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Abstract : Managing intermittent generation in electric power systems with high penetration of
renewable sources of energy presents major operational challenges. Faster, more efficient optimization
techniques are essential to mitigate this intermittency and ensure grid reliability. Convex relaxations
of optimal power flow (OPF) problem offer tractable mean of solving the non-linear, non-convex OPF
problem. Specifically, the semidefinite relaxation yields the tightest lower bounds for the OPF but
require careful exploitation of sparsity to remain computationally viable when scaling to large prob-
lem instances. This exploitation can be achieved through clique decomposition of the semidefinite
constraint. In this paper, we experiment with various clique decomposition algorithms and demon-
strate that the resulting OPF solve time is highly sensitive to the choice of decomposition. Our main
contribution is showing that the optimal decomposition depends on both the network topology and
the demand profile. We categorize networks into two types: those with a preferred decomposition
that performs well regardless of demand, and those where demand significantly impacts the optimal
decomposition choice. This insight opens the possibility of using a learning-based approach to predict
the best decomposition for minimizing OPF solve time, tailored to the network demand.

Keywords: Optimal power flow, semidefinite programming, clique decomposition, chordal extension
heuristics

Résumé : Pour les réseaux à forte pénétration des renouvelables, la gestion de la génération inter-
mittente est un défi opérationnel majeur. Des techniques d’optimisation plus rapides et plus efficaces
sont essentielles pour atténuer cette intermittence et garantir la fiabilité du réseau. Les relaxations
convexes du problème de l’Optimal Power Flow (OPF) offrent un moyen tractable de résoudre ce
problème non linéaire et non convexe. En particulier, la relaxation semi-définie fournit de très bonnes
bornes inférieures pour l’OPF, mais nécessite une exploitation rigoureuse de la parcimonie pour rester
viable en termes de temps de calcul lors du passage à des instances de problèmes de grande taille.
Cette exploitation peut être réalisée grâce à la décomposition en cliques de la contrainte semi-définie.
Dans cet article, nous expérimentons différentes méthodes de décomposition en cliques et démontrons
que le temps de résolution de l’OPF est fortement influencé par le choix de la décomposition. Notre
principale contribution est de montrer que la décomposition optimale dépend à la fois de la topolo-
gie du réseau et du profil de la demande. Nous classons les réseaux en deux types : ceux avec une
décomposition préférée qui performe bien indépendamment de la demande, et ceux où la demande
impacte de manière significative le choix de la décomposition optimale. Cette observation ouvre la
possibilité d’utiliser de l’apprentissage pour prédire la meilleure décomposition afin de minimiser le
temps de résolution de l’OPF, en fonction du profil de la demande du réseau.

Mots-clés : Flux de puissance optimal, programmation semi-définie, décomposition en cliques, heuris-
tiques d’extension cordale
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1 Introduction

Transitioning from today’s fuel-based power grids to renewable-based systems poses significant oper-

ational and economic challenges. This is largely due to the intermittent nature of non-dispatchable

renewable energy sources, such as wind and solar, which depend on weather conditions. This inter-

mittency introduces uncertainties and results in two fundamental differences from traditional power

systems: faster timescales for power system operations and a shift from large, centralized power plants

to numerous smaller distributed generation units [24]. To address these changes, more efficient opti-

mization methods are essential to mitigate the variability of renewables via the flexibility of distributed

generation infrastructure that can be rapidly re-dispatched.

The optimal power flow (OPF) is a key optimization problem that determines the optimal power

dispatch to minimize generation costs while adhering to grid operational constraints, like power line

and bus voltage bounds [25]. However, due to the nature of power flow equations, the OPF is a non-

convex quadratic problem and is thus NP-hard [6]. Various approaches have been proposed to solve the

OPF to near optimally, including (linear) approximations (e.g., DC-OPF) and convex relaxations [16,25].

The semidefinite relaxation (SDR-OPF) is one of the tightest convex relaxations but is computationally

expensive. We refer to the chordal relaxation (CR-OPF) the equivalent form to SDR-OPF that leverages

the sparsity of the grid to accelerate computations in semidefinite programming (SDP) [3,13]. However,

selecting the optimal chordal decomposition remains challenging as the solution time of the resolution

is highly sensitive to the selected decomposition. Current methods typically involve heuristics to

minimize the edges added to obtain the chordal extension, followed by clique merging strategies to

balance clique size and count.

Alternative strategies, such as genetic algorithms [9] and end-to-end learning models [19,28], have

also been explored for rapid resolution of the OPF. These methods often lack convergence guarantees

and/or their approximation nature compromises more on feasibility. Hybrid approaches that combine

optimization and learning, such as [4], use machine learning predictions to accelerate traditional solvers.

Recent research has explored clique decomposition learning methods, where [1] predicts the compu-

tational efficiency of decompositions, and [15] applies imitation learning to mimic chordal extension

heuristics.

Contribution. Unlike previous studies that focus on optimizing the overall performance of chordal

decomposition heuristics across different networks, this paper examines how loading patterns influence

decomposition quality in terms of OPF solve time for a fixed network topology. We demonstrate that
for specific grids, the effectiveness of decomposition heuristics can significantly vary based on demand

profiles. This approach is motivated by the fact that the topology of networks remains relatively stable

over time, whereas demand conditions fluctuates on much shorter time scales.

2 Optimal power flow and SDR-OPF

The OPF involves determining the optimal operating conditions of an electric power system to minimize

generation costs while satisfying network constraints. Formally, the power system is represented as a

graph (N ,L), where N ⊂ N is the set of vertices, i.e., buses, and L ⊂ N × N is the set of edges, i.e.,

power lines. Let the admittance of line ij ∈ L be denoted by yij ∈ C. Let pi ∈ R and qi ∈ R be,

respectively, the active and reactive power injection/absorption at bus i ∈ N . Similarly, let pij ∈ R
and qij ∈ R be, respectively, the active and reactive power flow in line ij ∈ L. Lastly, let vi ∈ C be the

complex voltage phasor at bus i. The non-linear, non-convex OPF (AC-OPF) problem is expressed as:

min
v,p,q

∑
i∈N

ci,2p
2
i + ci,1pi + ci,0 (1a)

s.t. pij + jqij = vi(v
∗
i − v∗j )y

∗
ij , ij ∈ L (1b)

v ≤ |vi| ≤ v, i ∈ N (1c)
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∑
j:ij∈L

pij = pi,
∑

j:ij∈L
qij = qi, i ∈ N (1d)

p
i
≤ pi ≤ pi, q

i
≤ qi ≤ qi, i ∈ N (1e)√

p2ij + q2ij ≤ sij , ij ∈ L (1f)

where (1a) is a convex generation cost function commonly set as a convex quadratic function [25]

with coefficients denoted ci,0, ci,1 and ci,2. (1b) is the power flow constraint, (1c) imposes the min-

imum/maximum (v and v, respectively) voltage magnitude limits, (1d) represents the active and

reactive nodal power balance, (1e) imposes the minimum and maximum active and reactive power

limits, and (1f) enforces the apparent power limit sij for each line.

A common set of OPF convex relaxations lifts the dimensionality of the voltage variable through

the introduction of a Hermitian matrix W ∈ Cn×n, defined as W = vvH, where v is the voltage

vector. This allows us to rewrite (1b) as a linear constraint, in addition to rewriting (1c), yielding:

pij + jqij = (Wii −Wij)y
∗
ij , ij ∈ L, (2a)

v2 ≤ Wii ≤ v2, (2b)

W ⪰ 0, (2c)

rank(W) = 1 (2d)

where (2c), viz., a positive semidefinite (PSD) constraint, and (2d) are a reformulation of the equality

W = vvH. The resulting problem, i.e., (1a) subject to (1d)–(1f), (2a)–(2d), is equivalent to the

original formulation [25]. Finally, omitting (2d) leads to the semidefinite relaxation (SDR-OPF).

3 Sparsity exploitation and clique decompositions

The SDR-OPF is usually a fairly sparse optimization problem and only the coefficients Wij for which

ij ∈ L are involved in the problem. This results in a PSD constraint on a large matrix where many of

its coefficients are free. Under certain assumptions, which we will detail in this section, it is possible

to transform this constraint into several PSD constraints on smaller matrices, making the problem less

computationally expensive. Understanding this transformation requires introducing chordal graphs

and clique decompositions. This approach is rooted in the theory of matrix completion, which aims

to fill in the missing entries of a partially observed matrix. Decomposing the PSD contraint on W is
feasible under specific conditions, namely the chordality of the graph but comes at the cost of adding

linking constraints between the submatrices obtained.

3.1 Chordal graphs and sparsity patterns

Consider a symmetric adjacency pattern of order n ∈ N, defined as a set of index pairs E ⊆ {1, 2, . . . , n}
×{1, 2, . . . , n}, where each pair (i, j) ∈ E represents a non-zero element in an n× n adjacency matrix.

We can associate this pattern E with an undirected graph G consisting of n nodes, where an edge

connects nodes i and j if (i, j) ∈ E .

A graph is called chordal if every cycle of length four or more has a chord, which is an edge

connecting two non-adjacent nodes in the cycle [26]. This property ensures that certain sparse matrix

structures can be decomposed into smaller, more manageable components.

3.2 Clique decomposition steps

For a sparse SDP problem, e.g., SDR-OPF, the clique decomposition process involves several steps

explained next.
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W =


× × ×
× × × × ×

× × ×
× × × × ×

× × ×
× × × × ×

 ⪰ 0 1

2 3

4

56

2, 4, 6

2, 3, 4

4, 5, 61, 2, 6

2

22

1

1

1

Figure 1: Adjacency matrix of W and the corresponding chordal graph and clique tree

3.2.1 Sparsity pattern

The sparsity pattern summarizes all non-zero entries across the problem’s data matrices and can be

viewed as an adjacency matrix. This is illustrated in Figure 1, were we consider that the original

network is a cycle with six nodes. The black entries of W then represent the sparsity pattern of that

network.

3.2.2 Chordal extension

Because not all graphs are naturally chordal, we extend the original network to a chordal graph by

adding edges. This is shown in Figure 1 where we add the blue edges to the original graph and

the corresponding blue entries in W. While finding the minimal chordal extension is NP-complete,

effective heuristics, such as the approximate minimum degree (AMD) ordering followed by a Cholesky

factorization, are commonly used [2].

3.2.3 Maximal clique identification

A clique is a subset of nodes where every pair is connected. A maximal clique is a clique not entirely

contained within another. Listing these cliques from a chordal graph can be done in linear time with

Bron and Kerbosh’s algorithm [7]. Now that we have a chordal graph and the set of its maximal

cliques, we can rewrite the constraint (2c) as multiple PSD constraints on each submatrix associated

with a clique. To ensure that these submatrices reconstruct the original matrix W correctly, we must

add linking constraints between these submatrices.

3.2.4 Linking constraints

As the cliques may overlap, linking constraints ensure consistency between intersecting submatrices.

To achieve this, we first construct the clique graph of our chordal graph. This graph has nodes

representing the cliques of the original graph, see Figure 1. In this graph, two nodes, i.e., two cliques,

are connected if their corresponding cliques share common nodes. We can assign a weight to these

edges, which represents the number of shared nodes. These edges describe the linking constraints

between the submatrices. Choosing all the edges results in many redundant constraints due to cycles

in the clique graph. To minimize these linking constraints, we seek a clique graph covering that satisfies

two properties: it is acyclic and satisfies the running intersection property [26]. The latter ensures

that for an entry of W, all the submatrices that contain it are equal at that location, see Figure 2.

The covering that meets these properties is the maximum spanning tree [26], and it can be obtained

using Prim’s algorithm [21]. We refer to it as the clique tree, see Figure 1.

3.3 Clique merging

In practice, especially in cases with extremely sparse problems like those in the OPF, the decomposition

may yield numerous small cliques. To address this, a post-processing step called clique merging is often
employed [17,22]. This process involves adding edges to the chordal graph to combine adjacent cliques,
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W =


× × ×
× × × × ×

× × ×
× × × × ×

× × ×
× × × × ×

 1

2 3

4

56

3

5

4

32

56

W{2,3,4}(3, 3) = W{4,5,6}(1, 1)

Figure 2: Linking constraints between submatrices corresponding to two overlapping cliques

thereby reducing the number of linking constraints, provided that the chordal property is preserved.

This formulation is particularly relevant when handling complex SDPs, where converting complex

variables into real variables may necessitate doubling the clique sizes.

Clique merging algorithms can be based on the clique tree [23] or on the clique graph [12]. In

the remainder of this paper, we consider the latter and use [12]’s clique graph-based merging strategy

provided in Algorithm 1. As show in Figure 1, the edge weights of the clique graph are usually given

by the number of nodes common to the cliques at both ends of the edge. In [12]’s clique merging

algorithm, a new edge weighting function is introduced: wij = |γi|3 + |γj |3 − |γi ∪ γj |3, where |γi| and
|γj | are two cliques, i.e., two sets of nodes of the original graph. This function is typically negative,

except in cases where there is significant overlap between cliques. Algorithm 1 iteratively merges the

cliques i and j for which wij ≥ 0 and then recomputes the weights wij of the updated clique graph

until wij < 0 for all i and j.

Algorithm 1: Clique merging [12]

Input: A chordal graph G = (V, E) with V = {1, 2, . . . , n} and E ⊆ V × V
Output: An updated clique graph
Construct the intersection graph Gc = (Vc, Ec) with Vc = {γ1, . . . , γm} and Ec = {{γi, γj} | γi ∩ γj ̸= ∅}
Set wij = |γi|3 + |γj |3 − |γi ∪ γj |3 for each {γi, γj} ∈ Ec
While the clique graph Gc contains positive weights do

Select two admissible cliques γi and γj with the highest wij

Merge the cliques γi and γj
Update the clique graph Gc
Recompute the weights wij for the updated clique graph Gc

End while

3.4 Node ordering heuristics for the chordal extension

The Elimination Game [20] given in Algorithm 2 simulates Gaussian elimination on graphs. Fulker-

son [11] showed that the class of graphs produced by Elimination Game is exactly the class of chordal

graphs, making it a foundational method for obtaining chordal extensions. Algorithm 2 operates on

a graph G and a node ordering σ, systematically adding edges to transform neighbouring nodes into

cliques. A chordal extension is therefore entirely determined by a node ordering of the original graph.

We define the Cholesky factorization of a PSD symmetric matrix A as a decomposition PσAP⊤
σ =

LDL⊤, where L is a lower triangular matrix, D is a positive diagonal matrix, and σ = (σ(1), . . . , σ(n))

is a permutation of {1, 2, . . . , n}.

The adjacency matrix A of a graph G is by definition symmetric. If self-loops are not allowed in the

graph, the diagonal of the adjacency matrix can be inflated arbitrarily without changing the graph’s

structure. This process can continue until the matrix becomes diagonally dominant and therefore

PSD. If we let the matrix A be the PSD adjacency matrix of a graph G, then the chordal extension G+
σ
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Algorithm 2: Elimination game [20]

Input: A graph G = (V, E) and σ, an ordering of the nodes
Output: A chordal extension G+σ of the graph G
G1σ ← G
G+σ ← G
For k = 1 to n do

Let F be the set of edges needed to turn the neighbourhood of node vk into a clique in Gkσ
Gk+1
σ ← Gkσ + F − {vk}
G+σ ← G+σ + F

End for

obtained after doing the graph elimination of G is exactly the graph described by the sparsity pattern

of L + LT where L is the Cholesky factor of A with permutation σ . Indeed, it can be shown [26]

that if A ∈ SnE , then Pσ(L+L⊤)P⊤
σ ∈ SnE′ , where E ′ is the chordal extension of E and SnE is the set of

symmetric matrices of size n with adjacency structure E . The adjacency structure of L + L⊤ is thus

the chordal extension of the adjacency structure of A.

We therefore aim to find a permutation σ that minimizes the fill-in [10], meaning that we want

the Cholesky factor L of the adjacency matrix A of the network to be as sparse as possible. The

question of optimal chordal extension in terms of OPF solve time thus translates to finding the best

node ordering. We explore various heuristics to determine σ. Although the problem of finding the

ordering the minimizes the number of added edges in the chordal extension is NP-complete [27], there

are several efficient heuristics available. In this work, we implement the following heuristics:

Minimum degree (MD): at each iteration, the node with the smallest degree is chosen.

Approximate minimum degree (AMD): employs the same algorithm as MD but with bounds on the

node degrees.

Minimum fill-in (MFI): at each iteration, the node that minimizes the number of edges to be added

among its neighbours so that they form a clique is chosen.

These heuristics were selected because they provided the best results in terms of solve time. Other

heuristics such as the Maximum Cardinality Search (MCS-M) [5] were tested but were set aside from

the final results due to their significantly poorer performance compared to the above three algorithms.

4 Numerical tests

To test the chordal extension heuristics, we solve CR-OPF on the RTE [14] and MATPOWER [29]

benchmarks with MOSEK [18]. To formulate this problem, we use the Julia library PowerModels.jl [8].

We note that chordal extension processes are completed in negligible time compared to the solving

times with MOSEK and are therefore neglected. Tests are conducted on an 11th Gen i7-11700F processor.

4.1 Test system results

First, we compare the performance of the heuristics on about ten cases with over 1000 buses. For each

chordal extension heuristic (AMD, MD, and MFI), we conduct tests both with and without clique merging.

The resulting CR-OPF solve times are given in Table 1. We observe that, for a given case, the different

heuristics provide distinct decompositions with varying performance. We also note that: (i) networks

of similar size (in terms of the number of buses) can have very different solve times; (ii) decompositions

without clique merging are on average less efficient than those with clique merging for the considered

test systems; (iii) there is no single decomposition that consistently outperforms all others across all

networks: this suggests that certain network topologies favour specific decompositions; (iv) in some

cases, the AMD decomposition without clique merging offers better solve times than all decompositions

with clique merging; (v) MFI with clique merging generally provides the best results on average, closely

followed by the AMD heuristic with clique merging.
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Table 1: Relative resolution time difference for different test cases

Case With merge Without merging

AMD MD MFI AMD MD MFI

case1888rte 9.96 +20% +9% +38% +65% +41%
case1951rte +4% +6% 11.23 +34% +37% +43%
case2736sp +30% +37% +5% 27.56 +27% +7%
case2737sop 23.33 +45% +18% +11% +29% +19%
case2746wop +15% +29% 33.27 +18% +24% +13%
case2746wp +4% +45% +3% 28.05 +22% +2%
case2848rte 17.60 +26% +6% +36% +35% +22%
case2868rte 20.17 +2% +2% +24% +14% +32%

Mean +8% +26% +5% +20% +32% +22%

4.2 Sensitivity to the demand profile

To highlight the impact of loads on chordal decomposition heuristics, we vary the demand profile for a

given network. For each bus i, we perturb its active power pi and reactive power qi by adding Gaussian

noise N (0,Σi). The standard deviation Σi is set as Σi = αpi for active power and Σi = αqi for reactive

power, where α is a constant. This ensures perturbations are proportional to the original demand. We

use α = 0.5 to create significant perturbations without making the problem too frequently infeasible.

We compare performance on the case1951rte and case2746wop networks, with 100 perturbed demand

profiles each. For each perturbation, we measure each heuristic’s performance based on the solve time

of the resulting CR-OPF.

4.2.1 case1951rte

Figure 3: Relative solve times (%) for case1951rte (100 demand profiles)

We consider the case1951rte test system for 100 loading profiles. The performances of each

heuristics are shown in Figure 3. For this network, the optimal decomposition varies depending on the

demand. The heuristics without clique merging consistently perform worse than those with merging.

We note that each clique merging algorithm provides the best results about one-third of the time.

This points to an opportunity of using a learning-based approach to predict the best decomposition

for minimizing CR-OPF solve time, tailored to the network demand.

4.2.2 case2746wop

We now move to the case2746wop test system. Figure 4 shows that AMD with clique merging outper-

forms other approaches in almost all considered demand profiles. We also observe that the ranking

of heuristics is not the same as with the previous network: each heuristic responds differently to each
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topology, and there is no clear link between topology type and the preferred heuristic. Similarly, de-

mand profile perturbations corresponding to a large increase in demand would favour one heuristic

over another. However, we could not establish such a link. This further supports using learning-based

methods to predict the best heuristic based on network topology and demand loading.

Figure 4: Relative solve times (%) for case2746wop (100 demand profiles)

5 Conclusion

In this paper, we explore ways of accelerating the Optimal Power Flow (OPF) by applying chordal

relaxation techniques and improving the choice of decomposition. Our implementation of CR-OPF

reveals that different test systems respond uniquely to chordal extension heuristics, highlighting the

potential benefits of using machine learning to select the best relaxation method based on demand

profiles. Additionally, clique merging has proven to be an effective operation for reducing OPF reso-

lution time, though its effectiveness varies depending on the case and demand fluctuations. Moving

forward, optimizing the weight function for clique merging and employing machine learning techniques

to select the best heuristic could improve solve time on specific grids.
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