.7 80 381.21 40 560 1000
90 3 10 0.8 0.7 90 433.91 40 630 1000
100 3 10 0.8 0.7 100 907.59 40 700 1000
110 3 10 0.8 0.7 110 402.17 40 770 1000

20 2 10 0.8 0.9 20 8.33 40 180 1000
30 2 10 0.8 0.9 30 12.74 40 270 1000
40 2 10 0.8 0.9 40 18.17 40 360 1000
50 2 10 0.8 0.9 50 21.68 40 450 1000
60 2 10 0.8 0.9 60 111.38 40 540 1000
70 2 10 0.8 0.9 70 152.63 40 630 1000
80 2 10 0.8 0.9 80 345.72 40 720 1000
90 2 10 0.8 0.9 90 709.37 40 810 1000
100 2 10 0.8 0.9 100 1083.22 40 900 1000
110 2 10 0.8 0.9 110 14738.55 40 990 1000

20 3 10 0.8 0.9 20 9.91 40 180 1000
30 3 10 0.8 0.9 30 18.12 40 270 1000
40 3 10 0.8 0.9 40 24.64 40 360 1000
50 3 10 0.8 0.9 50 14.59 40 450 1000
60 3 10 0.8 0.9 60 111.91 40 540 1000
70 3 10 0.8 0.9 70 189.39 40 630 1000
80 3 10 0.8 0.9 80 432.42 40 720 1000

Continued on next page



Les Cahiers du GERAD G–2024–62 56

Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 10 0.8 0.9 90 872.53 40 810 1000
100 3 10 0.8 0.9 100 605.9 40 900 1000
110 3 10 0.8 0.9 110 437.88 40 990 1000

20 2 10 1 0.1 20 7.14 50 20 1000
30 2 10 1 0.1 30 12.32 50 30 1000
40 2 10 1 0.1 40 17.38 50 40 1000
50 2 10 1 0.1 50 24.43 50 50 1000
60 2 10 1 0.1 60 28.53 50 60 1000
70 2 10 1 0.1 70 16.6 50 70 1000
80 2 10 1 0.1 80 198.74 50 80 1000
90 2 10 1 0.1 90 500.53 50 90 1000
100 2 10 1 0.1 100 1545.18 50 100 1000
110 2 10 1 0.1 110 997.13 50 110 1000

20 3 10 1 0.1 20 10.32 50 20 1000
30 3 10 1 0.1 30 17.91 50 30 1000
40 3 10 1 0.1 40 25.66 50 40 1000
50 3 10 1 0.1 50 15.9 50 50 1000
60 3 10 1 0.1 60 18.05 50 60 1000
70 3 10 1 0.1 70 20.16 50 70 1000
80 3 10 1 0.1 80 367.57 50 80 1000
90 3 10 1 0.1 90 1321.18 50 90 1000
100 3 10 1 0.1 100 1224.99 50 100 999
110 3 10 1 0.1 110 1575.34 50 110 1000

20 2 10 1 0.3 20 8.15 50 60 1000
30 2 10 1 0.3 30 12.84 50 90 1000
40 2 10 1 0.3 40 12.23 50 120 1000
50 2 10 1 0.3 50 22.55 50 150 1000
60 2 10 1 0.3 60 28.78 50 180 1000
70 2 10 1 0.3 70 13.65 50 210 1000
80 2 10 1 0.3 80 193.22 50 240 998
90 2 10 1 0.3 90 461.77 50 270 1000
100 2 10 1 0.3 100 1333.13 50 300 1000
110 2 10 1 0.3 110 975.13 50 330 1000

20 3 10 1 0.3 20 10.71 50 60 1000
30 3 10 1 0.3 30 16.57 50 90 1000
40 3 10 1 0.3 40 23.34 50 120 1000
50 3 10 1 0.3 50 15.62 50 150 1000
60 3 10 1 0.3 60 18.05 50 180 1000
70 3 10 1 0.3 70 769.69 50 210 1000
80 3 10 1 0.3 80 480.18 50 240 1000
90 3 10 1 0.3 90 1187.59 50 270 1000
100 3 10 1 0.3 100 2146.21 50 300 1000
110 3 10 1 0.3 110 1918.96 50 330 1000

20 2 10 1 0.5 20 7.29 50 100 1000
30 2 10 1 0.5 30 12.22 50 150 1000
40 2 10 1 0.5 40 11.53 50 200 1000
50 2 10 1 0.5 50 22.34 50 250 1000
60 2 10 1 0.5 60 27.68 50 300 1000
70 2 10 1 0.5 70 207 50 350 1000
80 2 10 1 0.5 80 273.07 50 400 1000
90 2 10 1 0.5 90 296.38 50 450 989
100 2 10 1 0.5 100 399.88 50 500 1000
110 2 10 1 0.5 110 1486.73 50 550 1000

20 3 10 1 0.5 20 10.67 50 100 1000
30 3 10 1 0.5 30 16.42 50 150 1000
40 3 10 1 0.5 40 23.24 50 200 1000
50 3 10 1 0.5 50 19.71 50 250 1000
60 3 10 1 0.5 60 22.18 50 300 1000
70 3 10 1 0.5 70 389.29 50 350 1000
80 3 10 1 0.5 80 518.56 50 400 1000
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Table C1 – continued

Tasks Machines Max β α Objective Solve Considered Total Feasible
delay function Time (s) scenarios (

∑
s bs) machine delay

90 3 10 1 0.5 90 914.88 50 450 1000
100 3 10 1 0.5 100 843.71 50 500 1000
110 3 10 1 0.5 110 2310.65 50 550 1000

20 2 10 1 0.7 20 8.46 50 140 1000
30 2 10 1 0.7 30 11.89 50 210 1000
40 2 10 1 0.7 40 17.94 50 280 1000
50 2 10 1 0.7 50 22.46 50 350 1000
60 2 10 1 0.7 60 108.71 50 420 1000
70 2 10 1 0.7 70 140.11 50 490 1000
80 2 10 1 0.7 80 506.07 50 560 1000
90 2 10 1 0.7 90 185.69 50 630 1000
100 2 10 1 0.7 100 395.68 50 700 1000
110 2 10 1 0.7 110 613.38 50 770 1000

20 3 10 1 0.7 20 10.61 50 140 1000
30 3 10 1 0.7 30 17.59 50 210 1000
40 3 10 1 0.7 40 25.43 50 280 1000
50 3 10 1 0.7 50 15.83 50 350 1000
60 3 10 1 0.7 60 118.53 50 420 1000
70 3 10 1 0.7 70 194.52 50 490 1000
80 3 10 1 0.7 80 293.13 50 560 1000
90 3 10 1 0.7 90 516.82 50 630 1000
100 3 10 1 0.7 100 585.2 50 700 1000
110 3 10 1 0.7 110 1130.01 50 770 1000

20 2 10 1 0.9 20 7.27 50 180 1000
30 2 10 1 0.9 30 12.09 50 270 1000
40 2 10 1 0.9 40 15.54 50 360 1000
50 2 10 1 0.9 50 22.05 50 450 1000
60 2 10 1 0.9 60 115.82 50 540 1000
70 2 10 1 0.9 70 104.69 50 630 1000
80 2 10 1 0.9 80 246.88 50 720 1000
90 2 10 1 0.9 90 244.85 50 810 1000
100 2 10 1 0.9 100 605.4 50 900 1000
110 2 10 1 0.9 110 22978.32 50 990 1000

20 3 10 1 0.9 20 11.64 50 180 1000
30 3 10 1 0.9 30 18.91 50 270 1000
40 3 10 1 0.9 40 23.61 50 360 1000
50 3 10 1 0.9 50 19.15 50 450 1000
60 3 10 1 0.9 60 78.13 50 540 1000
70 3 10 1 0.9 70 153.49 50 630 1000
80 3 10 1 0.9 80 301.24 50 720 1000
90 3 10 1 0.9 90 322.09 50 810 1000
100 3 10 1 0.9 100 489.44 50 900 1000
110 3 10 1 0.9 110 825.96 50 990 1000
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