
Les Cahiers du GERAD ISSN: 0711–2440

A branch-price-and-cut algorithm for the multi-commodity
two-echelon vehicle routing problem with time windows

T. Mhamedi, M. Cherkesly, G. Desaulniers

G–2024–79

December 2024

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : T. Mhamedi, M. Cherkesly, G. De-
saulniers (Décembre 2024). A branch-price-and-cut algorithm for
the multi-commodity two-echelon vehicle routing problem with time
windows, Rapport technique, Les Cahiers du GERAD G– 2024–79,
GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2024-79) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: T. Mhamedi, M. Cherkesly, G. Desaulniers (De-
cember 2024). A branch-price-and-cut algorithm for the
multi-commodity two-echelon vehicle routing problem with time
windows, Technical report, Les Cahiers du GERAD G–2024–79,
GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2024-79) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2024
– Bibliothèque et Archives Canada, 2024

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2024
– Library and Archives Canada, 2024

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2024-79
https://www.gerad.ca/en/papers/G-2024-79
https://www.gerad.ca/en/papers/G-2024-79

A branch-price-and-cut algorithm for the multi-commodity
two-echelon vehicle routing problem with time windows

Tayeb Mhamedi a, c

Marilène Cherkesly b, c

Guy Desaulniers a, c

a Département de mathématiques et de génie
industriel, Polytechnique Montréal, Montréal,
(Qc), Canada, H3T 1J4

b Département d’analytique, opérations et tech-
nologies de l’information, Université du Québec
à Montréal, Montréal (Qc), Canada, H2X 1L7

c GERAD, Montréal (Qc), Canada, H3T 1J4

tayeb.mhamedi@polymtl.ca

marilene.cherkesly@gerad.ca

guy.desaulniers@gerad.ca

December 2024
Les Cahiers du GERAD
G–2024–79
Copyright © 2024 Mhamedi, Cherkesly, Desaulniers

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G–2024–79 ii

Abstract : In the multi-commodity two-echelon vehicle routing problem with time windows (MC-2E-
VRPTW), first-echelon vehicles transport goods from depots to satellites while second-echelon vehicles
ensure that goods are shipped from satellites to customers within their time windows. Given a set
of customers, each with demand available at one depot, the MC-2E-VRPTW aims at determining
least-cost and capacity-feasible first- and second-echelon routes such that each customer is serviced
during its time window by a second-echelon route, and has a single first-echelon route supplying its
whole demand. For this problem, we propose a route-based formulation that contains an exponential
number of variables associated with second-echelon routes, and develop a tailored branch-price-and-
cut algorithm. This algorithm considers one subproblem per satellite which is solved by a labeling
algorithm to generate second-echelon routes and determine the first-echelon route supplying the load
of each visited customer. We devise a recovery procedure to enforce integer solution feasibility in the
presence of dual inequalities and propose a branching rule adapted to the multi-commodity context.
Through extensive computational experiments on benchmark instances, we show that our algorithm
outperforms a state-of-the-art algorithm.

Keywords : City logistics, two-echelon vehicle routing, multiple commodities, branch-price-and-cut,
labeling algorithm, dual inequalities

Acknowledgements: We are grateful to the Natural Sciences and Engineering Research Council
of Canada (NSERC) for providing financial support through the Discovery grants 2017–06106 and
2023–03791.

Les Cahiers du GERAD G–2024–79 1

1 Introduction

In this paper, we propose a branch-price-and-cut algorithm for the multi-commodity two-echelon ve-

hicle routing problem with time windows (MC-2E-VRPTW). This problem extends the two-echelon

vehicle routing problem (2E-VRP, see Cuda et al. 2015, Guastaroba et al. 2016, Sluijk et al. 2023,

for surveys on the 2E-VRP) to consider real-life characteristics that arise in city logistics, i.e., time

windows and multiple commodities. Considering multiple commodities is of major importance when

optimizing distribution processes on two-echelon network structures involving multiple origins with,

e.g., customer-specific (non-substitutable) demands. The MC-2E-VRPTW involves depots, satellites

and customers. Each customer is assigned to one depot that supplies its demand, which is referred to

as a commodity. Therefore, there are as many commodities as there are customers. In addition, the

service at each customer must start within a predefined time window. The first echelon corresponds

to delivering goods from the depots to the satellites, and a set of identical first-echelon vehicles with

limited capacity is available to conduct the first-echelon routes. Each first-echelon route starts and

ends at the same depot, and visits a subset of satellites. We define two types of first-echelon routes:

i) routes visiting only one satellite, referred to as back-and-forth routes, and ii) routes visiting more

than one satellite. As often seen in practice, we assume that back-and-forth routes can be used more

than once, whereas routes visiting more than one satellite cannot. The second echelon corresponds to

delivering goods from the satellites to the customers, and a set of identical second-echelon vehicles with

limited capacity is available to operate second-echelon routes. The merchandise is transferred from

first- to second-echelon vehicles at the satellites, and transfer times at the satellites are assumed to be

constant, i.e., they do not depend on the quantity transferred. The synchronization between first-and

second-echelon vehicles is exact (see Drexl 2012, for a taxonomy), implying that each demand must

be supplied by exactly one first-echelon route and one second-echelon route, but that a second-echelon

route can be supplied by more than one first-echelon route. The MC-2E-VRPTW consists in deter-

mining a set of least-cost feasible first- and second-echelon routes such that each customer is visited by

exactly one second-echelon route within its time window, and that its load is supplied by its assigned

depot.

To the best of our knowledge, only the paper of Dellaert et al. (2021) studies the MC-2E-VRPTW,

proposing several formulations and solution algorithms. Their best algorithm is a branch-and-price-

based algorithm that solves their two-path formulation. It first generates subsets of first-echelon routes

(called configurations) and sorts them in increasing order of a lower bound obtained by selecting

the corresponding configuration as the first-echelon solution. These configurations with their lower

bounds can then be used to define multiple root nodes in a branch-and-price algorithm that does not
need to branch to achieve integrality at the first echelon. The algorithm starts with a single root

node associated with the least-lower-bound configuration and proceeds as a standard branch-and-price

algorithm, branching only to achieve integrality at the second echelon. When exploring the search tree,

new root nodes (configurations) are added whenever the current lower bound in the tree exceeds the

lower bounds associated with unexplored configurations. The algorithm stops when the current tree

is fully explored and the best upper bound is less than or equal to the lower bounds of the unexplored

configurations. Dellaert et al. (2021) report results on a small set of instances with up to 3 depots, 5

satellites, and 100 customers.

On the other hand, many heuristics (e.g., Breunig et al. 2016, Crainic et al. 2008, 2011, Dumez et al.

2023, Jia et al. 2023) and exact algorithms (e.g., Baldacci et al. 2013, Perboli et al. 2011) have been

proposed for the classical 2E-VRP and its variants. For the exact algorithms, some of the best results

are obtained by branch-and-price algorithms (e.g., Marques et al. 2020, Santos et al. 2015). In addition,

many variants with time windows or multiple commodities have been studied. The two most relevant

variants with time windows are the multi-depot 2E-VRP with time windows (2E-VRPTW, see Dellaert

et al. 2019), and the 2E-VRPTW with freight consolidation at the satellites (see Marques et al. 2022).

The 2E-VRPTW considers exact synchronization (Drexl 2012, Soares et al. 2024) between the first- and

second-echelon vehicles, i.e., no freight consolidation occurs at the satellites and each second-echelon

Les Cahiers du GERAD G–2024–79 2

vehicle is supplied from a single first-echelon vehicle. In the 2E-VRPTW with freight consolidation,

the load aboard a second-echelon vehicle can be supplied by more than one first-echelon vehicle. The

literature on the 2E-VRP with multiple commodities is limited, but has received more attention lately.

In this literature, the commodities are defined either in a many-to-many or a one-to-one context,

as highlighted in Gu et al. (2023). The two most relevant variants with multiple commodities are

the multi-commodity 2E-VRP with satellite synchronization and the multi-commodity two-echelon

distribution problem (MC-2EDP). In the first variant introduced by Jia et al. (2023), a commodity

refers to an origin-destination pair in a one-to-one setting. Customers request two commodities, and

the total demand of a customer must be delivered by a single second-echelon vehicle. In the MC-

2EDP studied by Gu et al. (2022), commodities are sent from depots to satellites using back-and-forth

routes before being transferred to second-echelon vehicles. A customer can request more than one

commodity and each commodity needs to be supplied in a single visit. In the following, we provide a

brief overview of the state-of-the-art exact algorithms for the most relevant variants of the 2E-VRP

with time windows or multiple commodities, with an emphasis on branch-and-price algorithms.

To solve the 2E-VRPTW, Dellaert et al. (2019) propose the first branch-and-price-based algorithm,

which is similar to the algorithm of Dellaert et al. (2021) described above and can solve to optimality

instances with up to 3 depots, 5 satellites and 100 customers within a 3-hour time limit. Their results

are outperformed by Mhamedi et al. (2022) who develop a branch-price-and-cut (BPC) algorithm in-

volving dual inequalities and in which the labeling algorithm used to solve the pricing subproblems

generates second-echelon routes and specifies their load-supplying first-echelon route. Marques et al.

(2022) introduce a branch-and-price algorithm for the 2E-VRPTW with freight storage and consol-

idation at the satellites. They formulate the problem with a route-based formulation containing an

exponential number of precedence constraints to enforce synchronization between first- and second-

echelon vehicles. Their algorithm is adapted to consider two cases: the second-echelon routes contain

a single trip each or they can involve multiple trips, possibly starting and ending at different satellites.

The authors also present a post-processing procedure to verify whether feasible solutions can be trans-

formed into same-cost ones requiring no storage or freight consolidation. Their algorithm performs

well on instances from the literature, yielding new optimal solutions for 9 and 54 instances of the

multi- and single-trip cases, respectively. To our knowledge, Petris et al. (2024) propose the only exact

algorithm for the MC-2EDP, which is formulated as a set-covering model with an exponential number

of variables, one for each second-echelon route. To solve it, the authors devise a BPC algorithm where

second-echelon variables are generated dynamically by solving one subproblem per satellite. Each

subproblem is modeled as an elementary shortest path problem with resource constraints (ESPPRC)

and solved by a label setting algorithm. To tighthen the lower bounds, capacity inequalities and two

families of cuts exploiting the multicommodity aspect of the problem are considered. Within a 1-hour

time limit, their algorithm solves to optimality 439 of the 736 instances created by Gu et al. (2022).

In this paper, we address the MC-2E-VRPTW and develop an exact BPC algorithm that outper-

forms the algorithm of Dellaert et al. (2021). Our contributions are fourfold. First, we propose a BPC

algorithm (inspired from that of Mhamedi et al. 2022) that does not rely on an a priori enumeration

of first-echelon route subsets as in Dellaert et al. (2021). This algorithm generates dynamically the

second-echelon routes using a labeling algorithm that determines which first-echelon route supplies

each customer visited in the second-echelon routes. Second, we devise a recovery procedure that is

applied to ensure integer solution feasibility in the presence of dual inequalities. Third, to tackle

instances with a large number of first-echelon routes, we introduce a branching rule adapted to the

multi-commodity context. Finally, we extend the benchmark dataset of Dellaert et al. (2021) by cre-

ating 140 new MC-2E-VRPTW instances based on the 2E-VRPTW instances of Dellaert et al. (2019)

and test our algorithm on a total of 180 test instances with 30, 50 and 100 customers.

The rest of this paper is organized as follows. Section 2 presents notation and formulates the

MC-2E-VRPTW as a set-partitioning problem with side constraints. Section 3 describes the proposed

BPC algorithm. Computational results are reported in Section 4 to assess this algorithm and the
importance of different algorithmic components. Conclusions are drawn in Section 5.

Les Cahiers du GERAD G–2024–79 3

2 Mathematical formulation

The MC-2E-VRPTW is defined on a directed graph G = (N,A), where N is its vertex set and

A its arc set. Set N = ND ∪ NS ∪ NC comprises the sets of depots (ND), satellites (NS), and

customers (NC). For each depot d ∈ ND, let NC
d ⊆ NC be its set of assigned customers. Therefore,

NC
d1

∩ NC
d2

= ∅,∀d1, d2 ∈ ND, d1 ̸= d2. Each customer i ∈ NC has a demand qi that needs to be

supplied from its assigned depot di ∈ ND. Service at customer i requires a time τi and can only start

during time window [wi, wi], where wi and wi are the earliest and latest start times. Each satellite

s ∈ NS has a predefined transfer time τs representing the time to unload the merchandise from first-

echelon vehicles and load the second-echelon vehicles. Arc set A = A1 ∪ A2 comprises the subsets

of arcs that can be traversed by first-echelon vehicles (A1) and by second-echelon vehicles (A2). Set

A1 contains three arc types: i) arcs from a depot to a satellite, ii) arcs from a satellite to a depot,

and iii) arcs between satellites, that is, A1 = {(d, s) : d ∈ ND, s ∈ NS} ∪ {(s, d) : s ∈ NS , d ∈
ND} ∪ {(s1, s2) : s1, s2 ∈ NS , s1 ̸= s2}. Similarly, set A2 contains three arc types: i) arcs from a

satellite to a customer, ii) arcs from a customer to a satellite, and iii) arcs between customers, that is,

A2 = {(s, i) : s ∈ NS , i ∈ NC} ∪ {(i, s) : i ∈ NC , s ∈ NS} ∪ {(i1, i2) : i1, i2 ∈ NC , i1 ̸= i2}. Each arc

(i, j) ∈ A is associated with a routing cost cij and a travel time tij which includes the service time at

vertex i (i.e., 0 if i ∈ ND and τi if i ∈ NS ∪NC).

The set of first-echelon routes is denoted by M, and each first-echelon route is performed by a first-

echelon vehicle with a capacity Q1 and a fixed cost f1. Each first-echelon route m =

(i0, i1, . . . , ih, ih+1) starts and ends at the same depot i0 = ih+1 = dm ∈ ND and visits a subset of

satellites i1, . . . , ih ∈ NS , such that ij ̸= ik,∀j, k ∈ {1, . . . , h}, j ̸= k. Its total load cannot exceed

vehicle capacity Q1. For each pair of depot d ∈ ND and satellite s ∈ NS , we create ⌈
∑

i∈NC
d
qi/Q1⌉

copies of the back-and-forth first-echelon route (d, s, d) and denote by M1
ds the set of these copies

that are included in M. For each pair of first-echelon route m ∈ M and satellite s ∈ NS , we define

the binary parameter asm which is equal to 1 if route m visits satellite s and 0 otherwise. Each

route m incurs a total cost cm that includes a first-echelon vehicle fixed cost and its routing cost, i.e.,

cm = f1 +
∑h

k=0 cik,ik+1
. We assume that every first-echelon route departs at time 0 from depot i0

and we denote by tsm its arrival time at a visited satellite s. Finally, we denote by Md the subset

of first-echelon routes associated with depot d and by Mds ⊆ Md the subset of those routes visiting

satellite s.

The set of second-echelon routes is denoted by L and the second-echelon vehicles have a capacity

Q2 < Q1 and a fixed cost f2. A second-echelon route l = (i0, i1, . . . , ih, ih+1) starts and ends at a

satellite i0 = in+1 = sl ∈ NS and visits a subset of customers i1, . . . , ih ∈ NC , such that ij ̸= ik for

all j, k ∈ {1, . . . , h}, j ̸= k. Its total load cannot exceed vehicle capacity Q2. For every pair of second-

echelon route l ∈ L and customer i ∈ NC , we define the binary parameter ail which is equal to 1 if route

l visits customer i and 0 otherwise. In addition, the total cost cl of a route l is composed of its fixed cost

and its routing cost, i.e., cl = f2+
∑h

k=0 cik,ik+1
. Each route l is associated with a departure time tstartl

from satellite sl that guarantees servicing customers i1, . . . , ih within their respective time windows.

For each second-echelon route l, we denote by Ml ⊆ {m ∈ M : aslm = 1 and tsm ≤ tstartl − τsl} the set

of first-echelon routes that can supply it before its departure time and by Pl its set of supply patterns.

A supply pattern p ∈ Pl specifies, for each visited customer, the first-echelon route in Ml that supplies

its demand and is expressed as p = {(m1, i1), . . . , (mh, ih)}, where mk ∈ Ml ∩Mdik
, ∀k ∈ {1, . . . , h}.

Finally, let Ql
mp be the total demand supplied by first-echelon route m when assigning supply pattern

p to route l, i.e., Ql
mp =

∑
{i∈NC : ail=1 ∧ (m,i)∈p} qi.

To better understand the concept of a supply pattern, Figure 1 presents a solution for a MC-

2E-VRPTW instance with two depots (|ND| = 2), three satellites (|NS | = 3), and 12 customers

(|NC | = 12). Customers 1 to 7 are assigned to depot d1, whereas customers 8 to 12 are assigned to

depot d2, i.e., N
C
d1

= {1, 2, . . . , 7} and NC
d2

= {8, 9, . . . , 12}. There are five feasible first-echelon routes

(m1,m2, . . . ,m5), but only the first three are used in this solution, which also includes four second-

Les Cahiers du GERAD G–2024–79 4

d1 d2

s1 s2s3

1

m1

2
m2

3

m2

4

m1

5

m2
6

m2

7

m2

8

m3

9

m3

10

m3

11

m3

12

m3

Legend:

depot node

satellite node

i
m

customer node i
supplied by first-

echelon route m

m
1 m

3

m
2

m
4

m
5

l1

l2

l3

l4

Figure 1: Example of a solution for an instance of the MC-2E-VRPTW

echelon routes l1, l2, l3, and l4. As an example, the supply pattern set for l1 is Pl1 = {(m1, 1), (m1, 4)}∪
{(m1, 1), (m2, 4)} ∪ {(m2, 1), (m1, 4)} ∪ {(m2, 1), (m2, 4)}, assuming that m1 and m2 arrive at satellite

s3 early enough to supply route l1. Finally, in this solution, routes l1 to l4 are associated with

supply patterns {(m1, 1), (m1, 4)}, {(m2, 2), (m2, 3), (m2, 5)}, {(m2, 6), (m2, 7), (m3, 8), (m3, 11)}, and
{(m3, 9), (m3, 10), (m3, 12)}, respectively.

The MC-2E-VRPTW can then be formulated using two sets of binary variables. Let xm be equal

to 1 if first-echelon route m ∈ M is used in the solution, and 0 otherwise. For each pair of second-

echelon route l ∈ L and supply pattern p ∈ Pl, let ylp be equal to 1 if route l is used in the solution

and supplied using pattern p, and 0 otherwise. The problem can then be formulated as the following

integer linear programming model:

min
∑

m∈M
cmxm +

∑
l∈L

∑
p∈Pl

clylp (1)

s.t.
∑
l∈L

∑
p∈Pl

ailylp = 1, ∀i ∈ NC , (2)

∑
l∈L

∑
p∈Pl

Ql
mpylp ≤ Q1xm, ∀m ∈ M, (3)

xm ∈ {0, 1}, ∀m ∈ M, (4)

ylp ∈ {0, 1}, ∀l ∈ L, p ∈ Pl. (5)

Objective function (1) minimizes the total costs (sum of fixed vehicle and routing costs) incurred at

both echelons. Set-partitioning constraints (2) ensure that each customer is serviced by a single second-

echelon route. The synchronization constraints (3) between the first- and second-echelon routes ensure

that the first-echelon routes involved in the supply pattern assigned to each selected second-echelon

route are also selected in the solution. They also guarantee that the capacity of each first-echelon route

is respected. Finally, (4) and (5) define the domain of the variables.

To model (1)–(5), we add symmetry-breaking constraints to distinguish the back-and-forth route

copies in set M1
ds for each pair of depot d ∈ ND and satellite s ∈ NS . Without loss of generality,

let us assume that each set M1
ds is ordered, and let m̄1

ds denote the last element of set M1
ds. The

symmetry-breaking constraints express as follows:

xm ≤ xm+ , ∀s ∈ NS , d ∈ ND,m ∈ M1
ds \ {m̄1

ds}, (6)

where m+ denotes the immediate successor of back-and-forth copy m in M1
ds.

Les Cahiers du GERAD G–2024–79 5

3 Branch-price-and-cut algorithm

Model (1)–(6) usually contains a large number of variables. In the MC-2E-VRPTW, the cardinality of

the first-echelon route set M is usually quite limited, but that of the second-echelon route set L can

be very large. To avoid enumerating all second-echelon route variables, we resort to a branch-price-

and-cut (BPC) algorithm, where the first-echelon route variables are all enumerated a priori. A BPC

algorithm is a branch-and-cut algorithm where the linear relaxations are solved by column generation

(CG, see, e.g., Costa et al. 2019). CG is an iterative algorithm that solves at each iteration a restricted

master problem (RMP) and one or several (pricing) subproblems. In our case, the RMP corresponds

to the linear relaxation of model (1)–(6) with a limited subset of second-echelon route variables, i.e.,

with index subsets L′ ⊆ L and P ′
l ⊆ Pl. Given an optimal dual solution to the current RMP, the

subproblems aim at finding negative reduced cost ylp variables if some exist. In our case, there is one

subproblem per satellite that can be cast as an ESPPRC (ESPPRC, Irnich and Desaulniers 2005).

When negative reduced cost variables (columns) are found, they are added to the RMP before starting

a new iteration. Otherwise, CG stops as the current RMP solution is also optimal for the complete

linear relaxation. If this solution is not integer, branching and cutting is applied, re-optimizing each

linear relaxation by CG.

In the following, we describe our BPC algorithm. First, we define the CG subproblems and develop

a labeling algorithm to solve them. Second, we propose dual inequalities to stabilize the CG process

and describe how the BPC algorithm handles them. Finally, we present the valid inequalities and

branching rules used.

3.1 Subproblems

There is one subproblem per satellite s ∈ NS , denoted SPs and used to generate second-echelon

variables ylp associated with routes starting from satellite s. This subproblem is an ESPPRC that

determines i) the customers visited in a second-echelon route and ii) the first-echelon routes supplying

these customers while satisfying the customer-to-depot assignments, the second-echelon vehicle capac-

ity, and the customer time windows. Given (σi)i∈NC and (πm)m∈M the dual variables associated with

constraints (2)–(3), respectively, the reduced cost of a variable ylp, l ∈ L and p ∈ Pl, is computed as

c̄lp = cl −
∑
i∈NC

ailσi −
∑

m∈M
Qmp

l πm. (7)

Subproblem SPs aims at finding a pair of second-echelon route l departing from s and supply pattern

p with a minimum reduced cost c̄lp.

For a given second-echelon route l starting from satellite s, there might exist a large number of

feasible supply patterns p ∈ Pl. The feasibility of a pattern depends on the route starting time tstartl .

Given that this time is a priori unknown when solving SPs, we propose to consider that tstartl = t+ τs,

where t belongs to the set Ts of the first-echelon route visiting times to satellite s (sorted in ascending

order). For all starting times tstartl = t + τs, t ∈ Ts, we can then find the supply pattern p ∈ Pl that

yields the least reduced cost c̄lp among the supply patterns that are feasible if route l starts at time

tstartl . For t ∈ Ts, let Mt
s = ∪d∈ND{m ∈ Md : tms ≤ t} be the set of first-echelon routes visiting

satellite s no later than t and Dt
s = {d ∈ ND : Mt

s ∩ Md ̸= ∅} the set of depots associated with

those routes. Furthermore, for d ∈ Dt
s, we denote by m(d, t) a first-echelon route m ∈ Mt

s ∩Md with

the largest dual value πm, i.e., m(d, t) ∈ argmaxm∈Mt
s∩Md

πm. With this notation, the reduced cost

defined in (7) can be rewritten as

c̄lp = cl −
∑
i∈NC

ailσi −
∑
i∈NC

ailqiπm(di,t) if tstartl = t+ τs. (8)

The subproblems are solved by the labeling algorithm (Irnich and Desaulniers 2005) described in

Subsection 3.1.1. Two acceleration strategies, summarized in Subsection 3.1.2, are applied to speed

up the solution process.

Les Cahiers du GERAD G–2024–79 6

3.1.1 Labeling algorithm.

Each subproblem SPs, s ∈ NS , consists in finding a least reduced cost path on a directed graph

Gs = (Ns, As). Vertex set Ns = NC ∪ {nsrc
s , nsk

s } comprises the set of customers as well as a source

and a sink vertex, which represent copies of satellite s. We set qsrcs = qsks = 0. Arc set As = {(nsrc
s , i) :

i ∈ NC} ∪ {(i, nsk
s) : i ∈ NC} ∪ {(i1, i2 : i1, i2 ∈ NC , i2 ̸= i2)}. Each arc (i, j) ∈ As is associated with

the time tij of the corresponding arc in A2 and with a modified cost c̄ij defined as:

c̄ij =

cij + f2 − σj , if i = nsrc

s

cij − σj , if i, j ∈ NC

cij , if j = nsk
s .

In a standard labeling algorithm, a label is a multi-dimensional vector that represents a partial path

starting at the source node nsrc
s and ending at a vertex i ∈ Ns. Starting from an initial label repre-

senting the path containing only vertex nsrc
s , this algorithm recursively extends it towards the other

vertices in Ns using resource extension functions (REFs) to generate longer partial paths until reaching

the sink vertex nsk
s . Infeasible paths are discarded as the search progresses. To avoid enumerating

all feasible source-to-sink paths, a dominance rule comparing label pairs is applied. Below, we define

the labels, describe how the algorithm is initialized with multiple labels (instead of a single one), and

present the REFs and the dominance rule.

Label definition. A label represents a combination of a partial path l starting from nsrc
s at a given

time t+ τs, t ∈ Ts, and an associated supply pattern p which can be retrieved from the list of visited

customers and time t. Such a label Elt = (T rdc
lt , T time

lt , T load
lt , T start

lt , Ult) associated with a path ending

at vertex i ∈ Ns holds the following information:

T rdc
lt : the reduced cost of this path;

T time
lt : the earliest time for starting service at vertex i;

T load
lt : the total delivered demand;

T start
lt : time t corresponding to the latest time a first-echelon route can visit satellite s to supply this

partial route;

Ult: the set of unreachable customers from label Elt. A customer h is said to be unreachable from

Elt if dh /∈ D
T start
lt

s , or h has already been visited in this path or cannot be due to time or load

constraints (i.e., T time
lt + tih > wh or T load

lt + qh > Q2).

Initialization. Recall from the discussion above that only |Ts| starting times are relevant, i.e., the times

t + τs for t ∈ Ts. Given one of these times, it becomes easy to identify the best supply pattern for

a partial path. Therefore, our labeling algorithm starts with |Ts| initial labels at source vertex nsrc
s ,

namely, one for each t ∈ Ts. Denoting by 0 the partial path containing only the source vertex nsrc
s , an

initial label E0t, t ∈ Ts, is set to E0t = (0, t, 0, t, {h ∈ NC : dh /∈ Dt
s or t+ tnsrc

s h > wh}).

Resource extension functions. To generate new labels, the following REFs are applied. Let Elt =

(T rdc
lt , T time

lt , T load
lt , T start

lt , Ult) be a label associated with a partial path l ending at vertex i ∈ Ns\{nsk
s }

and a path starting time t ∈ Ts. Extending Elt along an arc (i, j) ∈ As such that j /∈ Ult yields a label

El′t whose components are computed as follows:

T rdc
l′t = T rdc

lt + c̄ij −

{
qj · πm(dj ,T start

lt) if j ̸= nsk
s ,

0 otherwise
, (9)

T time
l′t = max{wj , T

time
lt + tij}, (10)

T load
l′t = T load

lt + qj , (11)

T start
l′t = T start

lt , (12)

Ul′t = Ult ∪ {j} ∪ {h ∈
⋃

d∈D
Tstart
lt

s

NC
d : T time

l′t + tjh > wh ∨ T load
l′t + qh > Q2}. (13)

Les Cahiers du GERAD G–2024–79 7

Label El′t is always deemed feasible because j /∈ Ult. Observe that, if j ∈ NC , the first-echelon route

supplying j is route m(dj , T
start
lt) as identified in the first case of (9).

Dominance rule. To discard non-promising labels, we apply the following dominance rule.

Definition 3.1. A label Elt = (T rdc
lt , T time

lt , T load
lt , T start

lt , Ult) dominates a label El′t′ = (T rdc
l′t′ , T

time
l′t′ ,

T load
l′t′ , T start

l′t′ , Ul′t′) if both paths l and l′ end at the same vertex and the following conditions hold:

T rdc
lt ≤ T rdc

l′t′ + (Q2 − T load
l′t′) ·∆s(T

start
lt , T start

l′t′) (14)

T time
lt ≤ T time

l′t′ (15)

T load
lt ≤ T load

l′t′ (16)

Ult ⊆ Ul′t′ , (17)

where

∆s(t1, t2) = min {0, min
d∈D

t1
s ∩D

t2
s

πm(d,t1) − πm(d,t2)} for t1, t2 ∈ Ts. (18)

Function ∆s(T
start
lt , T start

l′t′) specifies the minimum (negative) difference between the dual values of

the synchronization constraints (3) that could be activated in a feasible extension of the labels and, as

such, is used in (14) to anticipate any decrease of the reduced cost in an extension of label El′t′ that

would not occur in the same extension of label Elt due to a difference in their associated starting times.

Note that, in definition (18), the computation may exclude depots that supply customers visited in

a feasible extension of El′t′ , i.e., depots in D
T start
l′t′

s \DT start
lt

s . If this is the case, then Ult ̸⊆ Ul′t′ and

condition (17) would prevent label Elt to dominate label El′t′ .

Proposition 3.1. Conditions (14)–(17) constitute a valid dominance rule for the considered ESPPRC

variant.

See Appendix A for the proof.

3.1.2 Acceleration strategies.

To speed up the resolution of the subproblems, we make use of the ng-path relaxation and decremental

state-space relaxation (DSSR), two well-known ESPPRC relaxations that we briefly describe in what

follows.

• The ng-path relaxation, introduced by Baldacci et al. (2011), relies on defining for each vertex

i ∈ N , a neighborhood Ni ⊆ NC that contains its κ closest customers, where κ is a predefined

parameter. A path is allowed to contain a cycle (i1, i2, . . . , ih) with i1 = ih if there exists

k ∈ {2, . . . , h− 1} such that i1 /∈ Nik . For that matter, the REF (13) is adjusted as follows:

Ul′t = (Ult ∩Nj) ∪ {j} ∪ {h ∈ NC : dh /∈ D
T start
l′t

s }

∪ {h ∈
⋃

d∈D
Tstart
lt

s

NC
d : T time

l′t + tjh > wh ∨ T load
l′t + qh > Q2}. (19)

• The DSSR (Boland et al. 2006, Righini and Salani 2008) attempts to solve an ESPPRC by

first dropping the elementarity constraints on the customer vertices. If at least one elementary

path with a negative reduced cost is found or no paths (elementary or not) with a negative

reduced cost are found, the process is stopped. Otherwise, the labeling algorithm is restarted

with elementarity requirements enforced on the customers visited more than once in the optimal

non-elementary path found.

3.2 Stabilization by dual inequalities

To stabilize the column generation process, we propose to apply dual inequalities (see, e.g., Ben Amor

et al. 2006, Gschwind and Irnich 2016). Let µ ∈ Rn be the vector of dual variables associated with

Les Cahiers du GERAD G–2024–79 8

a feasible bounded linear program and D∗ the set of its dual optimal solutions. A dual inequality

Λ⊤µ ≤ λ, with Λ ∈ Rn and λ ∈ R, is a dual-optimal inequality (DOI) if D∗ ⊆ {µ ∈ Rn : Λ⊤µ ≤ λ}.
Furthermore, a set of dual inequalities Aµ ≤ a, with A ∈ Rm×n and a ∈ Rn, forms a set of deep-DOIs

(DDOIs) if D∗ ∩ {µ ∈ Rn : Aµ ≤ a} ̸= ∅. In the following, we first describe the DDOIs that we use

before discussing integer solution feasibility and presenting a feasibility recovery procedure.

3.2.1 Transfer inequalities.

We consider the dual inequalities, called the transfer inequalities (TIs), that were introduced by

Mhamedi et al. (2022) for the multi-depot 2E-VRPTW. For the MC-2E-VRPTW, the TIs are:

πm ≥ πm′ , ∀(m,m′) ∈ K, (20)

where K =
⋃

d∈ND

{
(m1,m2) ∈ Md

2 : m1 ̸= m2, S(m1) ⊆ S(m2) ∧ tm2
s ≤ tm1

s , ∀s ∈ S(m1)
}
is the

set of first-echelon route pairs (m1,m2) such that any customer-satellite assignment feasible for m1 is

also feasible for m2. These TIs are DDOIs for the linear relaxation of model (1)–(6).

To add these TIs, we introduce a non-negative primal variable um1m2 with a zero cost for every

route pair (m1,m2) ∈ K and rewrite constraints (3) as follows:∑
l∈L

∑
p∈Pl

Qmp
l ylp −

∑
m′∈Md(m):(m,m′)∈K

um,m′ +
∑

m′∈Md(m):(m′,m)∈K

um′,m ≤ Q1xm, ∀m ∈ M. (21)

These new variables are called transfer variables because they allow to transfer demand from one

first-echelon route to another as discussed below. In the rest of this paper, we denote by F and F̃ the

formulations (1)–(6) and (1)–(2),(21),(4)–(6), respectively.

3.2.2 Solution feasibility and recovery procedure.

Considering constraints (21) instead of constraints (3) yields a relaxation, i.e., F̃ is a relaxation of F .

As a result, an integer solution (x̃, ỹ, ũ) for F̃ is not feasible for F whenever the value ũmm′ of a

transfer variable is positive and, moreover, it might not be possible to convert this solution into a

feasible one with the same cost by transferring demands between the first-echelon routes according to

the positive-valued transfer variables. See Appendix B for a detailed example.

To convert an integer solution (x̃, ỹ, ũ) with a positive-valued transfer variable into a feasible integer
solution for F with the same cost, we apply the following recovery procedure that consists in solving

some small-sized bin packing problems. Let M̃ and L̃ be the subsets of first- and second-echelon routes

used in solution (x̃, ỹ, ũ), respectively. For each route l ∈ L̃, let p̃l ∈ Pl denote the (unique) supply

pattern assigned to l, i.e., ỹlp̃l
= 1. Also, for each customer i visited along l, let m̃i ∈ Mdi

be the first-

echelon route assigned to i in supply pattern p̃l, and let M̃i = {m ∈ M̃∩Mdi : m = m̃i or (m̃i,m) ∈
K} be the set of active first-echelon routes that could have been used to supply the demand of customer

i. Let K̃ = {(m,m′) ∈ K : ũmm′ > 0} denote the subset of route pairs in K associated with positive-

valued transfer variables set. Finally, let D̃ = {d ∈ ND : |K̃ ∩ (Md × Md)| ≥ 1} be the subset of

depots associated with at least one pair in K̃.

For each depot d ∈ D̃, we consider a feasibility bin packing problem FPd that consists in assigning

the demand of each customer associated with d to the first-echelon routes in M̃∩Md, while preserving

the selected second-echelon routes in L̃. This problem involves a binary variable λi
m for each customer

i ∈ NC
d and first-echelon route in m ∈ M̃i that takes value 1 if customer i is assigned to first-echelon

route m, 0 otherwise. It is formulated as:

min 0 (22)

s.t.
∑

m∈M̃i

λi
m = 1, ∀i ∈ NC

d (23)

Les Cahiers du GERAD G–2024–79 9

∑
i∈NC

d :m∈M̃i

qiλ
i
m ≤ Q1, ∀m ∈ M̃ ∩Md (24)

λi
m ∈ {0, 1}, ∀i ∈ NC

d ,m ∈ M̃i. (25)

Constraints (23) ensure that each customer associated with depot d is assigned to a selected first-

echelon route that can supply its second-echelon route on time. Constraints (24) guarantee that the

capacity of each first-echelon route is not exceeded. Model (22)–(25) can be solved using a commercial

mixed-integer programming solver.

If a feasible solution can be found for each problem FPd, d ∈ D̃, then solution (x̃, ỹ, ũ) can be

converted into a same-cost feasible solution for F , preserving the same first-echelon and second-echelon

routes but rearranging the supply patterns according to the FPd solutions. Otherwise, for all depots

d ∈ D̃ for which FPd turned out to be infeasible, we fix to zero the transfer variables umm′ , (m,m′) ∈
K̃ ∩ (Md ×Md), before restarting column generation.

3.3 Valid inequalities

To strengthen the lower bounds, we consider three families of valid inequalities: (lifted) visited satellite

inequalities (VSIs), rounded capacity inequalities (RCIs), and subset-row inequalities (SRIs). When

looking for violated inequalities, we apply the following priority order: VSIs first, RCIs second, and

SRIs last. As soon as violated cuts are found for a family, we do not search for violated cuts of

the subsequent families for the same fractional solution. Valid inequalities can be added in multiple

rounds within the same branch-and-bound node. Moreover, because the subproblems can become

much more difficult to solve in the presence of SRIs, we only look for violated SRIs in branching

nodes of depth less than or equal to a predefined parameter value, set to 10 for our tests. In what

follows, we briefly present each type of inequalities, explain how they are separated and how the column

generation/labeling algorithm should be modified if need be.

Visited satellite inequalities. The VSIs, initially introduced by Marques et al. (2020) for the 2E-

CVRP, ensure that, whenever a customer i is serviced from a satellite s, at least one first-echelon route

visiting s and originating from di is used. In our BPC algorithm, we consider a lifted version of these

inequalities: ∑
m∈Mdis

: tms ≤wi−tsi

xm ≥
∑
l∈Ls

∑
p∈Pl

ailylp, ∀s ∈ NS , i ∈ NC , (26)

where Ls denotes the subset of second-echelon routes departing from satellite s. The left-hand side

of (26) disregards first-echelon routes that would lead to an arrival at customer i after its time window

in the best case. The VSIs are separated by enumeration. They are robust in the sense that they do

not alter the structure of the subproblems. In fact, the dual value of a VSI associated with a customer

i and a satellite s is added to the modified cost of customer’s i outgoing arcs in set As.

Rounded capacity inequalities. The RCIs (Laporte and Nobert 1983) have been extensively used for

different VRP variants, including those with two routing echelons (Marques et al. 2020, Santos et al.

2015, Mhamedi et al. 2022). For a subset of customers C ⊆ NC such that |C| ≥ 2, let ξ(C) =
⌈∑

i∈C qi

Q2

⌉
be a lower bound on the number of second-echelon vehicles required to service the demand of customers

in C. The RCIs are defined as:∑
l∈L

∑
p∈Pl

∑
(i,j)∈δ(C)

blijylp ≥ ξ(C), ∀C ⊆ NC such that |C| ≥ 2, (27)

where blij is a binary parameter indicating whether or not second-echelon route l traverses arc (i, j)

and δ(C) is the set of arcs leaving C, i.e., δ(C) = {(i, j) ∈ A2 : i ∈ C, j /∈ C}. The RCIs are separated

Les Cahiers du GERAD G–2024–79 10

using the heuristic proposed by Lysgaard et al. (2004). They are also robust and the dual value of a

RCI associated with a customer subset C is subtracted from the modified cost of all arcs in δ(C).

We also add a priori one RCI per depot d defined on its first-echelon routes:

∑
m∈Md

xm ≥

⌈∑
i∈NC

d
qi

Q1

⌉
, ∀d ∈ ND. (28)

Subset-row inequalities. The SRIs, introduced by Jepsen et al. (2008) for the VRPTW, are valid

inequalities for the set packing polytope and, thus, for the set partitioning polytope also. Similar

to several previous works considering SRIs, we restrict ourselves to customer subsets C ⊂ NC of

cardinality three because their separation can be done by straighforward enumeration. The SRIs are

expressed as: ∑
l∈L

∑
p∈Pl

⌊∑
i∈C ail

2

⌋
ylp ≤ 1, ∀C ⊂ NC such that |C| = 3. (29)

They are non-robust as each active SRI (associated with a negative dual price) requires an additional

binary resource in the label definition. Furthermore, to take into account these additional label com-

ponents, the dominance rule presented in Section 3.1.1 must be modified. For details, see Jepsen et al.

(2008) or Costa et al. (2019).

3.4 Branching

The branch-and-bound tree is explored using a best-first search strategy and a hierarchical branching

scheme. For each branching rule, the selected variable/entity has the fractional value closest to 0.5.

Furthermore, for branching decisions involving modifications at the subproblem level, we remove from

the MP, all columns that do not align with the imposed decisions. Let (x̂, ŷ, û) be a fractional solution

at a given node. In what follows, we describe the considered branching rules in decreasing order of

priority. The rules and their order have been selected based on preliminary computational experiments.

Depot-satellite supply. The first branching level decides on whether or not a depot d delivers freight to

a satellite s. The selected depot-satellite pair (d̄, s̄) is defined by its maxi∈NC
d

∑
l∈Ls,p∈Pl

ailŷlp value.

On one branch, we require depot d̄ to use s̄ as a supply satellite by adding to the MP a constraint

forcing to select at least one route m ∈ Mds. On the other branch, we forbid depot d from using

satellite s by setting xm = 0, ∀m ∈ Mds.

Back-and-forth total flow. The second level of decisions targets the total flow on a back-and-forth

route whenever it is fractional. To impose upper and lower bounds on the total back-and-forth flow,

we set some of the route variables associated with copies of the selected back-and-forth route to zero

(last copies) and one (first copies), respectively.

Vehicle usage. At a third level, we branch on different entities computing a number of vehicles used,

by adding constraints to the MP. These entities are grouped in two priority sub-levels. The first

sub-level considers branching on the total number of vehicles at the: i) first-echelon (
∑

m∈M x̂m), ii)

first-echelon visiting a satellite s (
∑

m∈Ms
x̂m), iii) first-echelon departing from depot d (

∑
m∈Md

x̂m),

iv) second-echelon (
∑

l∈L,p∈Pl
ŷlp). At the second sub-level, we consider branching on the total number

of vehicles at the: i) first-echelon departing from a depot d and visiting a satellite s (
∑

m∈Md∩Ms
x̂m),

ii) second-echelon departing from a satellite s (
∑

l∈Ls,p∈Pl
ŷlp).

First-echelon route usage. The fourth level of branching imposes or forbids the use of a given first-

echelon route by fixing bounds on the selected variable xm.

Les Cahiers du GERAD G–2024–79 11

Customer-satellite assignment. The fifth level decides whether to forbid or impose servicing a cus-

tomer i from a satellite s. The selected customer-satellite pair (i, s) is defined by its
∑

l∈Ls

∑
p∈Pl

ailŷlp
value. To forbid and impose servicing customer i from satellite s, we remove customer node i from

node set Ns and from node sets Ns′ (s
′ ̸= s), respectively.

Arc flow. The sixth level imposes an integer flow on a second-echelon arc (i, j) ∈ A2 which is selected

according to its
∑

l∈L
∑

p∈Pl
blij ŷlp value. Fixing to zero the flow on this arc is done by removing (i, j)

from all arc sets As, ∀s ∈ NS . Fixing it to one is achieved by removing arcs (i, k), k ̸= j, and (h, j),

h ̸= i, from all arc sets As, ∀s ∈ NS .

Customer-satellite-route assignment. Integer flows on first- and second-echelon arcs do not guarantee

integrality requirements (5) on second-echelon variables. In fact, there might exist fractional ylp
variables associated with the same second-echelon route but with different supply patterns, supplying

at least one customer i with different first-echelon routes. This rule selects a triplet (i, s,m) ∈ NC ×
NS×M according to its

∑
l∈Ls

∑
p∈Pl:(m,i)∈p ailŷlp value. On one branch, customer i must be serviced

from satellite s by first-echelon route m. On the other branch, customer i must be serviced either

through a satellite s′ ̸= s or through satellite s as long as a first-echelon route m′ ̸= m supplies

the demand of customer i. To impose these branching decisions, the labeling algorithm needs to be

modified as detailed in Appendix C.

4 Computational experiments

This section reports the results obtained by the proposed BPC algorithm described in Section 3. This

algorithm was implemented in C/C++ using the GENCOL library (version 4.5). The RMPs are solved

using CPLEX 22.1. All tests were performed on a Linux computer equipped with an Intel Core i7-8700

processor clocked at 3.2 GHz and 66 GB of RAM. For all tests, we impose a time limit of three hours.

This section is organized as follows. Section 4.1 describes the test instances. Section 4.2 summarizes

the main computational results and compares the performance of our algorithm with that of Dellaert

et al. (2021). Finally, Section 4.3 presents a sensitivity analysis on some of the main components of

our BPC algorithm to highlight their contribution to the overall algorithm’s performance.

4.1 MC-2E-VRPTW test instances

To evaluate our BPC algorithm, we consider the instances used by Dellaert et al. (2021), which are

derived from the 2E-VRPTW benchmark instances of Dellaert et al. (2019). Let us start by describing

the set of these 240 2E-VRPTW instances, which is composed of 12 groups of 20 instances. Each group

is characterized by a pair of numbers of depots and satellites (|ND|, |NS |) ∈ {(2, 3), (3, 5), (4, 6)} and

a number of customers |NC | ∈ {15, 30, 50, 100}. Each group is equally divided into four categories:

Ca, Cb, Cc, and Cd, that differ by the time window length and the demand distribution. Across all

instances, the first- and second-echelon vehicle capacities are Q1 = 200 and Q2 = 50, whereas their

fixed costs are set to f1 = 50 and f2 = 25. The service time at every customer and satellite is set

to 10.

To create MC-2E-VRPTW instances, Dellaert et al. (2021) introduce commodities by randomly

assigning each customer to a depot. They only created 100 MC-2E-VRPTW instances: 60 instances

with 15 customers (that we do not consider because they are too easy to solve, often in less than one

second), 20 with 30 customers, 10 with 50 customers, and 10 with 100 customers. To complement these

instances, we also generated commodities randomly for the other 140 2E-VRPTW instances. For each

size and category, Table 1 presents the number of instances considered in our tests and their origin.

Les Cahiers du GERAD G–2024–79 12

Table 1: Number of instances per size and category

Category
Size |NC | = 30 |NC | = 50 |NC | = 100

|ND| |NS | Ca Cb Cc Cd Ca Cb Cc Cd Ca Cb Cc Cd

2 3 5† 5† 5† 5† 5† 5 5 5 5† 5 5 5
3 5 5 5 5 5 5† 5 5 5 5† 5 5 5
6 4 5 5 5 5 5 5 5 5 5 5 5 5

† From Dellaert et al. (2021)

4.2 Main computational results

This section presents computational results obtained with the proposed BPC algorithm. First, we

report summarized computational results and compare the computational performance of our algo-

rithm with that of the state-of-the-art algorithm of Dellaert et al. (2021). Second, we provide various

algorithmic statistics to better understand the solution process. Finally, we list some of the features

of the optimal solutions found.

4.2.1 Summarized results and comparison with Dellaert et al. (2021).

Table 2 presents the average results obtained by our BPC algorithm. For each group of 20 instances

defined by its size (|ND|, |NS |, |NC |), it indicates the average computational time in seconds for the

instances solved to optimality (T) and the number of instances solved to optimality within the 3-hour

time limit (# Opt). Detailed results can be found in Appendix D.

The results in Table 2 show that our BPC algorithm can solve 148 of the 180 instances within

the time limit. Its overall performance is obviously impacted negatively by an increase in the number

of customers: the average computational times increase rapidly and we can only solve 28 of the 60

instances with 100 customers. Moreover, instance groups with three depots and five satellites require

the largest average computational times. The complexity of these instances largely stems from a

larger number of first-echelon routes, which complicates the resolution of both the RMPs and the CG

subproblems.

Table 2: Summary of the computational results

|NC | = 30 |NC | = 50 |NC | = 100

|ND| |NS | T (s) # Opt T (s) # Opt T (s) # Opt

2 3 1.1 20 38.2 20 3247.0 13
3 5 46.1 20 331.1 20 7914.8 3
6 4 18.1 20 126.3 20 4703.7 12

In Table 3, we compare our BPC algorithm with the best algorithm of Dellaert et al. (2021) (that

based on their MC2E-2P model) on the 30-, 50-, and 100-customer instances they considered. For

each instance group and each algorithm, we report the average computational time in seconds (T)

computed over the instances solved to optimality, and the number of instances solved to optimality

within the 3-hour time limit (# Opt). For the BPC algorithm, the number of new optimal solutions

found (# New) is also provided. To make a fair comparison, we need to account for the bias induced

by using a faster computer for our experiments than that used by Dellaert et al. (2021) for theirs.

For that matter, the last column specifies the biased-minimal-speed-up (BMSU) factor, computed as

TD/TBPC , where TBPC and TD are the average time of our BPC algorithm and the minimal average

time of their algorithm (i.e., setting to 10800 seconds the time for each instance that is solved by our

algorithm but not theirs), respectively.

Table 3 shows that we can solve all the 30 instances solved by Dellaert et al. (2021) within the time

limit. Furthermore, we can also find 7 new solutions, leaving only 3 instances open out of the 40 used

Les Cahiers du GERAD G–2024–79 13

for this comparison. Despite using a faster computer for our tests, the average BMSU factors, being

more prominent than the speed-up factor provided by using our computer, clearly highlight the fact

that our algorithm outperforms the current state-of-the-art algorithm for the MC-2E-VRPTW. The

speed-up is, however, less important for the instances with 3 depots and 5 satellites, due to a larger

number of first-echelon routes.

Table 3: Comparison with Dellaert et al. (2021)

Dellaert et al. (2021) † Our BPC algorithm ‡ BMSU

|ND| |NS | |NC | T (s) # Opt T (s) # Opt # New factor

2 3 30 79.6 20/20 1.1 20/20 0 75.1

2 3 50 93.8 4/5 3.5 5/5 1 642.2
3 5 50 2794.2 5/5 424.5 5/5 0 6.6

2 3 100 – 0/5 1536.0 5/5 5 7.0
3 5 100 2919.0 1/5 9867.8 2/5 1 1.4

Total 30/40 37/40

† Tests ran on a computer equipped with an Intel Core i7-4770 processor

‡ Tests ran on a computer equipped with an Intel Core i7-8700 processor

4.2.2 Statistics on algorithm execution.

We now present statistics retrieved during the execution of our BPC algorithm. Table 4 reports

collected statistics for each group of instances identified by their size in the first three columns. The

average statistics are computed over instances solved to optimality. For each group, we report the

average numbers of branch-and-bound nodes (# Nodes), enumerated first-echelon routes (|M|), and
TIs considered in the model (# TIs). We also specify, for each family of valid inequalities, the number

of cuts generated during the solution process (# RCIs, # SRIs, # VSIs).

Table 4 asserts previous observations relating the difficulty of solving an instance with the numbers

of customers and satellites it involves. For each customer count, the 3-depot, 5-satellite instances are

consistently the most challenging to solve compared to their counterparts with depot-satellite pairs

(|ND|, |NS |) ∈ {(2, 3), (6, 4)} and the same number of customers |NC |. The increased computational

difficulty stems from the significant number of first-echelon routes, requiring many more branching

nodes, SRIs, and RCIs. Table 4 also shows that the number of TIs is positively correlated with the

number of first-echelon routes: an increase of |M| yields more route pairs in set K. Finally, the VSIs
are extensively used across the board. Their usage arises primarly from second-echelon routes requiring

more than two first-echelon vehicles to supply their load.

Table 4: Summarized statistics on the algorithm execution

|ND| |NS | |NC | # Nodes |M| # TIs # RCIs # SRIs # VSIs

2 3 30 15.0 29.9 26.7 32.7 6.9 84.2
3 5 30 65.4 486.7 461.9 65.1 36.9 141.2
6 4 30 51.7 180.0 147.4 57.1 28.7 112.9

2 3 50 139.4 35.2 35.5 85.9 38.3 142.4
3 5 50 366.3 685.7 688.6 228.2 111.4 235.9
6 4 50 125.2 227.3 198.8 164.7 71.6 186.2

2 3 100 2100.8 47.7 59.1 206.2 64.4 278.9
3 5 100 3254.0 965.7 1042.7 476.0 222.7 447.3
6 4 100 1824.8 318.9 321.3 644.1 447.8 369.9

Les Cahiers du GERAD G–2024–79 14

4.2.3 Optimal solution statistics.

We now summarize some characteristics of the optimal solutions found. For each instance group,

Table 5 presents the average numbers of satellites (|NS |∗), first-echelon routes (|M|∗), and second-

echelon routes (|L|∗) used, as well as the percentage of the first-echelon routes that are back-and-

forth ones (|M1|∗). These results show that increasing the number of customers drives a higher

satellite usage rate. In fact, this average rate increases from 70 to 96% as |NC | increases from 30

to 100. Obviously, the number of first- and second-echelon routes used increases with the customer

count. Also, the usage of first-echelon vehicles tends to grow with the number of depots and satellites,

especially because every depot must supply the demand of a subset of customers. Finally, the average

percentages of first-echelon back-and-forth routes are quite high (between 50 and 83% per group) but

much less than those reported for the 2E-VRPTW by Mhamedi et al. (2022) which vary between 72

and 100% per group. Hence, more first-echelon routes visiting multiple satellites are required for the

multi-commodity case because the customers in the second-echelon routes must often be supplied by

multiple first-echelon routes coming from different depots.

Table 5: Summarized optimal solution statistics

|ND| |NS | |NC | |NS |∗ |M|∗ |M1|∗ (%) |L|∗

2 3 30 2.0 3.4 79.2 9.5
3 5 30 3.3 3.3 50.0 9.6
6 4 30 3.0 6.0 82.5 9.7

2 3 50 3.0 4.4 75.5 15.4
3 5 50 4.3 5.2 52.3 15.4
6 4 50 3.5 6.3 72.9 15.7

2 3 100 3.0 8.3 66.7 30.5
3 5 100 4.3 9.3 75.6 30.0
6 4 100 4.0 10.6 64.1 30.1

4.3 Sensitivity analysis

In this section, we conduct a sensitivity analysis to evaluate how some specific components of the

BPC algorithm impact its overall computational performance. To this end, we selected a subset of

36 instances with |NC | ∈ {50, 100} that were challenging but solved to optimality in our previous

tests. For the 50-customer instances, we considered all 20 instances with (|ND|, |NS |) = (3, 5). For

the 100-customer instances, we selected 13 instances with (|ND|, |NS |) = (2, 3) and 3 instances with

(|ND|, |NS |) = (3, 5).

For this analysis, we focus on the following algorithmic components: the depot-satellite supply

branching rule (see Section 3.4), the symmetry-breaking constraints (6), the VSIs (26), the TIs (see

Section 3.2.1), and the recovery procedure (see Section 3.2.2). Other components such as the RCIs,

the SRIs, and the other branching rules have been left out of this analysis because their impact has

been well evaluated in previous works (RCIs and SRIs) or is relatively minor but essential to obtain the

best results on all instances (the other branching rules). To assess the impact of each of the first four

components, we have conducted separate computational tests, each time removing only the selected

component from the algorithm. For the recovery procedure, we ran additional tests considering a

modified procedure that fixes to zero all positive-valued transfer variables (if any) without solving the

bin packing feasibility problems before restarting column generation.

Table 6 presents the computed average results. For each component and customer count, we report

the number of instances solved to optimality within the time limit (# Opt), the average computational

time in seconds (T), and the minimum computational time variation in percentage (∆T) between the

complete BPC algorithm and the BPC algorithm with the selected component removed or modified.

We compute ∆T as (T − T̄)/T̄ , where T̄ is the average computational time of the full BPC algorithm

Les Cahiers du GERAD G–2024–79 15

and T that of its corresponding modified counterpart or three hours if it did not solve the instance

within the time limit.

Table 6: Impact of omitting algorithmic components

Instances with |NC | = 50 Instances with |NC | = 100

Omitted component # Opt T (s) ∆T (%) # Opt T (s) ∆T (%)

Depot-satellite supply branching 17 4012.1 1111.8 14 3812.8 -7.5
Symmetry-breaking constraints 17 2573.3 677.2 0 – 162.0
Visited satellite inequalities 14 3696.4 1016.5 12 4381.7 6.3
Transfer inequalities 14 5833.6 1662.0 10 5859.9 42.2
Recovery procedure 20 444.4 34.2 14 4247.3 3.0

First, when removing the depot-satellite supply branching, 5 of the 36 instances cannot be solved

anymore within the time limit, showing the effectiveness of using this branching rule. Furthermore,

for the 50-customer instances, the average computational time increases by a minimum of 1111.8%,

showing the high effectiveness of this rule when the numbers of depots and satellites (3 and 5 for all

these instances) yield a large number of first-echelon routes. For the instances with 100 customers,

the average computational time slightly decreases, possibly because 13 of these 16 instances do not

involve a large number of first-echelon routes. On the other hand, for the other 3 instances, removing

the depot-satellite supply branching increases the average time by at least 20.1%.

Second, when omitting the symmetry-breaking constraints, we can only solve 17 50-customer in-

stances with a minimum average time increase of 677.2% and none of the 100-customer instances.

Because the number of back-and-forth route copies increases with the number of customers, consider-

ing symmetry-breaking constraints is crucial when solving instances with |NC | = 100.

Third, the VSIs impact positively the solution process, especially for instances with 3 depots and

5 satellites where these cuts greatly help improving the lower bounds. When discarded, we can only

solve 14 of the 20 50-customer instances while increasing the computational time by a factor of at

least 10. However, the impact of the VSIs is not as strong for instances with (|ND|, |NS |) = (2, 3):

the modified algorithm solves 11 of the 13 100-customer instances and yields a small minimum time

increase of 5%.

Fourth, the absence of TIs significantly impacts the total times across the board. The total number

of instances solved diminishes by 12 and the average times increase substantially, especially for the

instances with a large number of first-echelon routes.

Finally, considering the full recovery procedure also has a positive impact on the overall solution

process, but less than the above algorithmic components. With the simplified procedure, two instances

with 100 customers cannot be solved within the time limit and the average computational time increases

moderately (by 34.2%) for the instances with 50 customers. This time increase is due to the fact that

there is a large number of first-echelon routes for the 50-customer instances (all with 3 depots and 5

satellites) and, thus, a large number of TIs. Consequently, the recovery procedure is invoked more often

during the solution process as more integer solutions with active transfer variables are encountered.

Overall, this sensitivity analysis shows that all these algorithmic components play an important

role to achieve the good results that were presented in Section 4.2.1. Some of them (depot-satellite

supply branching, VSIs, recovery procedure) are, however, less useful when the number of first-echelon

routes is small.

5 Conclusions

In this paper, we have developed a BPC algorithm for the MC-2E-VRPTW, which incorporates an ad

hoc labeling algorithm for generating second-echelon routes and their associated supply patterns. We

Les Cahiers du GERAD G–2024–79 16

use dual inequalities to speed up CG convergence and propose a recovery procedure to enforce integer

solution feasibility. Our BPC algorithm also includes three families of valid inequalities to improve the

lower bounds and a branching scheme featuring a problem-specific branching rule.

We extended the existing instances of Dellaert et al. (2021) by creating 140 new instances and

showed through extensive computational experiments on 180 benchmark instances that our algorithm

outperforms the best existing exact algorithm for the problem. It solves to optimality 148 instances

within the 3-hour time limit, including 7 previously unsolved instances from Dellaert et al. (2021). We

also showed the crucial role of some components of our BPC algorithm to achieve good computational

performance. Three of these components proved essential when solving instances with a large number

of first-echelon routes.

Nevertheless, solving instances with a large number of depots and satellites remains a challenge.

A potential future research avenue could be the development of cuts to further strengthen the lower

bounds. Another interesting one would be to extend the problem definition by considering load-

dependent transfer times at the satellites.

Appendix A Proof of Proposition 3.1

In this proof, we use the symbol ⊕ to denote a concatenation of two paths. More precisely, let l

be a path and ω a possible path extension of l. Then, l ⊕ ω represents the path resulting from the

concatenation of l and ω.

Proof. Let ω be a feasible extension of l′ and Cω the subset of customers visited along this extension.

To prove the proposition’s statement, it suffices to show that i) any feasible extension ω of path l′ such

that di ∈ D
T start
lt

s for all i ∈ Cω (otherwise, condition (17) is violated and label Elt does not dominate

label El′t′) is also feasible for path l and ii) the reduced cost of path l⊕ω is less than or equal to that

of path l′⊕ω. Given that time and load REFs (10)–(11) are non-decreasing, establishing the feasibility

of path l ⊕ ω with respect to the time window and capacity constraints is straightforward. Moreover,

elementarity of path l′ ⊕ ω implies that no customers in Cω is in Ult and thus l ⊕ ω is elementary as

well.

Let us now show that T rdc
l⊕ω,t ≤ T rdc

l′⊕ω,t′ . For convenience, let c(ω) denote the total routing cost of ω

and σ(ω) =
∑
j∈Cω

σj . With this notation, we get:

T rdc
l⊕ω,t = T rdc

lt + c(ω)− σ(ω)−
∑
j∈Cω

qj · πm(dj ,T start
lt)

T rdc
l′⊕ω,t′ = T rdc

l′t′ + c(ω)− σ(ω)−
∑
j∈Cω

qj · πm(dj ,T start
l′t′)

and the difference between these two reduced costs is:

T rdc
l⊕ω,t − T rdc

l′⊕ω,t′ = T rdc
lt − T rdc

l′t′ −
∑
j∈Cω

qj · (πm(dj ,T start
lt) − πm(dj ,T start

l′t′)). (30)

Let us consider two cases. First, if T start
lt ≥ T start

l′t′ , then MT start
lt

s ⊇ MT start
l′t′

s and

πm(dj ,T start
lt) = max

m∈Mdj
∩M

Tstart
lt

s

{πm} ≥ max
m∈Mdj

∩M
Tstart
l′t′

s

{πm} = πm(dj ,T start
l′t′) ∀j ∈ Cω.

Establishing that T rdc
l⊕ω,t ≤ T rdc

l′⊕ω,t′ in this case is deduced from (30) and the fact that condition (14)

implies T rdc
lt ≤ T rdc

l′t′ .

Les Cahiers du GERAD G–2024–79 17

Second, if T start
lt < T start

l′t′ , the following ensues:

D
T start
lt

s ⊆ D
T start
l′t′

s =⇒ ∆(T start
lt , T start

l′t′) = min
d∈D

Tstart
lt

s

πm(d,T start
lt) − πm(d,T start

l′t′) ≤ 0.

and we can deduce that∑
j∈Cω

qj · (πm(dj ,T start
lt) − πm(dj ,T start

l′t′)) ≥
∑
j∈Cω

qj · min
d∈D

Tstart
lt

s

(πm(d,T start
lt) − πm(d,T start

l′t′))

≥ (Q2 − T load
l′t′) ·∆(T start

lt , T start
l′t′)

because
∑

j∈Cω
qj ≤ Q2 − T load

l′t′ for a feasible extension ω. Consequently, relation (30) and condi-

tion (14) yield T rdc
l⊕ω,t − T rdc

l′⊕ω,t′ ≤ T rdc
lt − T rdc

l′t′ − (Q2 − T load
l′t′) · ∆(T start

lt , T start
l′t′) ≤ 0, i.e., T rdc

l⊕ω,t ≤
T rdc
l′⊕ω,t′ .

Appendix B Detailed example of solution feasibility with transfer
inequalities

Figure 2 illustrates an MC-2E-VRPTW example with |ND| = 2, |NS | = 3, |NC | = 20, Q1 = 100, and

Q2 = 40, where it is not possible to convert a solution into a same-cost feasible one by transferring

demands between first-echelon routes. The green and grey customers are assigned to depots d1 and d2,

respectively, i.e., NC
d2

= {2, 4, 6, 7, 9, 13, 19} and NC
d1

= NC \NC
d2
. The solution uses three first-echelon

routes m2,m3 and m4 ((x̃2, x̃3, x̃4) = (1, 1, 1)) and eight second-echelon routes li, i ∈ {1, . . . , 8}.
Furthermore, active transfer variables associated with route pairs (m1,m2) and (m1,m3) allow for an

implicit use of first-echelon route m1, i.e., ũm1m2
= ũm1m3

= 20 and x̃1 = 0. The supply patterns

p̃li ∈ Pli retained for the second-echelon routes li, i ∈ {1, · · · , 8}, along with the total loads associated

with their supplying first-echelon routes are:

p̃l1 ={(m1, 1), (m4, 2)}, (Qm1

l1p̃l1
, Qm4

l1p̃l1
) = (30, 10)

p̃l2 ={(m1, 3), (m4, 4)} (Qm1

l2p̃l2
, Qm4

l2p̃l2
) = (10, 20)

p̃l3 ={(m2, 5), (m4, 6), (m4, 7)} (Qm2

l3p̃l3
, Qm4

l3p̃l3
) = (20, 20)

p̃l4 ={(m2, 8), (m4, 9)} (Qm2

l4p̃l4
, Qm4

l4p̃l4
) = (20, 20)

p̃l5 ={(m2, 10), (m2, 11), (m2, 12)} Qm2

l5p̃l5
= 40

p̃l6 ={(m4, 13), (m3, 14), (m3, 15)} (Qm3

l6p̃l6
, Qm4

l6p̃l6
) = (20, 10)

p̃l7 ={(m3, 16), (m3, 17)} Qm3

l7p̃l7
= 30

p̃l8 ={(m3, 18), (m4, 19), (m3, 20)} (Qm3

l8p̃l8
, Qm4

l8p̃l8
) = (30, 10).

According to these supply patterns, first-echelon routes m1, m2, m3, and m4 have total loads of 40,

80, 80, and 90, respectively. The transfer variable values ũm1m2
= ũm1m3

indicate that 20 units of load

are transferred from m1 to m2 and from m1 to m3, reducing the load of m1 to 0 and increasing the

loads of m2 and m3 to Q1 = 100. Given that the demand of customer 1, initially assigned to route m1,

is q1 = 30, it cannot be transferred in its entirety to either route m2 or m3. Consequently, solution

(x̃, ỹ, ũ) cannot be transformed into a same-cost solution that is feasible for formulation F .

Les Cahiers du GERAD G–2024–79 18

d1

s1s2 s3

d2

1

2 3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

m1

m2

m
3

m
4

l1
40

(30(m1), 10(m4))

l2
40

(10(m1), 20(m4))

l3

40

(20, 20)

l4 40(20, 20)

l5

40

l6

30

(Qm3

l7pl7
, Qm4

l7pl7
) = (20, 10)

l7
30

l8

40

(30, 10)

Figure 2: Example of an integer infeasible solution

Appendix C Adjustments to the labeling algorithm

To impose the decisions related to the customer-satellite-route assignment branching rule, the labeling

algorithm described in Section 3.1.1 is modified as follows:

1. To impose that customer i is supplied from satellite s by first-echelon route m, customer i is

removed from vertex sets Ns′ such that s′ ̸= s:

(a) In the initial label E0t, customer i is included in sets U0t associated with time t ∈ Ts such

that t < tms . Note that the unreachability status of i remains unchanged when considering

ng-paths.

(b) When extending a label Elt, associated with a partial path l ending at vertex h ∈ Ns \{nsk
s }

and a time t ∈ Ts, along an arc (h, j) ∈ As such that T start
lt ≥ tms , the REF (9), computing

this reduced cost of label El′t resulting from the extension, is adjusted as:

T rdc
l′t = T rdc

lt + c̄hj −

qj · πm(dj ,T start

lt), if j /∈ {nsk
s , i},

qjπm, if j = i,

0 otherwise.

(31)

2. To impose that customer i is supplied by a first-echelon route m′ ̸= m whenever i is serviced

through satellite s:

(a) No changes need to be made when extending a label Elt, associated with a partial path l

ending at vertex h ∈ Ns \ {nsk
s } and a time t ∈ Ts such that T start

lt < tms .

(b) When extending a label Elt, associated with a partial path l ending at vertex h ∈ Ns \{nsk
s }

and a time t ∈ Ts, along an arc (h, j) ∈ As such that T start
lt = t ≥ tms

the REF (9) for the reduced cost is adjusted as:

T rdc
l′t = T rdc

lt + c̄hj −

qj · πm(dj ,T start

lt), if j /∈ {nsk
s , i} or (j = i and m(dj , T

start
lt) ̸= m),

qj · πmi
, if j = i and m(dj , T

start
lt) = m,

0 otherwise

,

(32)

where mi ∈ argmax
{
πm : m ∈ M̂T start

lt
s ∩ (Mdi \ {m})

}
, and M̂t

s refers to routes in Mt
s

that are not fixed to zero in the current branching node.

Les Cahiers du GERAD G–2024–79 19

Appendix D Detailed computational results

This section presents the detailed computational results obtained by our BPC algorithm. Results for

instances with |NC | = 30, 50 and 100 are reported in Tables 7–9, respectively. For each row in each

table, the first column indicates the instance name in the format MC-Cxs-|ND|, |NS |, |NC |, where x

∈ {a, b, c, d} is the instance category and s ∈ {1, 2, 3, 4, 5} the instance number in this category. The

next two columns specify the optimal value z∗ found by our algorithm, and the computational time

(T) in seconds as reported by Dellaert et al. (2021), respectively. Then for our BPC algorithm, we

report the computational time (T) in seconds, the integrality gap (Gap) in percentage computed as

100(z∗ − z)/z where z is the root node lower bound before adding cuts, the number of branch-and-

bound nodes explored (# Nodes), and the number of enumerated first-echelon routes (|M|). Columns

TIs, # RCIs, # SRIs and # VSIs give, respectively, the number of TIs (20), RCIs (27), SRIs (29)

and lifted VSIs (26) considered during the solution process. The last four columns describes some

characteristics of the computed optimal solution, namely, the number of satellites used (|NS |∗), the
number of first-echelon routes used (|M|∗), the percentage of these routes that are back-and-forth ones

(|M1|∗), and the number of second-echelon routes used (|L|∗).

L
es

C
ah
iers

d
u
G
E
R
A
D

G
–2024–79

20

Table 7: Detailed computational results for instances with |NC | = 30

Dellaert et al. (2021) † Our BPC algorithm ‡

Instance z∗ T(s) T (s) Gap (%) # Nodes |M| # TIs # RCIs # SRIs # VSIs |NS |∗ |M|∗ |M1|∗ (%) |L|∗

MC-Ca1-2,3,30 1257.82 76.5 0.6 0.77 16 36 36 4 60 80 2 4 100.0 10
MC-Ca2-2,3,30 1189.67 4.6 0.7 1.21 15 29 26 10 92 77 3 4 100.0 10
MC-Ca3-2,3,30 1207.82 0.8 0.2 0.44 1 29 26 0 21 77 1 4 50.0 10
MC-Ca4-2,3,30 1101.32 2.3 0.3 0.65 3 32 29 4 43 78 1 3 66.7 9
MC-Ca5-2,3,30 1210.97 2.0 0.4 1.01 6 31 29 8 31 82 2 4 75.0 9
MC-Cb1-2,3,30 1259.51 59.9 4.1 3.79 123 27 22 31 90 79 2 3 100.0 10
MC-Cb2-2,3,30 1078.84 1.2 0.5 1.36 8 33 30 19 7 79 3 3 100.0 9
MC-Cb3-2,3,30 1136.04 2.4 2.2 0.82 43 26 22 6 46 77 1 3 66.7 10
MC-Cb4-2,3,30 1172.14 1.8 0.3 1.18 10 36 36 8 8 81 2 4 75.0 10
MC-Cb5-2,3,30 1030.38 2.9 0.7 1.94 13 30 26 23 24 80 2 3 66.7 9
MC-Cc1-2,3,30 989.81 15.9 1.9 1.39 5 32 29 0 22 90 2 3 66.7 8
MC-Cc2-2,3,30 1168.48 1108.1 2.4 1.24 24 36 36 0 23 90 3 4 75.0 10
MC-Cc3-2,3,30 1038.19 211.7 2.8 0.38 7 24 17 6 92 90 2 3 100.0 10
MC-Cc4-2,3,30 1103.19 68.3 1.5 0.48 5 29 26 0 28 90 2 4 75.0 10
MC-Cc5-2,3,30 1052.6 1.7 1.1 0.22 2 28 25 0 12 90 2 3 100.0 9
MC-Cd1-2,3,30 1036.89 1.0 0.3 0.04 3 32 29 10 0 90 2 3 100.0 8
MC-Cd2-2,3,30 1090.12 11.3 0.1 0.03 2 30 27 0 13 87 2 3 66.7 10
MC-Cd3-2,3,30 1094.12 2.1 0.4 0.98 6 22 16 5 10 88 2 3 100.0 10
MC-Cd4-2,3,30 1076.57 15.1 0.3 1.47 3 28 23 2 11 90 2 3 33.3 10
MC-Cd5-2,3,30 1093.93 2.0 0.4 1.06 4 27 23 1 20 88 2 3 66.7 9

MC-Ca1-3,5,30 1247.26 - 29.3 4.26 83 644 625 42 36 137 3 3 33.3 9
MC-Ca2-3,5,30 1220.89 - 27.9 5.72 101 470 449 100 87 125 4 3 66.7 10
MC-Ca3-3,5,30 1231.52 - 12.8 1.66 17 629 599 14 95 139 3 3 0.0 9
MC-Ca4-3,5,30 1151.18 - 5.7 4.77 17 490 466 13 14 134 3 3 100.0 9
MC-Ca5-3,5,30 1146.37 - 5.7 0.73 6 444 426 10 9 130 3 4 100.0 9
MC-Cb1-3,5,30 1212.19 - 24.1 4.73 69 465 430 36 35 141 3 3 66.7 10
MC-Cb2-3,5,30 1216.03 - 16.2 3.03 33 598 572 19 37 135 4 3 33.3 10
MC-Cb3-3,5,30 1264.63 - 8.2 1.02 39 495 469 5 17 129 3 4 50.0 10
MC-Cb4-3,5,30 1173.25 - 5.6 2.30 19 500 464 9 22 120 4 3 66.7 10
MC-Cb5-3,5,30 1166.95 - 19.6 4.07 49 480 447 37 43 143 4 3 33.3 11
MC-Cc1-3,5,30 1304.17 - 73.2 6.07 112 395 382 59 198 150 4 4 50.0 11
MC-Cc2-3,5,30 1130 - 175.9 6.75 138 497 465 102 140 150 3 3 33.3 9
MC-Cc3-3,5,30 1198.81 - 240.3 6.13 258 393 366 39 76 150 4 3 0.0 10
MC-Cc4-3,5,30 1080.66 - 65.4 3.35 31 617 592 35 23 150 3 3 66.7 9
MC-Cc5-3,5,30 1076.84 - 32.6 1.43 15 423 412 10 36 150 3 4 75.0 8
MC-Cd1-3,5,30 1250.54 - 25.4 6.52 75 421 389 39 102 148 4 3 0.0 11
MC-Cd2-3,5,30 1275.63 - 27.9 5.00 88 400 380 44 72 148 3 4 50.0 9
MC-Cd3-3,5,30 1151.79 - 26.4 4.75 63 436 416 32 76 148 2 3 33.3 10
MC-Cd4-3,5,30 1188.72 - 5.4 1.45 9 414 394 9 30 148 3 4 75.0 9
MC-Cd5-3,5,30 1115.27 - 93.4 6.02 86 522 495 83 154 148 3 3 66.7 9

Continued on next page

L
es

C
ah
iers

d
u
G
E
R
A
D

G
–2024–79

21

Table 7 – Continued from previous page

Dellaert et al. (2021) † Our BPC algorithm ‡

Instance z∗ T (s) T (s) Gap (%) # Nodes |M| # TIs # RCIs # SRIs # VSIs |NS |∗ |M|∗ |M1|∗ (%) |L|∗

MC-Ca1-6,4,30 1518.43 - 10.8 3.67 69 195 160 45 94 108 4 6 83.3 11
MC-Ca2-6,4,30 1521.19 - 1.1 1.36 7 193 162 10 11 100 4 6 66.7 10
MC-Ca3-6,4,30 1462.26 - 4.3 1.30 33 173 138 17 4 106 3 6 83.3 10
MC-Ca4-6,4,30 1477.12 - 8.8 2.03 55 184 157 26 36 111 2 6 100.0 10
MC-Ca5-6,4,30 1526.62 - 1.7 1.37 11 175 139 10 4 107 4 6 66.7 10
MC-Cb1-6,4,30 1601.61 - 12.2 1.96 81 239 213 20 71 112 2 6 83.3 10
MC-Cb2-6,4,30 1469.43 - 3.8 2.19 28 189 162 21 29 103 4 6 66.7 9
MC-Cb3-6,4,30 1604.21 - 9.7 3.77 97 201 170 27 72 110 3 6 83.3 10
MC-Cb4-6,4,30 1440.76 - 8.8 2.54 75 151 113 20 21 109 2 6 100.0 10
MC-Cb5-6,4,30 1533.93 - 2.1 2.50 21 178 142 6 11 103 3 6 83.3 11
MC-Cc1-6,4,30 1405.72 - 45.1 4.24 50 196 162 63 140 120 2 6 83.3 9
MC-Cc2-6,4,30 1471.62 - 35.4 4.61 58 188 154 48 123 120 4 6 66.7 10
MC-Cc3-6,4,30 1435.69 - 18.2 3.44 28 182 148 24 15 120 4 6 83.3 9
MC-Cc4-6,4,30 1416.02 - 56.2 4.10 87 182 145 34 92 120 3 6 50.0 9
MC-Cc5-6,4,30 1430.97 - 102.0 3.09 128 181 152 101 130 120 3 6 83.3 9
MC-Cd1-6,4,30 1425.04 - 9.7 2.74 45 167 134 31 32 120 2 6 100.0 9
MC-Cd2-6,4,30 1438.07 - 7.8 2.24 29 141 108 10 76 117 2 6 100.0 9
MC-Cd3-6,4,30 1475.18 - 8.0 1.82 33 166 133 19 13 118 3 6 100.0 9
MC-Cd4-6,4,30 1472.13 - 9.1 1.99 35 158 123 25 80 116 3 6 83.3 9
MC-Cd5-6,4,30 1507.26 - 6.5 1.79 63 161 132 16 87 117 3 6 83.3 11

† Tests ran on a computer equipped with an Intel Core i7-4770 pocessor.

‡ Tests ran on a computer equipped with an Intel Core i7-8700 processor.

L
es

C
ah
iers

d
u
G
E
R
A
D

G
–2024–79

22

Table 8: Detailed computational results for instances with |NC | = 50

Dellaert et al. (2021) † Our BPC algorithm ‡

Instance z∗ T (s) T (s) Gap (%) # Nodes |M| # TIs # RCIs # SRIs # VSIs |NS |∗ |M|∗ |M1|∗ (%) |L|∗

MC-Ca1-2,3,50 1808.2 43.0 1.0 1.16 7 39 42 8 46 132 3 5 60.0 16
MC-Ca2-2,3,50 1743.18 - 5.7 1.95 51 34 33 23 216 133 2 4 75.0 16
MC-Ca3-2,3,50 1766.5 186.0 0.9 0.33 11 37 38 2 27 136 3 5 100.0 16
MC-Ca4-2,3,50 1607.81 30.0 1.1 0.58 8 34 33 7 56 138 3 4 100.0 16
MC-Ca5-2,3,50 1617.26 116.0 8.7 0.63 85 36 36 24 64 132 3 4 75.0 15
MC-Cb1-2,3,50 1722.39 - 128.1 1.61 567 39 42 75 132 143 3 5 80.0 15
MC-Cb2-2,3,50 1638.38 - 9.9 1.46 51 36 36 32 22 134 3 4 75.0 14
MC-Cb3-2,3,50 1694.12 - 208.0 2.68 1165 34 33 210 311 142 3 4 100.0 16
MC-Cb4-2,3,50 1648.86 - 24.1 1.45 143 36 36 29 44 129 3 4 100.0 15
MC-Cb5-2,3,50 1694.42 - 30.4 1.15 171 39 42 77 52 143 3 5 40.0 15
MC-Cc1-2,3,50 1547.9 - 12.7 0.67 11 34 33 37 34 150 3 4 50.0 15
MC-Cc2-2,3,50 1573.41 - 5.6 0.24 4 32 30 0 29 150 3 4 75.0 15
MC-Cc3-2,3,50 1529.43 - 21.5 0.81 27 36 36 21 81 150 3 4 75.0 15
MC-Cc4-2,3,50 1566.67 - 245.1 1.47 241 29 26 58 102 150 3 4 75.0 15
MC-Cc5-2,3,50 1579.08 - 19.8 0.99 19 32 30 21 52 150 3 4 75.0 15
MC-Cd1-2,3,50 1602.73 - 7.7 0.91 47 36 36 32 98 146 3 4 75.0 15
MC-Cd2-2,3,50 1787.01 - 10.6 0.92 65 37 40 34 109 148 3 5 60.0 16
MC-Cd3-2,3,50 1724.4 - 4.3 0.72 17 36 37 17 74 147 3 5 40.0 16
MC-Cd4-2,3,50 1708.93 - 15.6 1.52 73 35 37 37 107 150 3 5 80.0 15
MC-Cd5-2,3,50 1780.23 - 3.1 1.31 25 33 33 21 62 145 3 5 100.0 16

MC-Ca1-3,5,50 1814.7 4386.0 773.8 2.32 1479 689 706 90 314 229 4 6 66.7 16
MC-Ca2-3,5,50 1828.37 4758.0 80.4 3.08 163 622 627 74 209 210 5 6 50.0 16
MC-Ca3-3,5,50 1664.81 2158.0 213.4 3.28 190 834 841 106 276 231 4 5 40.0 14
MC-Ca4-3,5,50 1711.82 200.0 143.4 2.74 178 572 570 160 225 218 4 4 25.0 15
MC-Ca5-3,5,50 1685.09 2469.0 911.6 6.63 1334 624 613 194 506 229 3 4 75.0 14
MC-Cb1-3,5,50 1822.96 - 77.6 2.30 195 760 761 23 71 223 5 6 83.3 16
MC-Cb2-3,5,50 1849.23 - 655.0 3.79 1451 710 710 472 505 223 4 5 60.0 16
MC-Cb3-3,5,50 1839.83 - 121.6 2.38 149 798 821 23 110 225 4 6 66.7 17
MC-Cb4-3,5,50 1726.29 - 201.7 2.47 339 727 737 113 202 220 4 5 40.0 16
MC-Cb5-3,5,50 1683.58 - 408.2 3.58 733 740 731 102 92 224 4 4 25.0 14
MC-Cc1-3,5,50 1549.84 - 899.5 3.50 163 584 570 126 269 250 4 4 25.0 15
MC-Cc2-3,5,50 1683.01 - 551.3 3.16 138 760 767 112 302 250 4 5 40.0 15
MC-Cc3-3,5,50 1613.64 - 193.7 2.56 29 762 769 29 74 250 5 5 40.0 15
MC-Cc4-3,5,50 1827.61 - 528.7 3.62 177 657 664 118 334 250 5 6 66.7 17
MC-Cc5-3,5,50 1730.19 - 238.1 3.89 102 477 463 40 146 250 4 6 50.0 15
MC-Cd1-3,5,50 1738.81 - 124.3 2.92 73 757 769 87 160 248 4 6 83.3 15
MC-Cd2-3,5,50 1764.77 - 124.4 4.07 108 666 682 122 182 250 5 6 50.0 15
MC-Cd3-3,5,50 1652.72 - 85.0 2.76 62 660 655 50 142 250 4 5 80.0 16
MC-Cd4-3,5,50 1717.1 - 82.5 3.84 75 694 691 63 121 244 5 5 40.0 16
MC-Cd5-3,5,50 1663.41 - 207.3 3.37 188 620 624 124 324 243 5 5 40.0 15

Continued on next page

L
es

C
ah
iers

d
u
G
E
R
A
D

G
–2024–79

23

Table 8 – Continued from previous page

Dellaert et al. (2021) † Our BPC algorithm ‡

Instance z∗ T (s) T (s) Gap (%) # Nodes |M| # TIs # RCIs # SRIs # VSIs |NS |∗ |M|∗ |M1|∗ (%) |L|∗

MC-Ca1-6,4,50 2110.31 - 72.6 2.71 203 243 216 96 268 172 4 6 83.3 16
MC-Ca2-6,4,50 2017.13 - 26.4 1.32 47 245 216 14 82 180 3 6 83.3 16
MC-Ca3-6,4,50 2214.22 - 20.2 1.63 48 238 220 37 72 176 4 8 87.5 16
MC-Ca4-6,4,50 1973.93 - 7.8 2.70 21 228 199 21 43 166 4 6 66.7 15
MC-Ca5-6,4,50 2075.04 - 42.4 2.56 96 240 217 94 73 176 3 7 85.7 15
MC-Cb1-6,4,50 2173.65 - 45.1 2.74 165 263 234 72 168 167 4 6 83.3 17
MC-Cb2-6,4,50 2177.47 - 6.5 1.86 15 216 187 16 23 176 3 7 100.0 17
MC-Cb3-6,4,50 2167.62 - 23.2 2.19 71 256 233 49 28 177 4 7 100.0 16
MC-Cb4-6,4,50 1985.13 - 54.8 4.01 137 279 254 102 113 175 3 6 83.3 16
MC-Cb5-6,4,50 2075.33 - 128.9 3.80 357 188 157 107 331 176 4 6 50.0 16
MC-Cc1-6,4,50 1960.1 - 913.9 5.05 245 225 195 232 284 200 4 6 50.0 15
MC-Cc2-6,4,50 1904.53 - 87.6 2.18 39 224 197 32 28 200 3 6 83.3 15
MC-Cc3-6,4,50 1948.02 - 76.0 1.90 27 180 139 32 44 200 4 6 50.0 16
MC-Cc4-6,4,50 1870.07 - 199.6 3.73 81 215 184 49 130 200 4 6 50.0 15
MC-Cc5-6,4,50 2166.48 - 197.8 4.22 116 217 190 60 198 200 4 7 85.7 17
MC-Cd1-6,4,50 1980.33 - 63.8 3.26 81 196 165 81 207 197 2 6 66.7 15
MC-Cd2-6,4,50 1960.23 - 319.3 3.23 459 252 223 137 536 197 3 6 50.0 15
MC-Cd3-6,4,50 2038.08 - 144.9 3.00 168 220 192 77 411 195 3 6 66.7 16
MC-Cd4-6,4,50 1867.35 - 31.3 2.85 46 225 192 43 47 197 4 6 66.7 15
MC-Cd5-6,4,50 1980.33 - 63.2 3.26 81 196 165 81 207 197 2 6 66.7 15

† Tests ran on a computer equipped with an Intel Core i7-4770 pocessor.

‡ Tests ran on a computer equipped with an Intel Core i7-8700 processor.

L
es

C
ah
iers

d
u
G
E
R
A
D

G
–2024–79

24

Table 9: Detailed computational results for instances with |NC | = 100

Dellaert et al. (2021) † Our BPC algorithm ‡

Instance z∗ T (s) T (s) Gap (%) # Nodes |M| # TIs # RCIs # SRIs # VSIs |NS |∗ |M|∗ |M1|∗ (%) |L|∗

MC-Ca1-2,3,100 3126.86 - 1172.8 0.39 1357 51 66 48 71 268 3 9 66.7 32
MC-Ca2-2,3,100 3270.5 - 1244.9 0.72 845 51 66 26 134 265 3 9 66.7 32
MC-Ca3-2,3,100 3004.22 - 69.3 1.00 57 46 55 58 217 249 3 8 37.5 30
MC-Ca4-2,3,100 3305.93 - 4827.3 0.88 3688 47 59 55 98 280 3 8 75.0 31
MC-Ca5-2,3,100 3095.43 - 365.6 0.86 182 48 60 35 166 277 3 8 62.5 30
MC-Cb1-2,3,100 - - - - - - - - - - - - - -
MC-Cb2-2,3,100 3017.68 - 10624.2 0.95 8406 46 55 147 88 268 3 8 75.0 30
MC-Cb3-2,3,100 3000.1 - 9720.1 1.31 5805 48 60 137 182 270 3 8 75.0 30
MC-Cb4-2,3,100 - - - - - - - - - - - - - -
MC-Cb5-2,3,100 3035.56 - 5796.1 0.78 4993 48 60 78 56 267 3 8 75.0 29
MC-Cc1-2,3,100 - - - - - - - - - - - - - -
MC-Cc2-2,3,100 - - - - - - - - - - - - - -
MC-Cc3-2,3,100 - - - - - - - - - - - - - -
MC-Cc4-2,3,100 - - - - - - - - - - - - - -
MC-Cc5-2,3,100 2944.71 - 1391.5 0.67 173 48 60 15 165 300 3 8 75.0 30
MC-Cd1-2,3,100 2932.14 - 1508.5 0.72 335 49 61 50 218 298 3 9 66.7 30
MC-Cd2-2,3,100 3157.21 - 1617.5 1.83 484 49 61 71 665 293 3 9 66.7 32
MC-Cd3-2,3,100 - - - - - - - - - - - - - -
MC-Cd4-2,3,100 3111.62 - 3607.8 0.75 932 48 60 51 182 296 3 8 75.0 30
MC-Cd5-2,3,100 2976.11 - 265.8 1.08 53 41 45 66 438 295 3 8 50.0 30

MC-Ca1-3,5,100 3206.67 2919.0 9686.1 1.48 5453 966 1051 207 235 424 5 10 60.0 31
MC-Ca2-3,5,100 - - - - - - - - - - - - - -
MC-Ca3-3,5,100 3029.88 - 10049.4 1.22 3946 978 1051 212 329 428 5 9 66.7 29
MC-Ca4-3,5,100 - - - - - - - - - - - - - -
MC-Ca5-3,5,100 - - - - - - - - - - - - - -
MC-Cb1-3,5,100 - - - - - - - - - - - - - -
MC-Cb2-3,5,100 - - - - - - - - - - - - - -
MC-Cb3-3,5,100 - - - - - - - - - - - - - -
MC-Cb4-3,5,100 - - - - - - - - - - - - - -
MC-Cb5-3,5,100 - - - - - - - - - - - - - -
MC-Cc1-3,5,100 - - - - - - - - - - - - - -
MC-Cc2-3,5,100 - - - - - - - - - - - - - -
MC-Cc3-3,5,100 - - - - - - - - - - - - - -
MC-Cc4-3,5,100 - - - - - - - - - - - - - -
MC-Cc5-3,5,100 - - - - - - - - - - - - - -
MC-Cd1-3,5,100 - - - - - - - - - - - - - -
MC-Cd2-3,5,100 - - - - - - - - - - - - - -
MC-Cd3-3,5,100 - - - - - - - - - - - - - -
MC-Cd4-3,5,100 - - - - - - - - - - - - - -
MC-Cd5-3,5,100 3048.75 - 4008.8 1.15 363 953 1026 249 864 490 3 9 100.0 30

Continued on next page

L
es

C
ah
iers

d
u
G
E
R
A
D

G
–2024–79

25

Table 9 – Continued from previous page

Dellaert et al. (2021) † Our BPC algorithm ‡

Instance z∗ T (s) T (s) Gap (%) # Nodes |M| # TIs # RCIs # SRIs # VSIs |NS |∗ |M|∗ |M1|∗ (%) |L|∗

MC-Ca1-6,4,100 3364.65 - 3810.1 1.99 1657 350 352 362 827 358 4 10 40.0 30
MC-Ca2-6,4,100 3465.14 - 4823.9 2.27 3348 324 325 1485 1527 352 4 10 50.0 28
MC-Ca3-6,4,100 3960.03 - 110.8 1.49 83 310 312 82 168 341 4 12 83.3 31
MC-Ca4-6,4,100 3374.9 - 7514.2 2.18 2999 333 330 698 1086 355 4 9 66.7 29
MC-Ca5-6,4,100 - - - - - - - - - - - - - -
MC-Cb1-6,4,100 3402.62 - 5883.6 2.01 2887 341 343 724 210 362 4 10 60.0 28
MC-Cb2-6,4,100 3678.83 - 762.1 1.67 768 362 383 231 302 352 4 12 75.0 31
MC-Cb3-6,4,100 3725.96 - 4876.3 1.50 3615 311 320 196 151 358 4 11 81.8 32
MC-Cb4-6,4,100 - - - - - - - - - - - - - -
MC-Cb5-6,4,100 - - - - - - - - - - - - - -
MC-Cc1-6,4,100 - - - - - - - - - - - - - -
MC-Cc2-6,4,100 - - - - - - - - - - - - - -
MC-Cc3-6,4,100 - - - - - - - - - - - - - -
MC-Cc4-6,4,100 - - - - - - - - - - - - - -
MC-Cc5-6,4,100 - - - - - - - - - - - - - -
MC-Cd1-6,4,100 3474.89 - 3036.7 1.74 429 329 333 256 574 393 4 11 36.4 31
MC-Cd2-6,4,100 3374.88 - 999.5 1.79 541 337 338 359 269 390 4 10 80.0 30
MC-Cd3-6,4,100 3280.52 - 7594.8 2.78 1997 302 300 411 913 396 4 10 60.0 28
MC-Cd4-6,4,100 3545.37 - 6757.5 2.48 2359 263 252 316 979 389 4 11 81.8 32
MC-Cd5-6,4,100 3469.71 - 10275.3 1.46 1215 265 267 253 723 393 4 11 54.5 31

† Tests ran on a computer equipped with an Intel Core i7-4770 pocessor.

‡ Tests ran on a computer equipped with an Intel Core i7-8700 processor.

Les Cahiers du GERAD G–2024–79 26

References
Baldacci R, Mingozzi A, Roberti R (2011) New route relaxation and pricing strategies for the vehicle routing

problem. Operations Research 59(5):1269–1283.

Baldacci R, Mingozzi A, Roberti R, Calvo RW (2013) An exact algorithm for the two-echelon capacitated
vehicle routing problem. Operations Research 61(2):298–314.

Ben Amor H, Desrosiers J, Carvalho J (2006) Dual-optimal inequalities for stabilized column generation.
Operations Research 54:454–463.

Boland N, Dethridge J, Dumitrescu I (2006) Accelerated label setting algorithms for the elementary resource
constrained shortest path problem. Operations Research Letters 34(1):58–68.

Breunig U, Schmid V, Hartl R, Vidal T (2016) A large neighbourhood based heuristic for two-echelon routing
problems. Computers & Operations Research 76:208–225.

Costa L, Contardo C, Desaulniers G (2019) Exact branch-price-and-cut algorithms for vehicle routing. Trans-
portation Science 53(4):946–985.

Crainic TG, Mancini S, Perboli G, Tadei R (2008) Clustering-based heuristics for the two-echelon vehicle
routing problem. Technical Report CIRRELT–2008–46, CIRRELT, Canada.

Crainic TG, Mancini S, Perboli G, Tadei R (2011) Multi-start heuristics for the two-echelon vehicle routing
problem. Merz P, Hao JK, eds., Evolutionary Computation in Combinatorial Optimization, 179–190
(Berlin, Heidelberg: Springer Berlin Heidelberg).

Cuda R, Guastaroba G, Speranza M (2015) A survey on two-echelon routing problems. Computers & Opera-
tions Research 55:185–199.

Dellaert N, Dashty Saridarq F, Van Woensel T, Crainic TG (2019) Branch-and-price–based algorithms for the
two-echelon vehicle routing problem with time windows. Transportation Science 53(2):463–479.

Dellaert N, Van Woensel T, Crainic TG, Saridarq FD (2021) A multi-commodity two-echelon capacitated
vehicle routing problem with time windows: Model formulations and solution approach. Computers &
Operations Research 127:105154.

Drexl M (2012) Synchronization in vehicle routing – A survey of VRPs with multiple synchronization con-
straints. Transportation Science 46(3):297–316.

Dumez D, Tilk C, Irnich S, Lehuédé F, Olkis K, Péton O (2023) A matheuristic for a 2-echelon vehicle
routing problem with capacitated satellites and reverse flows. European Journal of Operational Research
305(1):64–84.

Gschwind T, Irnich S (2016) Dual inequalities for stabilized column generation revisited. INFORMS Journal
on Computing 28(1):175–194.

Gu W, Archetti C, Cattaruzza D, Ogier M, Semet F, Speranza MG (2022) A sequential approach for a multi-
commodity two-echelon distribution problem. Computers & Industrial Engineering 163:107793.

Gu W, Archetti C, Cattaruzza D, Ogier M, Semet F, Speranza MG (2023) Vehicle routing problems with
multiple commodities: A survey. European Journal of Operational Research .

Guastaroba G, Speranza MG, Vigo D (2016) Intermediate facilities in freight transportation planning: A
survey. Transportation Science 50(3):763–789.

Irnich S, Desaulniers G (2005) Shortest path problems with resource constraints. Desaulniers G, Desrosiers J,
Solomon MM, eds., Column Generation, chapter 2, 33–65 (Boston, MA: Springer US), 1st edition.

Jepsen M, Petersen B, Spoorendonk S, Pisinger D (2008) Subset-row inequalities applied to the vehicle-routing
problem with time windows. Operations Research 56(2):497–511.

Jia S, Deng L, Zhao Q, Chen Y (2023) An adaptive large neighborhood search heuristic for multi-commodity
two-echelon vehicle routing problem with satellite synchronization. Journal of Industrial and Management
Optimization 19(2):1187–1210.

Laporte G, Nobert Y (1983) A branch and bound algorithm for the capacitated vehicle routing problem.
Operations-Research-Spektrum 5(2):77–85.

Lysgaard J, Letchford AN, Eglese RW (2004) A new branch-and-cut algorithm for the capacitated vehicle
routing problem. Mathematical Programming 100(2):423–445.

Marques G, Sadykov R, Deschamps JC, Dupas R (2020) An improved branch-cut-and-price algorithm for the
two-echelon capacitated vehicle routing problem. Computers & Operations Research 114:104833.

Marques G, Sadykov R, Dupas R, Deschamps JC (2022) A branch-cut-and-price approach for the single-trip and
multi-trip two-echelon vehicle routing problem with time windows. Transportation Science 56(6):1598–
1617.

Les Cahiers du GERAD G–2024–79 27

Mhamedi T, Andersson H, Cherkesly M, Desaulniers G (2022) A branch-price-and-cut algorithm for the two-
echelon vehicle routing problem with time windows. Transportation Science 56(1):245–264.

Perboli G, Tadei R, Vigo D (2011) The two-echelon capacitated vehicle routing problem: models and math-
based heuristics. Transportation Science 45(3):364–380.

Petris M, Archetti C, Cattaruzza D, Ogier M, Semet F (2024) A branch-price-and-cut algorithm for the multi-
commodity two-echelon distribution problem. EURO Journal on Transportation and Logistics 13:100139.

Righini G, Salani M (2008) New dynamic programming algorithms for the resource constrained elementary
shortest path problem. Networks 51(3):155–170.

Santos FA, Mateus GR, da Cunha AS (2015) A branch-and-cut-and-price algorithm for the two-echelon ca-
pacitated vehicle routing problem. Transportation Science 49(2):355–368.

Sluijk N, Florio AM, Kinable J, Dellaert N, Van Woensel T (2023) Two-echelon vehicle routing problems: A
literature review. European Journal of Operational Research 304(3):865–886.

Soares R, Marques A, Amorim P, Parragh SN (2024) Synchronisation in vehicle routing: classification schema,
modelling framework and literature review. European Journal of Operational Research 313(3):817–840.

	Introduction
	Mathematical formulation
	Branch-price-and-cut algorithm
	Subproblems
	Labeling algorithm.
	Acceleration strategies.

	Stabilization by dual inequalities
	Transfer inequalities.
	Solution feasibility and recovery procedure.

	Valid inequalities
	Branching

	Computational experiments
	MC-2E-VRPTW test instances
	Main computational results
	Summarized results and comparison with dellaert2021multiCommodity.
	Statistics on algorithm execution.
	Optimal solution statistics.

	Sensitivity analysis

	Conclusions
	Proof of Proposition 3.1
	Detailed example of solution feasibility with transfer inequalities
	Adjustments to the labeling algorithm
	Detailed computational results

