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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2024
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Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
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Abstract : Planners in different industries use optimization software for decision-making. In numerous
practical applications, these optimization tools are often not readily adjustable or configurable by
end users due to limited knowledge, resources, or the required investment to consistently make such
customizations. As a result, planners frequently adjust the solutions obtained from software based on
implicit internal operational rules and preferences to make them feasible in practice. These practices
may differ across various business units and subsidiaries. One can leverage data-driven methods to learn
and embed implicit side constraints in a mixed integer linear program (MILP) to ensure that such rules
can be learned and systematically incorporated into optimization models. These implicit constraints
can be created from machine learning models trained using previously implemented solutions. To this
end, we extend a data-driven constraint customization framework in the literature developed to extract
constraints in the form of a traditional linear regression model to the case when constraints take the
form of decision trees. This allows us to learn and incorporate implicit constraints in a non-linear or
logical form. To demonstrate the value of this framework, experiments were conducted on the knapsack
and nurse rostering problems where various combinations of hidden operational rules were simulated.
The solutions obtained by our proposed solution framework suggest that it can effectively adjust the
solutions based on the constraints extracted from historical solutions. The implicit constraints that
take the form of decision trees generally outperform those based on linear regression models, mainly
when part of the decision model comprises discrete variables.

Keywords : Constraint customization, data-driven methods, mixed integer linear programming,
decision tree
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1 Introduction

Optimization models are employed in various industrial applications to help planners make better

decisions. However, most common models, when embedded in software-based decision support systems,

fail to capture all the subtleties or practical requirements of the specific operational settings they are

deployed into. Hence, planners often need to manually modify the output solutions (even when they are

optimal from the model’s point of view) to meet informal operational rules and preferences (Pawlak and

Krawiec 2017, Hewitt and Frejinger 2020). These post-optimization adjustments are mostly human-

driven and susceptible to error. Furthermore, as the business rules have the potential to change over

time and be influenced by the preferences of different decision-makers within the company, the process

of customization becomes time-consuming and may need to be repeated. The main drawback of this

type of customization is that the software transforms into a customized decision support system for

each customer, which is not an ideal solution in today’s information technology industry.

One possible approach involves employing data-driven methods to learn to incorporate the under-

lying implicit business rules and preferences specific to each decision-maker using predictive models

Hewitt and Frejinger (2020). By doing so, the software provider can develop a single core model for

all subsidiaries, allowing data-driven customization to be implemented automatically without human

intervention. This allows for the expansion of the initial optimization model to systematically learn

and adapt to the individual requirements of each decision-maker. This idea of providing a data-driven

framework to extract business rules from historical decisions and integrate them into general optimiza-

tion problems (GOP) was first investigated in Hewitt and Frejinger (2020). The first assumption of this

framework is that the company already knows the original optimization problem that has to be solved

(GOP) and has access to the historical data of both the solutions produced and the modifications that

led to the executed plans. This is practical for organizations that have been using optimization-based

tools for some time. In Hewitt and Frejinger (2020), the authors present a methodology to learn

implicit side constraints for MILPs using a traditional linear regression model.

This paper contributes to further expanding the framework presented in Hewitt and Frejinger (2020)

in the following directions. First, we showcase how regularized linear regression and decision trees can

enhance the efficacy of the data-driven constraint customization framework. Second, we present a

MILP model that integrates implicit constraints, which take the form of decision trees, enabling us

to learn and incorporate non-linear or logical customization constraints. Third, in addition to linear

programming problems, we empirically validate the framework’s performance on the binary knapsack

and nurse rostering problems where various combinations of concealed operational rules are simulated.

The rest of the paper is organized as follows: The next section provides an overview of the related

literature. In Section 3, we present the proposed framework of Hewitt and Frejinger (2020) and give

more precisions on our contributions in that context. Section 4 is dedicated to presenting illustrative

examples where we implement the approach to two industrial problems and report the obtained results.

Finally, in Section 5, we discuss this study’s findings and possible future directions.

2 Related work

Lately, the field of analytics has captured the interest of different scientific communities. The fast-

growing availability of data motivates utilizing data-driven methods to find the latent patterns of

the data, estimate the parameters, and build optimization models (Nicosia et al. 2017). Moreover,

more sophisticated data-driven methods must be developed to tackle the complexity of solving these

optimization problems enhanced by data (Khaniyev 2018). Thus, recently, combining machine learning

methods with optimization problems has drawn researchers’ attention. On one side, many studies

are leveraging machine learning methods directly to solve combinatorial optimization problems. For

instance, consider solving patient appointment scheduling (Pham et al. 2023) and routing problem of a

radiotherapy device (Kafaei et al. 2021) through machine learning methods. In addition, Junior Mele
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et al. (2021) discusses several studies that aim to address the traveling salesperson problem (TSP) and

its variations using machine learning techniques. Employing data-driven approaches to deal with the

uncertainty in stochastic and robust optimization problems is also a highly active stream of research

(Ning and You 2018, Augustin et al. 2022). We refer the reader to Bengio et al. (2021), Nguyen et al.

(2022) and the references therein for more details.

In many other existing studies on the combination of prescriptive and predictive methods, predictive

analytics are implemented beforehand, and their outputs are fixed. For example, the parameters of

optimization models can be obtained from a machine learning method and incorporated as parameters

in the optimization model. Ferreira et al. (2016) apply regression trees to predict the demand for initial

exposure of the products with no historical sales data for an online retailer. Based on the estimated

demand from the regression trees using various input features, they optimize the price of each item to

maximize the overall revenue. In this paradigm, called predict-then-optimize, the first step maximizes

the prediction power of the model, and the second step optimizes the decisions based on the predictions

and associated costs (Vanderschueren et al. 2022). Recent studies focus on integrating predictive and

prescriptive analytics by leveraging the optimization problem in the training step (Elmachtoub and

Grigas 2022). By considering the cost of decision-making in the loss function of the prediction model,

the decisions can become more cost-effective in the presence of uncertainty (Elmachtoub and Grigas

2022).

The proposed methodology also aims to combine predictive and prescriptive analytics. However,

we distinguish this work from the studies mentioned above, which attempt to estimate the parameters

of the optimization models or those replacing an optimization approach with a machine learning

approach. Instead, This research presents a framework for embedding machine learning models in

optimization models with incomplete information on the problem’s constraints, not their parameters.

From this perspective, the proposed approach is related to the literature on constraint acquisition,

mainly conducted in constraint programming (CP). In our study, the core optimization model is

mainly known, and the only missing part is a subset of constraints. Thus, for the sake of conciseness,

we will mainly review the literature in the area of constraint learning and acquisition, whereas the

studies that focus on model learning or model seeking (e.g., Beldiceanu and Simonis (2016), Kumar

et al. (2021)). Studies in constraint acquisition focus on learning a set of constraints based on several

feasible and infeasible examples. Most of these approaches attempt to match the examples with a

combination of rules in a given library and suggest constraints compatible with the solutions in hand

(Bessiere et al. 2017, Tsouros and Stergiou 2020). Although most constraint acquisition methods

synthesize constraints for CP models, a few studies, such as Pawlak and Krawiec (2017) and Schede

et al. (2019), learn constraints for MILP or nonlinear programming (NLP) models. A comprehensive

survey of related literature is represented in Fajemisin et al. (2021). What differentiates their work

from the current study is that these approaches do not use statistical learning and predictive models

to learn complex feasibility regions.

Since our approaches embed predictive models into optimization ones, we provide a short overview

of papers considering predictive models as constraints of an optimization problem. Liu et al. (2021)

introduces a framework to integrate travel-time prediction and order-assignment optimization to cap-

ture the drivers’ routing decision-making and include it in the optimization problem. They employ

linear regression and random forest as two compatible prediction models with optimization. They

further reformulate the problem to be efficiently solved by the branch-and-price algorithm. Moreover,

they discuss the robust integrated model of the problem and provide two heuristics to solve the multi-

period setting of the problem. The methodology introduced in Lombardi et al. (2017), called empirical

model learning (EML), obtains components of a complex prescriptive method using machine learning

by learning relations between decidable and observable. In this conceptual model, they generate data

by simulation and propose embedding a trained neural network and decision tree (DT) into a combi-

natorial problem such as mixed integer non-linear programming (MINLP), CP, and local search. The

papers provide an embedding for linear regression in MILP but do not present any result for this case.

Moreover, for the case of DT, it only provides embedding for local search, CP, and SAT. More recently,
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two general packages have emerged to allow for the automatic linearization of prediction models and

their integration into MILP. JANOS (Bergman et al. 2022) currently supports neural networks, logistic

regression, and linear regression. OMLT (Ceccon et al. 2022) is another open-source software package

known as an optimization and machine learning toolkit allowing integration of neural networks and

gradient-boosted trees in large-scale optimization problems. It is compatible with the training models

from packages like Keras, PyTorch, and TensorFlow and has various activation functions.

3 Description of the solution framework

We first describe the framework introduced in Hewitt and Frejinger (2020), which is built based on

the following three main steps:

1. Defining the general structure of the problem, referred to as the general optimization problem

(GOP).

2. Training a machine learning model on historical modifications applied to each decision variable

of the previous optimal solutions of the GOP.

3. Embedding the trained models in the GOP as soft constraints and providing an augmented

model, which we refer to as the adapted optimization problem (AOP).

We assume the decision support software company knows the GOP of the customer, which is a

traditional MILP for each decision point t:

max rtx (1)

s.t. Atx ≤ bt (2)

x ∈ X , (3)

where rt, At and bt are the parameters of the problem. We also assume historical data for a set of

time periods (t : 1...T ) is available. We then compare the optimal solution (x̄t) and the actionable

plan (ȳt) at decision points t. The assumption is that the customer has applied business rules to the

optimal solutions that altered them to actionable plans. These business rules act as side constraints

Gtx+Htv ≤ ut that are missing in the GOP. These constraints consist of the GOP regular variables

(x) and possible extra decision variables (v ∈ V) such as ones related to if-then rules or precedence in

scheduling. It should be remarked that the matrices and vectors are shown in bold text throughout

this work.

The second task revolves around training a predictive model on historical data. The objective is

to keep the AOP as a MILP to maintain the existing solution pipeline. We thereby opt for machine

learning prediction models that are linearizable and tractable. Hewitt and Frejinger (2020) employ

linear regression in their proposed framework. For each element of the variables of the optimization

problem, the regression equation is learned from the data set (x̄, ȳi) as follows:

yi −

β̂i +
∑
j∈N

(
βi
jxj

) = 0 ∀i ∈ N : 1, . . . , n, (4)

where β̂i and βi are the interception and coefficients of the ith equation, respectively, the least squares

method is used throughout their work.

The third step of the framework proposed in Hewitt and Frejinger (2020) is to embed the learning

model in the GOP to create the AOP. It is possible to embed a machine learning model into an

optimization problem only if a suitable encoding has been defined. They define δi as the difference

between each pair of predictions of the executable plan (yi) and optimal solution (xi). The AOP is

therefore represented as following for each decision point t:

max rtx− c∆ (5)
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s.t. Atx ≤ bt (6)

yi − (β̂i +
∑
j∈N

(βi
jxj)) = 0 ∀i ∈ N : 1, . . . , n (7)

δi ≥ yi − xi ∀i ∈ N : 1, . . . , n (8)

δi ≥ xi − yi ∀i ∈ N : 1, . . . , n (9)

∆ =
∑
i∈N

δi ∀i ∈ N : 1, . . . , n (10)

x ∈ X ⊆ Rn,y ⊆ Rn (11)

δi ≥ 0 ∀i ∈ N : 1, . . . , n (12)

∆ ≥ 0, (13)

β̂i and βi are fixed learned parameters, and ∆ is a variable that captures the sum of all differences

between predictions and solutions. Moreover, the objective function is designed to stimulate the

AOP to obtain solutions close to predictions of executable plans. c is a given penalty for the AOP.

This penalty term balances the importance of the original GOP objective and the difference between

predictions and solutions and needs to be tuned for each problem. By solving the AOP, we obtain

an optimal solution (x). The promise is that the new solution satisfies the business rules for more

instances than the original solutions.

This framework assumes that the underlying problem can be modeled as an optimization problem

and that the parameters are known in advance. A dataset of historical records comprising optimal

solutions (intended decisions) and executed plans (actual decisions) exists. To evaluate the approach’s

effectiveness, the following additional steps need to be considered in this study: generating data and

validating the framework. As shown in the framework depicted in Figure 1, the first step is data

Data Generation

Generating Model

Parameters

Solving GOP

(Input Features)

Imposing Rules

(Output Features)

Learning Models

Providing

Executable Plan

Validation

Computing Gap

Computing Satisfaction

Solving AOP

Embedding ML Model

(Generating AOP)

Figure 1: Framework overview

generation. The experiment is a controlled setting since, in this study, the true data generation is

known. The collected data is partitioned into training and test sets. The former is utilized to acquire

knowledge on the linear representation of a mapping. With the latter, we evaluate the effectiveness of

these learned mathematical entities.

The parameters are generated randomly for each problem instance, and the constructed problem

is solved optimally. Once the optimal solutions are obtained, the predefined rules and preferences are

applied, creating the new altered solutions. A machine learning model is then trained and embedded
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into the optimization model in the next step. As such, plans that are likely more executable are

generated by solving the new optimization problem (AOP). To validate the method, we evaluate two

criteria. Firstly, we measure the percentage of feasible instances regarding the unmodeled rules after

solving the AOP. Secondly, assuming the rules are known, we compute the difference between the cost

of adding the learned constraints to the model and the cost of adding the true rules directly to the

model. This performance measure is associated with the degradation of the objective function because

the predictive model is inherently imperfect.

The following explains this study’s contributions to the framework’s learning phase. Section 3.1

briefly describes the regularizations used in the linear regression. Section 3.2 details how we can model

and incorporate decision trees instead of linear regression in the framework.

3.1 Regularized linear regression

Hewitt and Frejinger (2020) use a sparse matrix of coefficients to generate the AOP by removing the

coefficients with p-value higher than 0.05. We also believe that using a sparser model has some advan-

tages. Regularization leads to obtaining a trained model based on the more important features rather

than all of them. So, each variable y is influenced by a limited number of variables x. Regularization

reduces the number of variables in each constraint. This model results in a more easily interpretable

and computationally tractable AOP (Bottmer et al. 2022). We explore a regularized version of the

described linear regression to pursue this idea. As such, we apply lasso regression, ridge regression,

and elastic Net (eNet) (Zou and Hastie 2005). While the regularized linear regression equation is the

same as the linear regression, lasso regression extends it by adding an L1-norm penalty to the model’s

coefficients (λ ||β || 1). The shrinkage parameter, λ, controls the sparsity of the coefficients matrix by

setting less important features to zero. On the other hand, the L2-norm penalty term in ridge regres-

sion limits the magnitude of weights and shrinks them toward zero but does not set them exactly to

zero. Elastic Net employs a combination of L1 and L2 regularization, which can help overcome some

of the limitations of each separate regularization.

3.2 Decision trees

This study suggests using decision trees as a machine learning technique to predict latent (possibly

nonlinear) business rules compatible with MILP. In decision trees, the feature space is partitioned into

subspaces, and each subspace has its specific fitted prediction model. Therefore, a piece-wise linear

model can be constructed to approximate nonlinear rules. Regression trees can be used when dealing
with fractional variables, whereas classification trees would be beneficial with discrete variables (Dunn

2018). Inspired by the studies of Bertsimas and Dunn (2017) and Dunn (2018), one can embed decision

trees in an optimization model by defining auxiliary binary variables z, and big-M constraints:

max rtx− c∆ (14)

s.t. Atx ≤ bt (15)

yi − (β̂il +
∑
j∈N

(βil
j xj)) ≤ M(1− zil) ∀i ∈ N, ∀l ∈ L (16)

yi − (β̂il +
∑
j∈N

(βil
j xj)) ≥ −M(1− zil) ∀i ∈ N, ∀l ∈ L (17)

∑
j∈N

(him
j xj) ≤ gim + (1− zil) ∀i ∈ N, ∀l ∈ L,∀m ∈ Left(l) (18)

∑
j∈N

(him
j xj − him

j ϵj) ≥ gim − (1− ϵmax)(1− zil) ∀i ∈ N, ∀l ∈ L,∀m ∈ Right(l) (19)

∑
l∈L

zil = 1 ∀i ∈ N (20)
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δi ≥ yi − xi ∀i ∈ N (21)

δi ≥ xi − yi ∀i ∈ N (22)

∆ =
∑
i∈N

δi ∀i ∈ N (23)

x ∈ X ⊆ Rn,y ⊆ Rn, z ∈ {0, 1}, δi ≥ 0 ∀i ∈ N,∆ ≥ 0 (24)

Since the problem is a multi-output classification, we train n separate decision trees (i : 0, . . . , n−1).

It is important to note that, in practice, training the model for all of the n variables is not necessarily

required. Instead, one can train decision trees (or any other machine learning models) for only the

variables that vary between the executed plans and the optimal solutions. Assuming each tree consists

of |L| leaf nodes, we define zil to represent the selection of leaf node l ∈ L for the output i. At each

leaf node l in each tree, we make the prediction using Equations (16) and (17), where β̂il and βil

are learned parameters and M is a sufficiently large constant. Here, (16) and (17) are represented in

the most general format when we have a linear regression prediction for each leaf node. Nonetheless,

they can be merely constant or 0-1 predictions for integer programming through a classification tree.

Constraints (18) and (19) enforce branching by traversing each leaf node’s left ancestors and right

ancestors, respectively. m indicates intermediate nodes. If the learning method applies hyperplane

splittings, several coefficients h can have nonzero values simultaneously. In this study, we only inves-

tigate the default machine learning method of Scikit-learn 0.21.2, CART (Breiman et al. 2017). In

this library, univariate splitting is used for regression and classification trees. Hence, each node has

only one xj with a nonzero coefficient. The constant values g are thresholds of branching in the trees,

and ϵ and ϵmax are defined to generate compatible inequality constraints for MILP solvers. Moreover,

selecting only one leaf node for each output of every problem instance is guaranteed according to

constraints (20).

Although applying a random forest (Breiman 2001) instead of a single tree may result in a more

accurate predictor, embedding a random forest in an optimization problem requires adding many extra

variables and constraints. This dramatically expands the size of the problem.

4 Test problems and computational experiments

This section presents an experimental study to investigate the performance of the framework. To this

end, we consider the fractional and binary knapsack problems and the nurse rostering problem. We

evaluate the framework on the test instances of these problems in terms of both the feasibility of the

solutions and the degradation in the objective function.

In each part, we briefly define the test problem, and the data generation procedure is later explained.

The computational results for each test problem are detailed in the last section.

GUROBI (Gurobi Optimization, Inc. 2012) version 9.0.1 is our benchmark MIP solver for solving

the GOP and the AOP models. All of the algorithms and models were implemented in Python. The

machine learning models are trained using Scikit-learn (Pedregosa et al. 2011) 0.21. We divide the

data into a training set (80%) and a test set (20%). Tenfold cross-validation and GridSearch are

performed for hyper-parameter tuning for all models. In lasso and ridge regressions, we tune the

shrinkage parameter. In Elastic Net, we assign a value and tune the l1 ratio parameter that combines

lasso and ridge penalties. The GridSearch hyper-parameter tuning process for shrinkage parameter is

performed over a discrete set in the range of 0.0001 to 10. In addition, the l1 ratio tuning is achieved

using a step-size approach over the range of 0 ≤ l1 ratio ≤ 1. The Scikit-learn library is utilized

for decision trees as well. For decision trees, we optimize the maximum depth and the criterion as

measures of the splits’ quality. In our hyper-parameters search procedure, we tune the model where

the maximum depth changes over the range of 1 to 10, and the criterion is selected between gini and

entropy.
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4.1 Linear and binary Knapsack problems

We consider the problem of loading different products in a container with capacity b. Each product i

has a size of ai and yields a profit of ri to maximize the overall profit. We assume this problem has been

solved multiple times with different parameters for each day or each decision point t. The framework is

implemented on both fractional and binary knapsack problems. In the former, a portion of a product

can be loaded in the container. On the contrary, only the whole product can be loaded in the latter.

Therefore, the GOP is precisely the MILP introduced in (1) - (3) for the linear knapsack problem

and by setting xt ∈ {0, 1}, the model for the binary knapsack problem is attained. For the linear

knapsack problem, we compare the results of the linear regression model embedded in the framework

with decision tree modeling. In contrast, we investigate the discrete knapsack problem using linear

regression and classification tree models.

4.1.1 Data generation

We adopted the data generation process presented in Hewitt and Frejinger (2020) while creating more

complex sets of concealed operational rules. First, we construct an optimization model for each decision

point t. The first step is to generate the parameters of the knapsack problems. We consider a small

data set with T = 500 instances and n = 15 products and a larger one with T = 500 and n = 50.

The parameters b and ri are randomly generated from [500, 1000] and [50, 300], respectively, following

a uniform distribution. We carry out our experiments considering different combinations of these

parameters. ai is also randomly sampled from a triangular distribution of (8, b/n, b). In Addition, the

big-M value is set to max(yi) −min(yi). In the case of the knapsack problem, since 0 ≤ yi ≤ 1, the

big-M equals 1.

According to Figure 1, the next step toward data generation is to solve the generated linear and

binary knapsack problems. The obtained optimal solutions create the input features. (x̄). To provide

the output data, ȳ, we generate an executed plan for each decision point by altering the optimal

solution. To this end, several business rules are defined and applied to the optimal solution. Table 1

shows the set of rules used in this work. Some settings have only one rule, while others combine

several operational rules. The settings that are considered in Hewitt and Frejinger (2020) are either

similar to Set1 with one rule or equivalent to Set4 and Set5 with several regulations in the form

of (xi ≥ xj). They also investigate a setting similar to Set7, where the corresponding business rule

may vary depending on the day. Nonetheless, they choose between two rules randomly. Moreover,

the authors do not consider testing on a setting similar to Set2 and Set3, which are in place for all

problem variables. As presented in the table, we attempt to evaluate the framework’s performance on

different types of conditional and non-conditional business rules.

Table 1: Rule settings for knapsack problem

Setting
Mathematical

Representation of Rules
Setting

Mathematical
Representation of Rules

Setting
Mathematical Representation

of Rules

Set1 x1 ≥ x2 Set2 if xi + xi+1 = 2 → xi = 0 ∀i Set3 if xi + xi+1 + xi+2 ≥ 2 → xi = 0 ∀i

Set4 x1 ≥ x2 Set5 x1 ≥ x2, x10 ≥ x20 Set6 if x1 = 1 & x3 = 1 & x7 = 0 → x6 = 1
x10 ≥ x20 x11 ≥ x25, x22 ≥ x40 if x1 = 0 & x2 = 1 & x5 = 1 → x3 = 0
x11 ≥ x25 x45 ≥ x14, x36 ≥ x23 if x1 = 0 & x3 = 0 → x6 = 1
x22 ≥ x40 x49 ≥ x50, x7 ≥ x32 if x4 = 1 & x7 = 0 → x9 = 0
x45 ≥ x14 x41 ≥ x29, x9 ≥ x31 if x4 = 1 & x7 = 1 → x9 = 1
x36 ≥ x23 if x1 = 1 & x2 = 1 → x3 = 0

Set7 if x2 ≤ 0.5 → x1 ≥ x2 Set8 if x2 > 0 & x1 = 0 → x3 = 0 Set9 if x4 ≤ 0.5 → x1 ≥ x2

if x2 > 0.5 → x1 = 0 if x2 = 0 & x1 = 0 → x3 ≥ x4 if x4 > 0.5 → a1x1 + a2x2 + a3x3 ≤ 0.4b

In our experiments, we provide several rules close to business rules in industries. For instance, if

the rules in Set2 are applied in the case of the binary knapsack model, they restrict the loading of

consecutive products together. As another example, consider the second rule of Set9. If the condition

occurs, the total loaded portion of the first three products could not exceed 0.4 of the total container
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capacity. Therefore, the output ȳ is generated by applying the rules on the optimal solutions. For

example, imagine Set1 is imposed in a company. If the solution of the knapsack problem suggests,

x̄1 = 0 and x̄2 = 0.5, then the associated executed plan is considered as ȳ1 = ȳ2 = 0.5, even if the

executed plan is not feasible for the GOP. In Table 2, we represent the functional mapping of some

examples of the rules applied to the knapsack problem to elaborate on how we generate output data

according to the obtained optimal solutions.

Table 2: Functional mapping of rules for knapsack problem

Mathematical Representationof Rule Functional Mapping

x1 ≥ x2

{
ȳi = max[x̄1, x̄2] i = 1

ȳi = x̄i i = 2, . . . , n

a1x1 + a2x2 + a3x3 ≤ 0.4b



if a1x̄1 + a2x̄2 + a3x̄3 ≤ 0.4b → ȳi = x̄i i = 1, . . . , n

if a1x̄1 + a2x̄2 + a3x̄3 > 0.4b → ȳi =


min[x̄3, 0.4b/a3] i = 3

min[x̄2, (0.4b− a3ȳ3)/a2] i = 2

min[x̄1, (0.4b− a3ȳ3 − a2ȳ2)/a1] i = 1

x̄i i = 4, . . . , n

4.1.2 Results

This section presents the framework’s efficiency for linear and discrete knapsack problems under several

rules defined in Table 1. All of the settings are investigated on the small data set with 15 variables,

while Set1, Set4, and Set5 are imposed on the more extensive data set with 50 variables. As mentioned

in Section 3, there are two criteria to assess the quality of the obtained solutions by AOP. With the first

measure, we determine the frequency of the instances in which the AOP provides a feasible solution

regarding the hidden unmodeled constraints (Gtx+Htv ≤ ut) and we show it as a percentage of the

whole data set. The following measure denotes the level of degradation in the objective function. We

first need to solve the GOP for each instance to compute this measure, which we call the gap in the

results in Table 3 and Table 4.

Next, we add the mathematical representation of the concealed rules as soft constraints. Then, we

calculate the cost of the solutions obtained by the AOP and provide the percentage of the gap between

these two objective functions by computing (Zt
GOP−BR − Zt

AOP )/Z
t
GOP−BR. In this ratio, Zt

GOP−BR

represents the objective value of the GOP where it contains Gtx+Htv ≤ ut, and Zt
AOP is calculated

as
∑n

j=1 rjx
AOP
j for each instance t. This measure is only considered for the instances which pass the

feasibility test, therefore, we report an average gap of all the satisfied instances in the results.

When solving the AOP, we change the penalty coefficient c value in the objective function and

evaluate the performance for each c. In most experiments, increasing c boosts the satisfaction measure,

but it stabilizes beyond a certain value of c. However, the degradation in the objective value usually

escalates by growing c. To elaborate more, consider Figure 2 in which we fit elastic Net regression

on data of solving linear knapsack problem instances, and then we employ the framework on our test

set. We evaluate the framework for different values of c ranging from 0 to 500 for each of the three

investigated sets of rules in the plots. They are all in the form of xi ≤ xj , yet by different numbers of

hidden operational rules. All the graphs in Figure 2 acknowledge that the satisfaction rate augments

by increasing the value of c. In addition, we see that for all numbers of hidden business rules, the

solutions of the AOP are far more likely to satisfy the regulations than the GOP (c = 0). Although this

satisfaction converges to 100% in all three sets of rules, the gap typically surges according to Figure 2.

Therefore, the best coefficient for Set1 is 300 with no degradation in the objective value, while the

best results are obtained for Set4 and Set5 in c = 400 with a gap equal to 3% and 6%, respectively.

Comparing the graphs demonstrates that increasing the number of rules decreases quality measures.

We demonstrate the efficiency metrics for six settings tested on the linear knapsack problem as

well as six settings on the binary knapsack problem in Tables 3 and 4, respectively, considering that

the reported results are associated to the test instances. Remark that we only report the best results
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Figure 2: Effect of coefficient c on the quality of the solutions of eNet linear regression on the linear knapsack problem

(a) Satisfaction Rate (b) Gap

in terms of feasibility obtained by altering c and the associated gap. In the tables, we highlight the

best-obtained satisfaction rate among all the methods as the more important measure; hence, if a tie

occurs, we also highlight the best gap.

The first column of the results denoted in both tables of this section is related to the percentage

of instances already feasible in the GOP regarding the concealed constraints (c = 0). In the following

columns of the tables, we compare the performance of linear regression, lasso regression, ridge regres-

sion, and elastic Net regression on both linear and binary knapsack problems. The last column of each

learning method reports the sparsity of the learned coefficient matrix. Furthermore, we investigate

applying regression trees on the linear knapsack problem and classification trees on the 0-1 knapsack

problem.

Based on the results in Table 3, we can see that, in most of the experiments, applying the framework

enhances the feasibility level compared to the solutions of GOP (c = 0). Next, we compare the quality

of the solutions regarding the objective function. Solving the AOP obtained by different methods yields

a solution with objective function values close to the GOP values (the maximum average difference is

10%). The table suggests that the performance of lasso and eNet are similar, and, for the first three

settings, they satisfy the constraints for all the instances. We observe that even simple linear regression

without regularization boosts the feasibility rate. The only setting not significantly improved through

the framework is Set7. One hypothesis is that since the regression score is not as good as the other

settings, the regression equations cannot represent the constraints well. However, investigating all

the settings with different machine learning methods, we could not concretely conclude that there is

always a significant, meaningful relation between the learning score and the framework’s performance.

Another possible effective attribute is the sparsity of the coefficient matrix. Looking into both Tables 3

and 4 depicts that in most cases, regression methods with a sparser coefficient matrix outperform those

employing a denser coefficient matrix. As an example, consider Set4, in which, although the learning

scores are very close to each other, r2 = 0.85 for linear regression and r2 = 0.86 for eNet, the sparsity

of the coefficient matrix in eNet results in a better quality of solutions in terms of satisfaction rate.

Table 3: Linear Knapsack problem results

Setting
Satisfaction

c = 0
Linear Regression

Lasso Linear
Regression

Ridge Linear
Regression

eNet Linear
Regression

Regression Tree

Satisfaction Gap Sparsity Satisfaction Gap Sparsity Satisfaction Gap Sparsity Satisfaction Gap Sparsity Satisfaction Gap

Set1 81% 92% 0% 0% 100% 0% 74% 93% 0% 0% 100% 0% 80% 82% 0%
Set4 24% 54% 3% 0% 100% 3% 88% 62% 4% 0% 100% 3% 93% 24% 0%
Set5 7% 27% 10% 0% 100% 6% 88% 40% 7% 0% 100% 6% 91% 7% 0%
Set7 85% 85% 0% 0% 85% 0% 40% 85% 0% 0% 85% 0% 87% 86% 0%
Set8 75% 86% 4% 0% 82% 3% 67% 86% 4% 0% 82% 3% 67% 80% 0%
Set9 75% 97% 3% 0% 97% 2% 76% 97% 2% 0% 97% 2% 73% 80% 0%

The next set of experiments belongs to the binary knapsack problem depicted in Table 4. One

notable observation is that the table confirms that the framework is even more efficient for the binary

knapsack problem. Regardless of the machine learning method type, most solutions are satisfied after
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Table 4: Binary Knapsack problem results

Setting
Satisfaction

c = 0
Linear Regression

Lasso Linear
Regression

Ridge Linear
regression

eNet Linear
Regression

Classification Tree

Satisfaction Gap Sparsity Satisfaction Gap Sparsity Satisfaction Gap Sparsity Satisfaction Gap Sparsity Satisfaction Gap

Set2 23% 100% 15% 0% 100% 12% 62% 100% 20% 0% 100% 8% 69% 100% 0%
Set3 6% 100% 30% 0% 100% 29% 58% 100% 30% 0% 100% 29% 70% 100% 19%
Set6 52% 96% 29% 0% 98% 24% 42% 98% 29% 0% 98% 27% 38% 100% 12%
Set7 90% 100% 1% 0% 100% 1% 67% 100% 1% 0% 100% 1% 67% 100% 0%
Set8 80% 100% 5% 0% 100% 3% 33% 100% 5% 0% 100% 3% 53% 100% 3%
Set9 77% 97% 3% 0% 97% 3% 71% 97% 3% 0% 97% 3% 44% 99% 0%

employing the framework. The AOP could pass the feasibility test for all the instances for four of the

six tested settings. This is the case even for Set2 and Set3, with much less frequency of feasibility for

the GOP solutions (c = 0). Next, we will turn to more detailed comparisons between the methods.

Although lasso and eNet regressions still outperform ridge and linear regressions, the classification tree

model achieves the best results in satisfaction and gap, specifically, for the first three sets of operational

rules. The average gap obtained by the classification tree is very competitive. At the same time, the

solutions satisfy the hidden constraints for all of the test instances.

Looking at both tables simultaneously and comparing quality measures for all the methods confirms

the superiority of eNet and lasso linear regression over the other methods. The coefficient matrices

are always very sparse in these models. In addition, the classification tree model is the most efficient

method for 0-1 knapsack problem instances.

4.2 Nurse rostering problem

We investigate the framework’s performance on a practical and complex optimization problem. Nurse

rostering (De Causmaecker and Vanden Berghe 2011) is an essential aspect of healthcare management

for scheduling nurses with different skills and has received considerable attention in recent years.

Nurse rostering involves assigning shifts to nurses for a time horizon while restricting them with hard

and soft constraints. The main objective is to optimize the utilization of limited resources, thereby

enhancing the hospital’s operational efficiency. However, it is essential to prioritize the job satisfaction

of nurses in the process. The nurse rostering problem (NRP) is a complex combinatorial optimization

problem known as NP-hard (De Causmaecker and Vanden Berghe 2011). Generally, hospitals dedicate

considerable effort to creating high-quality rosters for their nurses, including using decision-support

tools and expert judgments.

In modeling the NRP, the constraints taken into account and the objectives could vary from hospital

to hospital or during different planning periods within a hospital. This diversity leads to a wide range of

nurse rostering optimization models. Moreover, the solution methodologies proposed in the literature

for this problem originate in different categories of MILP, CP, heuristics, meta-heuristics, stochastic

programming, etc. We refer the reader to Ngoo et al. (2022) and the references therein for more details.

This section introduces a basic NRP formulated and solved using MILP. We then examine utilizing

the proposed data-driven methodology to tackle this problem. Note that this study represents an

initial attempt in this field, and our objective is to gauge the method’s efficacy when confronted with

a limited amount of training data. Hence, we restrict our analysis to scenarios where all nurses are

identical regarding their skills and preferences. This decision allows us to provide additional training

data from the available dataset, and we outline the details of how this is achieved later in this section.

Inspired by the models presented in Ceschia et al. (2019), Strandmark et al. (2020), Goh et al.

(2022), a MILP formulation of the problem is given below:

The objective function is to minimize the total under and overstaffing:

min

s∑
j=1

m∑
d=1

(αwjd + α′w′
jd) (25)
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Parameters
N Set of nurses: {1, . . . , n}.
P Set of days in the planning horizon: {1, . . . , p}.
S Set of shift types: {1, . . . , s} = (morning, evening, over-night).

Djd Nurse demand for shift j in day d.
α Penalty for understaffing.
α′ Penalty for overstaffing.
K1 The minimum number of shifts each nurse must be assigned.
K2 The maximum number of shifts each nurse can be assigned.
K3 The maximum number of consecutive days each nurse can work.
K4 The minimum number of free days each nurse must have after 2 consecutive overnight shift.
K5 The maximum number of overnight shifts each nurse can be assigned.

Decision Variables
xijd ∈ {0, 1} 1 if nurse i assigned to shift j on day d, 0 otherwise.

wjd ≥ 0 Total understaffing for shift j on day d.
w′

jd ≥ 0 Total overstaffing for shift j on day d.

Hence, the covering constraints to compute the understaffing and overstaffing are given:

wjd ≥ Djd −
∑
i

xijd ∀d,∀j (26)

w′
jd ≥

∑
i

xijd −Djd ∀d,∀j (27)

The hard constraints of the problem which have to be satisfied are as follows:

• C1: Any nurse can work no more than one shift per day.

s∑
j=1

xijd ≤ 1 ∀i,∀d (28)

(29)

• C2: The total number of shifts assigned to each nurse must be between minimum and maximum.

K1 ≤
s∑

j=1

p∑
d=1

xijd ≤ K2 ∀i (30)

• C3: The number of consecutive working days assigned to a nurse must not exceed the maximum

allowed.

s∑
j=1

k+K3∑
d=k

xijd ≤ K3 ∀i,∀k : 1, . . . , (p−K3) (31)

• C4: A nurse has to have a minimum number of free days after 2 consecutive night shifts.

k+1∑
d=k

xi3d +

s∑
j=1

xij(k+1+r) ≤ 2 ∀i,∀k : 1, . . . , (p−K4 − 1),∀r : 1, . . . ,K4 (32)

• C5: A nurse cannot exceed a maximum number of night shifts during the planning horizon.

p∑
d=1

xi3d ≤ K5 ∀i (33)

This is the basic model we specify as our GOP of nurse rostering. In the next subsection, we clarify the

business rules we consider for testing and how we generate input and output for the machine learning

models.
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4.2.1 Data generation

To generate our historical data, similar to the procedure carried out for the knapsack problem, we need

to solve the NRP for each planning period t. Without loss of generality, we assume the regulations

and demand can vary from time to time in a hospital. Therefore, for each planning period, we

randomly generate our model’s parameters Dj,d,K1,K2,K3,K4 and K5 from uniform distributions of

[0, 3], [4, 8], [8, 9], [5, 6], [1, 2] and [2, 5], respectively. Note that we implement and report two separate

sets of tests, wherein one of them, we consider penalty coefficients α and α′ equal to 1, meaning that

the hospital attempts to avoid understaffing and overstaffing with the same weight. In the other set of

tests, replacing α by 3 and α′ by 1, we assess the scenario in which understaffing is more unfavorable

for the hospital than overstaffing.

As discussed in Section 4.2, in the current study, we assume the nurses are identical so that they can

replace one another, and therefore, the solutions of the NRP are symmetric. This assumption generates

more training data from an initial set of solved optimization instances. All generated data sets consist

of 200 initial planning periods divided into 80% for training and 20% for testing. However, after solving

this set of instances, we use the optimal solutions to provide more training data by considering every

schedule for each nurse as a training instance. Thus, the new set of cases is multiplied by the number

of nurses.

By solving the generated NRP instances, we acquire the input features of our learning models.

Hence, following the same steps as the knapsack problem, we alter the optimal solution based on some

assumed operational rules to generate output features. In Table 5, we display three different business

rules not included in the GOP, and executable plans should satisfy them. To indicate the usability of

the proposed framework in a real industrial problem, we devise some business rules that are practical

and interpretable in the NRP (Haspeslagh et al. 2010, Goh et al. 2022). In addition to the logical

representation of the rules in this table, the constraints added to the MILP model are described in

Table 6. In this table, for each set of rules, we represent the counterpart linearized constraint where

zi is a binary variable. We add the linear constraints to the NRP to solve the problem with known

constraints and evaluate the performance of learned constraints by computing gap.

Table 5: Rule setting for nurse rostering problem

Setting Description of Rule
Logical/Mathematical
Representation of Rule

Set1
After a night shift on,

the following morning shift is off
if xi3d = 1 → xi1(d+1) = 0

∀i, ∀d : 1, . . . , p− 1

Set2
After a night shift on

the following morning and afternoon shifts are off
if xi3d = 1 → xi1(d+1) + xi2(d+1) = 0

∀i, ∀d : 1, . . . , p− 1

Set3
After a shift in a weekend on,
the two first week-days are off

if
∑

j(xi,j,7q−1 + xi,j,7q) ≥ 1 →
∑

j(xi,j,7q+1 + xi,j,7q+2) = 0

∀i, ∀q : 1, . . . , ⌊p/7⌋

Table 6: MIP constraint representation of rules for nurse rostering problem

Setting Added MIP Constraints

Set1 xi,3,d + xi,1,d+1 ≤ 1 ∀i ∈ N, d : 1, . . . , p− 1

Set2 2(1− xi,3,d) ≥ xi,1,d+1 + xi,2,d+1 ∀i ∈ N, d : 1, . . . , p− 1

Set3

∑
j(xi,j,7q−1 + xi,j,7q) ≤ 5zi + 0.001zi + 0.999 ∀i ∈ N,∀q : 1, . . . , ⌊p/7⌋∑

j(xi,j,7q + xi,j,7q+1) ≤ 6(1− zi) ∀i ∈ N,∀q : 1, . . . , ⌊p/7⌋∑
j(xi,j,7q + xi,j,7q+1) ≥ 1− zi ∀i ∈ N,∀q : 1, . . . , ⌊p/7⌋

We note that where we test the rules associated with Set1 and Set2, we solve the NRP model of

(25–33); nonetheless, to test Set3 and to deal with a more complicated problem, we consider Set2 as

a part of constraints in the GOP model of NRP in addition to constraints (C1–C5).
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Since the NRP problem’s principal decision variable, xijd, has three indices, the regression and

branching equations in the corresponding AOP slightly differ from the knapsack problem. As an

instance, the Equation 16 is replaced by the following:

yijd − (β̂ijdl +
∑
efg

(βijdl
efg xefg)) ≤ M(1− zijdt) ∀i, j, d ∀l ∈ L (34)

And in the case of branching instead of (18) in the AOP, we embed the following equation:∑
efg

(hijdm
efg xefg) ≤ gijdm + (1− zijdl) ∀i, j, d ∀l ∈ leaf,∀m ∈ Left(l) (35)

Since the nurses are interchangeable, we also need to learn the models based on two indices, j and d.

Nevertheless, the equations in the AOP must be compatible with the true decision variable of the

problem xijd. Therefore, the Equations (34) and (35) are reformulated as below, respectively:

yijd − (β̂jdl +
∑
fg

(βjdl
fg xifg)) ≤ M(1− zjdl) ∀i, j, d ∀l ∈ L (36)

∑
fg

(hjdm
fg xifg) ≤ gjdm + (1− zjdl) ∀i, j, d ∀l ∈ leaf,∀m ∈ Left(l) (37)

4.2.2 Results

To showcase the framework’s performance for the nurse rostering problem, we provide information on

four types of gaps and the percentage of rule satisfaction for the test instances. The gaps are defined

in Table 7. The first computed gap is similar to the previously reported for the knapsack problems. It

illustrates the degradation in the objective function of the problem and is expressed as a percentage of

the aim of AOP value. The second type of gap measures the difference between the AOP and the GOP

solutions with known constraints regarding the total deviation from the demand. The understaffing

and overstaffing gaps are included to provide information on the variations between the AOP and the

GOP solutions with additional known constraints regarding nurse shortage and over-coverage during

the planning period. We use the absolute value for overstaffing and understaffing gaps, and all four

reported gaps are the average of the gaps of all test instances.

Table 7: Definition of computed gaps for nurse rostering problem

Different Computed Gaps Definition Computation

Gap1 Objective Function Degradation (Zt
AOP−BR − Zt

GOP )/Zt
AOP−BR

Gap2 Total Demand Deviation Gap
∑

jd(w + w
′
)AOP −

∑
jd(w + w

′
)GOP

Gap3 Understaffing Gap
∑

jd(w)AOP − (w)GOP

Gap4 Overstaffing Gap
∑

jd(w
′
)AOP − (w

′
)GOP

To compare the quality of solutions obtained by the AOP modeled by linear regression and the

AOP modeled by classification tree, we provide two tables for the NRP. Table 8 is associated with

the nurse rostering problem, where avoiding understaffing is more critical for the decision-makers in

the hospital. In contrast, Table 9 displays the results where understaffing and overstaffing have equal

weight. For both experiments, we test the framework on various rule settings and problem sizes, where

n is the number of nurses and p corresponds with the planning horizon. Like the knapsack problem

experiments, we tune the coefficient c in the process. In this problem, we vary c from 0.1 to 15, yet

only report the best results.

To ensure meaningful and comparable results, we include a column in the tables that indicates the

average nurse demand for the planning period in the test set. This enables us to compare the gaps to

the demands for each test and draw conclusions based on the findings.
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Table 8: Results of applying the framework on different settings for nurse rostering problem – α = 3, α′ = 1

Setting Problem Size
Satisfaction

c = 0
Demand

Linear Regression eNet Linear Regression Classification Tree

Satisfaction Gap1 Gap2 Gap3 Gap4 Sparsity Satisfaction Gap1 Gap2 Gap3 Gap4 Sparsity Satisfaction Gap1 Gap2 Gap3 Gap4

Set1 n = 6 p=10 62% 44.2 100% 30% 4.30 3.18 1.12 0% 100% 2% 0.12 0.10 0.02 43% 100% 0% 0 0 0
Set2 n = 6 p=10 27% 44.2 100% 60% 10.25 6.30 3.95 0% 100% 56% 8.62 6.05 2.57 49% 100% 0% 0 0 0
Set2 n = 7 p=12 15% 54.1 100% 76% 21.57 13.57 8.00 0% 100% 74% 18.70 12.82 5.87 46% 100% 0% 0 0 0
Set3 n = 7 p=12 0% 54.1 100% 42% 8.12 5.00 3.12 0% 100% 41% 7.67 4.80 2.87 57% 100% 1% 0.10 0.08 0.02

Table 9: Results of applying the framework on different settings for nurse rostering problem – α = α′ = 1

Setting Problem Size
Satisfaction

c = 0
Demand

Linear Regression eNet Linear Regression Classification Tree

Satisfaction Gap1 Gap2 Gap3 Gap4 Sparsity Satisfaction Gap1 Gap2 Gap3 Gap4 Sparsity Satisfaction Gap1 Gap2 Gap3 Gap4

Set1 n = 6 p=10 50% 44.2 100% 46% 5.25 2.97 2.27 0% 100% 44% 4.62 4.17 0.45 43% 100% 0% 0 0 0
Set2 n = 6 p=10 30% 44.2 100% 72% 19.05 11.70 7.35 0% 100% 62% 10.90 8.10 2.80 50% 100% 0% 0 0 0
Set2 n = 7 p=12 7% 54.1 100% 79% 24.82 16.37 8.45 0% 100% 78% 23.72 16.02 7.70 48% 100% 0% 0 0 0
Set3 n = 7 p=12 0% 54.1 100% 40% 7.10 4.65 2.45 0% 100% 38% 6.75 4.40 2.35 56% 100% 1% 0.10 0.08 0.02

One remark that should be considered is that solving the nurse rostering problem using the frame-

work with an embedded classification tree is very fast, taking less than 20 seconds for each instance.

However, we have noticed that solving some instances using linear regression equations to optimality

is very time-consuming. As a result, in our experiments, we limit the time for solving each AOP model

to 600 seconds.

Looking into the satisfaction rates presented in Tables 8 and 9, the AOP with linear regression

models and classification trees is feasible for all instances’ operational rules. This satisfaction is ob-

tained when we increase the coefficient c to some extent. Next, we focus on the various reported gaps

in the tables. We observe that the classification tree consistently outperforms the embedded linear

regression models regarding all gap types for all test settings. A closer look into the result tables

reveals that even for the settings where the objective function degradation for linear regression models

exceeds 70%, the classification tree achieves 0% gap. This is because we need to increase the coefficient

c significantly for embedded linear regression models to align the optimal solution with the prediction

of the executable plan and satisfy the hidden rules. In contrast, embedding the obtained classification

tree in the framework allows us to achieve feasible solutions regarding the operational rules with a small

value of c (e.g., c = 0.1). Although the optimal solution obtained by the GOP with known rules and

the AOP based on classification trees may vary, the demand covering, and consequently, the objective

value remains almost the same for all instances. Here, we only evaluate the performance of linear

regression without regularization and eNet, as they represent the least and most effective approaches,

respectively. We confirm the superiority of eNet over linear regression without regularization for the
NRP and the knapsack problem.

Considering both tables, it can be deduced that although adding more complicated business rules

and increasing the size of the problem results in less rule satisfaction in the GOPs, embedding the

machine learning models remains efficient in satisfying the hidden rules. More significantly, using the

framework with the classification tree is highly effective even in the last setting with a larger instance

size regarding satisfaction and all types of gaps.

5 Conclusion

In this study, we extend a data-driven framework that was recently proposed to learn and incorporate

customization constraints of the classical linear programming models using linear regression and sta-

tistical learning. We include more complex machine learning models (lasso, ridge, eNet regularization,

and decision tree) into the framework, evaluate their performance on more complex discrete models,

and test conditional rules.
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Furthermore, we empirically validate the method on discrete problems for the first time. We

investigate the framework’s performance on the binary knapsack problem and a more realistic and

complex problem in nurse rostering, where operational rules are more practical and interpretable.

The study’s notable outcome is that using different types of regularized linear regression enhances

the results in most instances of all problems compared to linear regression without regularization.

Moreover, we conclude that embedding classification trees in binary problems outperform embedding

regression models to a great extent.

Finally, this study is still at an exploratory level. As an example, while learning linear models and

embedding them in the framework is less computationally expensive, investigating the application of

other machine learning methods like neural networks is of interest (Fischetti and Jo 2018). Moreover,

a possible future research direction is learning and implementing separating hyperplanes (Bertsimas

and Dunn 2017) in the framework for more complex rules.
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