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G–2024–80

December 2024

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
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– Bibliothèque et Archives Canada, 2024

The publication of these research reports is made possible thanks
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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2024-80
https://www.gerad.ca/en/papers/G-2024-80
https://www.gerad.ca/en/papers/G-2024-80


The feasibility of ultra large-scale distributed networks in
symmetrical network typologies

Reza Khalvandi a, b

Brunilde Sansò a, b
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b GERAD, Montréal (Qc), Canada, H3T 1J4

reza.khalvandi-ilezoole@polymtl.ca

brunilde.sanso@polymtl.ca

December 2024
Les Cahiers du GERAD
G–2024–80
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract : This study investigates the feasibility of large-scale distributed networks. The core focus
of our research is the impact of multi-hop communication on point-to-point capacity per user (CP2P ),
which is crucial for the scalability of distributed networks. By employing mathematical analysis, we
estimate CP2P in a distributed network with symmetrically arranged nodes, accounting for the power-
law distribution of interaction probability based on distance. Our findings reveal that the capacity
bands achieved surpass existing benchmarks by approximately

√
ln(n), depending on the power-law

exponent (α) value. Additionally, we present a novel stochastic analysis to determine the power-
law exponent from available statistical data on social interactions. Both the mathematical analysis
and real-world statistical data on the realistic value of α consistently support the feasibility of very
large-scale distributed networks for applications rooted in social interactions.

Keywords : Large-scale ad hoc networks, future distributed networks, wireless network capacity,
capacity estimation
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1 Introduction

Distributed systems and open networks have transformed the digital landscape, enabling resource-

intensive tasks on standard PCs and revolutionizing industries through open software development.

Advances in distributed web and edge-cloud computing suggest benefits for local applications through

distributed solutions. Web3, a decentralized architecture, contrasts with the centralized control of

the traditional Web [2]. However, achieving large-scale, reliable distributed communication remains

a challenge. Practical and theoretical hurdles have led to hierarchical and semi-centralized backbone

communication networks. Despite these challenges, distributed networking is vital for managing in-

creasing traffic and node numbers, promoting sustainable communication. Our research explores the

potential of large-scale distributed networking to create open, infrastructure-less communication net-

works maintained by individuals. We explore the importance of multi-hop communication in the matter

of scalability, particularly in wireless mediums due to their ad hoc and infrastructure-less nature.

A large-scale distributed wireless network could solve key communication challenges. The rise of

applications like autonomous vehicles, Unmanned Aerial Vehicles (UAVs), and the Internet of Things

(IoT) strains the cellular system, driving the development of 6G technology to support a connection

density ten times higher than 5G [7]. Traditional cellular networks may be insufficient, leading to

interest in distributed wireless networking as a cost-effective, infrastructure-free solution capable of

handling significant traffic. Moreover, distributed networks can offer connectivity to millions without

access [3] and serve as backup communication during natural disasters [1].

Despite the potential of distributed networking to address these issues, a robust and scalable dis-

tributed solution has yet to be developed due to practical challenges. However, technologies like

Artificial Intelligence (AI), precise positioning, blockchain, and distributed processing offer promising

solutions. Higher device density enhances network connectivity, making large-scale networking more

reliable. Improved hardware, communication capacity, longer battery life, and distributed processing

techniques help maintain an accurate network view and calculate efficient routes. Distributed rein-

forcement learning algorithms are powerful for decision-making in variable network states, paving the

way for scalable distributed wireless networks.

Even with this optimistic perspective and renewed interest, distributed networking should still be

able to meet the necessary point-to-point capacity (CP2P ) as if the increase in network size leads to a

significant reduction in CP2P , regardless of practical challenges like physical layer technology, routing,

and resource allocation methods, large-scale distributed networking would be impractical. Hence, it is

crucial to evaluate the network resources’ capacity for expansion, and subsequently, the significance of

effective and decentralized network management in resource allocation becomes evident.

In view of the above, this study assesses the feasibility of large-scale distributed wireless networking

by examining the point-to-point capacity (CP2P ) as the number of nodes (n) approaches infinity

(n → ∞). Stochastic analysis is utilized due to the challenges in estimating the end-to-end capacity

through simulation for large-scale distributed networks. We will demonstrate, in Section 3, that the

upper bound of CP2P is E(CL)
E(d) , where E(CL) represents the expected concurrent transmission capacity

per node, and E(d) signifies the expected number of hops for point-to-point connections. The value

of E(CL) is predominantly influenced by physical layer technology, available frequency resources (W ),

and network topology. Although communication mediums and technologies may differ, ranging from

visible light to actual cellphone communication technology, satellite communication, UAVs, or even

wired communication, the reflections can be universally represented in E(CL).

However, the primary limitation in a large-scale distributed network arises from the inherent char-

acteristics of multi-hop communication, which is the core focus of our study. In such networks, trans-

mission capacity is shared among multiple point-to-point connections. Specifically, if E(d) increases

significantly as the network size grows, CP2P decreases substantially. The value of E(d) depends on the

interaction between nodes over distance and network size. Hence, selecting an appropriate interaction

probability model over distance is critical for accurate capacity estimation.
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We employ a power-law distribution for the interaction probability between nodes based on real-

world data to estimate CP2P in a symmetric node arrangement network topology. While acknowledging

that symmetric node arrangement might not realistically reflect real-world scenarios, we have chosen

this model for its simplicity as the first step to assess the feasibility of large-scale distributed net-

working. This decision stems from the complexities such as physical layer issues, network topology,

and optimal routing associated with more detailed models. Indeed, a symmetric configuration, despite

not encapsulating all the complexities of real-world wireless communications, can provide a founda-

tional understanding of the feasibility of distributed networks. Furthermore, scalability depends on

the power-law exponent (α) value [5], which requires analysis in real-world scenarios. To the best of

our knowledge, prior to this work, the feasibility of large-scale distributed networking due to the lack

of previous investigations into the power-law factor’s significance in capacity estimation was largely

unexplored, whether in symmetric or random arrangements.

The primary contribution of our work is a comprehensive analysis within a simple framework, yet

capable of addressing the scalability question in distributed networking focusing on the estimating

capacity bounds CP2P , and deriving α based on statistical data. Hopefully, a key finding is that the

statistical data suggests the feasibility of large-scale networks, encouraging us to further research.

Summarizing, the contributions of this work are:

• We employ mathematical analysis and statistical data to estimate the point-to-point capacity per

user (CP2P ) in a distributed network with symmetrically arranged nodes. This analysis provides

valuable insights into the performance of such networks.

• We demonstrate the impact of the power-law distribution of interaction probability between

nodes based on their distance. We show that when the power-law exponent (α) exceeds 3,

the point-to-point capacity (CP2P ) remains constant at Θ(1), indicating robust performance in

large-scale distributed networks.

• We use stochastic analysis to extract the power-law exponent (α) from statistical data. By

applying this analysis to data from various empirical studies, the research consistently demon-

strates the feasibility of very large-scale distributed networks for applications based on social

interactions, emphasizing the practicality of the proposed approach.

The rest of the paper is organized as follows: In Section 2, state-of-the-art related to capacity

estimation is detailed. In Section 3, we examine a scenario where network nodes are symmetrically

arranged with similar communication technologies, resulting in equal link capacity (CL) between neigh-

boring nodes. We estimate the point-to-point capacity, declared as CP2P , in this scenario and compute

the value of E(d). In Section 4, we demonstrate that the aforementioned scenario in Section 3, can be

generalized to represent a power-law distribution interaction probability model where we approximated

E(d) and consequently estimated CP2P bounds of a power-law distribution model. Furthermore, in

Section 5, a stochastic analysis to extract the power law exponent (α) from the data is performed.

Finally, in Section 6, we integrate the results from Sections 4 and 5 where utilizing existing empirical

studies to determine the feasibility of large-scale distributed networking in the real world. Finally, we

resume our work, express our main conclusion, and explain the limitation of the work and potential of

future works in Section 7.

2 State of the art

2.1 Capacity estimation

The seminal work by Gupta and Kumar [11] was the first to use stochastic estimation to evalu-

ate Ad Hoc network capacity that assumes interaction probability is not dependent on the distance

where CP2P = Θ( W√
n
). Its findings indicate that practical Ad Hoc networking should be restricted

to at most a few thousand wireless nodes, and cannot be scaled for larger numbers of nodes since
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limn→∞ CP2P = 0. However, research has shown that distance plays a crucial role in social inter-

action. Latané et al. [15] conducted an experiment that demonstrated a strong correlation between

social interaction and distance, and they developed a power-law distribution for interaction probability

based on their findings. The relationship between the number of interactions and distance follows a

linear trend when plotted on a log-log scale. Similarly, Backstrom et al. [6] observed the same results

in a more recent study of social networks that shows that the probability of friendship over distance

has a power-law distribution.

Table 1: Parameters description.

Describe Parameter

n Number of nodes in network
m Number of levels
l Physical link distance

CL Single hope transmission capacity (bps)
E(CL) The expected value of the transmission rate per node (bps)

W Available frequency (Hz)
E(d) Expected hops number of the point-to-point connections

CP2P Expected average point to point capacity
α Power-law distribution parameter
β Exponential distribution parameter
q Number of nodes at the first level
a Area of the first level

P 0 Interaction probability constant
Pi Node’s interaction probability of level ith

Ni Number of nodes in level ith

Ei(d) Average path length of level ith

γ Interaction probability constant
ζ Exponential step size
d Source-destination distance per hop

C(d) Number of contacts over distance (d)
E(Ci) Expected number of contacts at level ith

P (d) Interaction probability over distance (d)
SINR The ratio of signal to interference plus noise

In fact, the probability of interaction over distance (d) can be represented mathematically as
1
dα where α is the power-law exponent, and the distance between the nodes is represented by d.

Li et al. [16] utilized this power-law distribution to estimate CP2P . According to their findings, when

the probability of longer paths decreases fast (with α > 2) in a one-dimensional network, CP2P is Θ(1)
and it remains constant regardless of the network’s growth rate. This emphasizes the significance of

the source-destination interaction probability model when comparing the results of Gupta et al. [11]

with those of Li et al. [16]. Azimdoost et al. [5] examines the capacity of wireless networks in the

context of social networks and utilizes a power-law distribution model for path length where each

individual in the network has a finite number of contacts (q, where q < ∞ in most cases), and the

distribution of these contacts follows a pattern of ( 1
dα ). Their research reveals that when q < ∞ and

α > 3, the point-to-point capacity (CP2P ) decreases only by the order of Θ( W
log(n) ). In a similar vein,

Fu et al. [10] conducted a comparable investigation on the capacity of wireless networks incorporating

social attributes, considering both unicast and multicast communication scenarios. Wei et al. [20]

determined the potential capacity of three-dimensional wireless social networks by considering the

advancements in aeronautical telecommunication and UAVs. The outcomes of their research indicate

that when a significant concentration of social groups or contact points surpasses a threshold value

(α > 4), the wireless social network exhibits scalability. Moreover, the capacity of these networks

is significantly greater compared to a wireless network that lacks social behavior. Hou et al. [14]

investigated the capacity of hybrid networks that consist of both Ad Hoc and cellular transmissions.

They also demonstrated that distance plays a crucial role in social interaction, as a general rule.

In capacity estimation, the distribution of the node’s position is also a significant factor, particu-

larly concerning physical layer issues. For instance, in an optimally placed scenario where nodes are
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symmetrically arranged, Gupta and Kumar [11] demonstrated that E(CL) is Θ(W ), where W is total

available frequency resources. On the other hand, when the nodes are randomly distributed through-

out the network area, E(CL) is Θ( W√
ln(n)

) [11]. In Alfano et al. [4], nodes were positioned based

on a shot-noise Cox process, allowing for the modeling of clustering behavior in large-scale systems.

However, they did not differentiate the distance effect in interaction probability. He et al. [12] esti-

mated the transmission capacity of vehicular Ad Hoc network (VANET) where the car-following model

was introduced to describe the distribution of vehicles and a transmission capacity upper bound in a

large-scale environment was calculated. Zhou et al. [21] conducted a study to estimate the asymptotic

capacity and delay of large social-aware mobile Ad Hoc wireless networks (MANETs). They focused

on a constrained mobility model and a rank-based social model. The researchers examined the upper

bound of capacity in such networks using the protocol interference model. Qin et al. [17] estimated

the transport capacity of full-duplex Ad Hoc networks by limiting communication pairs to a maximum

distance, and they included the distance factor in interaction probability but with a uniform probabil-

ity distribution within a designated communication radius. In the study by Hou et al. [13], the effect

of beam-forming technology on improving capacity was examined, particularly its role in reducing

interference. Although their work mainly covers the physical layer, not the application layer, beam-

forming can significantly increase CL in an Ad Hoc network and correspondingly CP2P . Currently, 3-D

networks are becoming more prevalent, and Wang et al. [19] examined capacity in a network model

similar to that of [11], but with the addition of multi-beam directional antenna technology, which

was compared to omnidirectional transmission technology. Cheng et al. [8] proposed a 3D-MANET

cell-gridded network model based on Zipf’s law, which can simulate various node distribution scenarios

in 3D space by modifying a specific parameter. The study deduced and analyzed the packet delivery

rate, network capacity, and delay performance of the 3D-MANET.

2.2 Empirical work on social tie

Despite the extensive research examining critical factors influencing distributed wireless network ca-

pacity, such as issues at the wireless physical layer, the randomness of node distribution, emergent

technologies, and interaction probabilities, the feasibility of very large-scale distributed networking

from a capacity standpoint remains an open question. Consequently, this study not only computes

CP2P bounds premised on the power law distribution but also scrutinizes the real-world instances of

the α parameter. We introduce a mathematical formulation for deriving α from statistical data, ac-

companied by empirical analyses to ascertain this parameter, akin to the inquiries by Small et al. [18],

which delved into the correlation between interaction probability and distance through empirical data.

In Section 6, we integrate three pertinent studies [6,9,15] for the mathematical extraction of the power

law exponent in Section 5. Leveraging real-world data, we initiate a discourse on the scalability of

distributed networks.

3 Case study

The initial phase involves a stochastic analysis of available point-to-point capacity (CP2P ). In a

distributed network, any link capacity (CL) is divided between different point-to-point connections.

The aggregate transmission rate across all concurrent links can be represented by
∑n

i=1 C
i
L, where for

each node i, Ci
L ≥ 0. Considering E(CL) to denote the average transmission capacity for each node, the

overall expected transmission rate can thus be expressed as E(
∑n

i=1 C
i
L) =

∑n
i=1 E(CL) = nE(CL).

On the other hand, if any node j can transmit data on a point-to-point connection with the average

rate CP2P and path length dj , then total concurrent transmission resources used by all point-to-point

connections is
∑n

j=1 CP2P dj where E(
∑n

j=1 CP2P dj) = CP2PE(
∑n

j=1 dj) = CP2PE(
∑n

j=1 E(d)) =

nCP2PE(d) where the expected number of hops of point-to-point connections is E(d). This value

should be equal to or lower than the expected value of the total transmission rate in the network
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so that:

nCP2PE(d) ≤ nE(CL) ⇒ CP2P ≤ E(CL)

E(d)
.

Therefore, the upper bound of the CP2P is E(CL)
E(d) . In our model, nodes are arranged in a symmetric

topology, positioned at the vertices of a square lattice, as shown in Figure 1. They create a distributed

network where every node has the same transmission capacity (CL) with its neighboring nodes, and

therefore E(CL) = CL. The physical link distance between a node and its neighboring node is l. By

assuming a square around each node with the area of l2 the total network area is covered without

overlap. Therefore, node density is 1
l2 and the total network area is almost l2n, given that the total

number of nodes within the network is n. In this scenario, as all links have the same link length and

resources, consequently the optimal routing is the physically shortest path [11], thus, the problem of

capacity estimation is reduced to estimate the expected number of hops (E(d)).

Figure 1: The lattice structure of the assumed distributed network.
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To estimate E(d), we utilized an exponentially decreasing distance-dependent distribution in which

nearby nodes have the highest probability of communicating with each other, and the interaction

probability decreases exponentially by a factor of β across several levels as the source-destination

distance increases. Therefore, the total network area is divided into multiple nested levels around the

source node. To illustrate this, let us assume that the source node is at the center of the network,

as shown in Figure 1. In this scheme, we map a generic square of area a m2 around the source

node. Nodes inside this square are grouped in the first level, and any node inside this square has an

interaction probability of P1 = P 0 with the source node. In the second level, where nodes are located

between squares of side lengths
√
a and 2

√
a, the node’s interaction probability with the source node

is P2 = βP 0. For nodes in the ith level (i ≥ 2), that are between the squares of side length 2i−2
√
a

and 2i−1
√
a, Pi = βi−1P 0. Therefore, the interaction probability per level (i ≥ 1) is given by:

Pi = P 0βi−1 . (1)
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Here, we compute the number of nodes in each level. The node density is 1
l2 , and we can estimate

that the total number of nodes within the initial square, as well as the first level, that is approximately
a
l2 . However, the exact number of nodes depends on whether the initial square vertices intersect with

any of the nodes in the network or not. In fact, the number of nodes can range between a
l2 to (

√
a
l +1)2.

Nonetheless, if
√
a
l ≫ 1, we can approximate the number of nodes as:

q =
a

l2
. (2)

Therefore, if the first square covers q nodes, the second square, which has an area four times as large,

covers 4q nodes. Moreover, nodes in the second level are surrounded by two squares of side lengths of√
a and 2

√
a, and therefore the number of nodes in the second level is N2 = 4q − q = 3q. For outer

levels, the number of nodes increases by a factor of four each time the level is increased. Thus, the

number of nodes in the ith level (i ≥ 2) is Ni = 3q22(i−2). The number of nodes in the first level except

the source node is q − 1. However, as we considered
√
a
l ≫ 1 that means also q ≫ 1 (Equation (2)),

we assume q − 1 ≈ q. Therefore, the number of nodes in each level Ni is given by Equation (3).

Ni =

{
q i = 1

(22 − 1)q22(i−2) = 3q22(i−2) i ≥ 2 .
(3)

Now, If we keep increasing levels to cover the whole network area, the network side length (l
√
n)

is approximately equal to the square side length that encompasses nodes in the last level (
√
a2m) as

well as all network nodes. Hence, the number of levels (m) is calculated as:

√
a2m = l

√
n → m = log2(l

√
n

a
) = log2(

√
n

q
) . (4)

Before estimating E(d), we need to determine P 0. When a source node selects a destination from

all other nodes, all of the n− 1 nodes have a non-zero probability of pj to be chosen as the destination

so that
∑n−1

j=1 pj = 1. As all nodes at the same level have an equal probability of being chosen,∑n−1
j=1 pj = 1 can be reformulated as Equation (5) that is the summation of the interaction probability

times the number of nodes over any level.

m∑
i=1

NiPi = 1 . (5)

We determine P 0 in two scenarios: when the source node is located in the center and in the corner

of the network (which represent the best and worst case scenarios, respectively see Figure 2). In

both the center and corner arrangements, there are N1 = q nodes with a probability of P1 = P 0

and Ni = 3q22(i−2) nodes in the ith level with a probability of Pi = βi−1P 0 (2 ≤ i ≤ m) could be

chosen as the destination. Therefore, by using the value of Pi and Ni (Equations (1) and (3)) in the

Equation (5), Equation (6) is achieved as

qP 0 + 3q

m∑
i=2

P 0βi−14i−2 = 1 . (6)

Here,
∑m

i=2 P
0βi−14i−2 could be written as

∑m−2
i=0 P 0β(4β)

i
. For the case of the 4β = 1,

∑m−2
i=0 P 0β(4β)

i
=∑m−2

i=0 P 0β = (m− 1)P 0β. Otherwise,
∑m−2

i=0 P 0β(4β)
i
is a geometric series summation so that:

m−2∑
i=0

P 0β(4β)
i
=

P 0β((4β)
m−1 − 1)

4β − 1
.
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Consequently, If m ≫ 1:

m−2∑
i=0

P 0β(4β)
i
=


P 0β
1−4β 4β < 1

(m− 1)P 0β 4β = 1
P 0β(4β)m−1

4β−1 4β > 1 .

Now, by using Equation (4), m− 1 = log2(
√

n
q )− 1. It gives us:

m−2∑
i=0

P 0β(4β)
i
=


P 0β
1−4β β < 1

4

(log2(
√

n
q )− 1)P 0β β = 1

4

P 0β(4β)
log2(

√
n
q

)−1

4β−1 β > 1
4 .

By substituting
∑m−2

i=0 P 0β(4β)
i
values form the above equation in Equation (6), for the case β < 1

4 ,

qP 0 + 3q
P 0β

1− 4β
= 1 ⇒ P 0 =

1

q(1 + 3β
1−4β )

.

If β = 1
4 , qP

0 + 3q(log2(
√

n
q )− 1)P 0β = 1, and then:

P 0 =
1

q(1− 3β + 3β log2(
√

n
q ))

.

If β > 1
4 , qP

0(1 + 3β(4β)
log2(

√
n
q

)−1

4β−1 ) = 1. Since 1 ≪ 3β(4β)
log2(

√
n
q

)−1

4β−1 , we can approximate P 0 as

P 0 = 4(4β−1)

3q(4β
log2(

√
n
q

)
)

. Finally, since alog(b) = blog(a), P 0 = 4(4β−1)

3q(
√

n
q

log2(4β)
)
. The general form of the P 0 is

expressed in Equation (7) as

P 0 =


1

q(1+ 3β
1−4β )

β < 1
4

1
q(1−3β+3β log2(

√
n
q ))

β = 1
4

4(4β−1)

3q(
√

n
q

log2(4β)
)

β > 1
4 .

(7)

Here, we start calculating E(d) that depends on the position of the source node in the network.

Hence, we considered two boundary situations where the maximum and minimum of E(d) occurs. In

the best-case scenario, the source node is in the center of the network, and in the worst case at the

corner. Figure 2 shows these scenarios. First of all, as all nodes in the same level have an equal

interaction probability to communicate with the source node, and therefore E(d) can be calculated per

level so that if Ei(d) is average path length per level,

E(d) =

m∑
i=1

PiNiEi(d) . (8)

Now, we calculate E(d) level by level starting with the average path length for the best-case scenario.

The average path length is the summation of the distance of all nodes from the source node divided

by the number of nodes. Nodes in the first level can be divided into 8 symmetric isosceles triangles as

shown in Figure 3. Hence, by considering one of these isosceles triangles, the average path length can

be calculated for the first level. Any triangle include q
8 nodes, and

√
q

2 nodes on its equal length sides.

Nodes in the triangle can be separated into
√
q

2 layers ( {i | 1 ≤ i ≤
√
q

2 }) where there are i+1 nodes in
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the layer ith, see Figure 3. The node j shortest distance from center node in the set of {j | 0 ≤ j ≤ i},
is (i + j). All nodes distance summation in layer ith is

∑i
j=1(i + j). All i layers nodes distances

summation that covers all nodes in the triangle is
∑√

q

2
i=1

∑i
j=1(i+ j) =

∑√
q

2
i=1(i

2 +
∑i

j=1 j) ≈
∑√

q

2
i=1

3i2

2

as
∑i

j=1 j = i2+i
2 ≈ i2

2 . E1(d) is the cumulative node distance divided by the number of nodes in the

first level so that:

E1(d) =
8

q

√
q

2∑
i=1

i∑
j=1

(i+ j) ≈ 8

q

√
q

2∑
i=1

3i2

2
.

We also have
∑n

i=1 i
2 = n(n+1)(2n+1)

6 . If we substitute
√
q by 2k, then E1(d) could be written as

E1(d) =
8

4k2

∑k
i=1

3i2

2 = k(k+1)(2k+1)
2k2 where limk≫1

k(k+1)(2k+1)
2k2 = k. Finally, when k ≫ 1 or q ≫ 1,

E1(d) =
√
q

2 . In the second level, there are 3q nodes and 8 partial triangles (partial triangle side covers

nodes between
√
q

2 and
√
q hops from the source node, Figure 2). Hence, E2(d) is

E2(d) =
8

3q

√
q∑

i=
√

q

2

i∑
j=1

(i+ j) ≈ 8

6q
((2

√
q

2
)3 − (

√
q

2
)3) =

7
√
q

6
.

Because of geometric similarity, the average distance will be doubled each time we increase the level

number. Hence, in the ith(i ≥ 2) level, Ei(d) =
7
√
q

6 2i−2, and average path length of all levels is

Ei(d) =

{√
q

2 i = 1
(23−1)

√
q

6 2i−2 i ≥ 2 .
(9)

Figure 2: Boundary scenarios for expected path values.

Source node

√
n

√
q

2

√
q

(a) Best case scenario

Source node

√
n

√
q

2√
q

(b) Worst case scenario

In the worst-case scenario, the source node is assumed in the lower left edge. Therefore, the first

square is divided into two triangles with
√
q nodes in its side length as shown in Figure 2 and the

expected path calculated as below:

E1(d) =
2

q

√
q∑

i=1

i∑
j=1

(i+ j) ≈ 1

q
(2

√
q

2
)3 =

√
q .
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In the second level, its square is split into 2 partial triangles (partial triangle side cover nodes between√
q and 2

√
q hops from the source node). Thus, the average path value is

E2(d) =
2

3q

2
√
q∑

i=
√
q

i∑
j=1

(i+ j) ≈ 1

3q
((2

√
q)3 − (

√
q)3) =

7
√
q

3
.

Correspondingly, the ith level average path is
7
√
q

3 2i−2, and therefore

Ei(d) =

{√
q i = 1

(23−1)
√
q

3 2i−2 i ≥ 2 .
(10)

Figure 3: Isosceles triangles of initial square and node arrangement inside each triangle.

ith layer nodes

j node

Source node

l√
q

l

The overall expected path (E(d)) is a weighted average between all levels (Equation (8)). Moreover,

the number of nodes (Nk) and interaction probability (Pk) in each level for both of the best case

and worst case scenarios is equal and only worst case Ei(d) is twice best case Ei(d) (Equations (9)

and (10)). Therefore, the E(d) for the best-case is half of the worst case E(d), and regardless of source

node position in the network, E(d) is not lower than half of the worst case expected path. To avoid
further complexity and without loss of generality, we consider the worst-case scenario as the overall

expected path to achieve an upper band.

To finalize E(d) estimation, by using the value of Pk, Nk, and Ei(d) form Equations (1), (3) and (10)

and putting them in Equation (8) we have:

E(d) =qP 0√q +

m∑
i=2

P 0 7

3

√
q3qβi−12i−24i−2

=qP 0√q(1 + 7

m−2∑
i=0

β(8β)
i
) .

∑m−2
i=0 β(8β)

i
is a geometric series so that if m ≫ 1,

∑m−2
i=0 β(8β)

i
=


β

1−8β β < 1
8

(log2(
√

n
q )− 1)β β = 1

8

(log2(
√

n
q ))

log2(8β)

8(8β−1) β > 1
8 .
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By simplifying the above equation where m ≫ 1 with the same method that we calculated P 0, and

by using P 0 values of the Equation (7),

E(d) =



√
q(1+ 7β

1−8β )

(1+ 3β
1−4β )

β < 1
8

√
q(1−7β+7β log2(

√
n
q ))

(1+ 3β
1−4β )

1
8

7
√
q(
√

n
q

log2(8β)
)

8(8β−1)(1+ 3β
1−4β )

1
8 < β < 1

4

7
√
q(
√

n
q

log2(8β)
)

8(8β−1)(1−3β+3β log2(
√

n
q ))

β = 1
4

(4β−1)7
√
q(
√

n
q

log2(8β)
)

(8β−1)6(
√

n
q

log2(4β)
)

β > 1
4 .

(11)

If β = 1
4 ,

√
q(
√

n
q

log2(8β)
) =

√
q(
√

n
q ) =

√
n. Moreover, if β > 1

4 , then
√
q(
√

n
q

log2(8β)
)

(
√

n
q

log2(4β)
)

=
√
q(
√

n
q

log2(
8β
4β )

)

=
√
q
√

n
q =

√
n. Therefore, these different cases are shown as

E(d) is


Θ(1) β < 1

8

Θ(log2(n)) β = 1
8

Θ(nlog2(2
√
2β)) 1

8 < β < 1
4

Θ(
√
n) β ≥ 1

4 .

(12)

4 Power-law distribution capacity estimation

In this section, we aim to expand our scenario in Section 3 to estimate E(d) for a power-law inter-

action probability distribution. At first, we prove that any interaction probability that is exclusively

dependent on source-destination distance should be at least Θ( 1
d2 ) in Theorem 4.1. Then, we explain

that for a power-law distribution, E(d) can be estimated by using our scenario in Section 3.

Theorem 4.1. In any interaction probability including power-law distribution, that is exclusively dis-

tance dependent (pi = P (d)) where n nodes are uniformly distributed so that n → ∞, P (d) should

fall faster than Θ( 1
d2 ), so that limd→∞ d2P (d) = 0.

Proof. In Appendix A.1, we showed that the necessary condition on the interaction probability over

distance is that
∑∞

P (d)d converges. P (d) is considered as Θ(P
′(d)
dα ) where limd→∞ P ′(d) = c < ∞

and α = {maxα′ | P (d) is Θ(P
′(d)

dα′ )}. In order to obtain a finite sum for the series
∑l

√
n

1 P ′(d)d(1−α),

we use Cauchy condensation test that says if {an} is a positive monotone decreasing sequence, then∑∞
n=1 an converges if and only if

∑∞
k=1 2

ka2k converges. By applying it on
∑√

n
1 P ′(d)d(1−α), we have∑

P ′(2d)2d(2−α). If α > 2 and P ′(2d) is bounded, the series will converge while it diverges when

α < 2 regardless of P ′(2d). When α = 2,
∑

P ′(2d) converges only if
∑

P ′(d) is a series such as∑
n

1
log d·log log d··· log◦(k−1) d·(log◦k d)λ

where λ > 1. In other word, to satisfy
∑n−1

i=1 Pi = 1, P (d) should

fall faster than Θ( 1
d2 ) so that limd→∞ d2P (d) = 0.

Based on Theorem 4.1 any interaction probability, including power-law distribution, that is exclu-

sively distance dependent should be at least Θ( 1
d2 ).

Here, we want to estimate E(d) in a symmetric node arrangement scenario such as the one presented

in Section 3, where interaction probability follows a power law distribution (P (d) = γ
dα ) and γ is an

interaction probability constant. All nodes at the same distance from a source node have the same

interaction probability with the source node. Hence, to estimate E(d), we can group all nodes in the

distance d = i from the source node, calculate E(d) separately for any group, and then sum up over
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all groups. However, when i ≫ 1, there is no sensible difference between the interaction probability of

nodes in the distance d = i and d = i+1 as γ
iα ≈ γ

(i+1)α . Therefore, we change step size from 1, 2, ..., i

to 1, ζ2, ..., ζi (ζ > 1), and nodes are grouped in multiple nested levels. If, as same as Section 3, first

level nodes are included in a square of area a, and all nodes between distance
√
aζi−1 and

√
aζi have

the same interaction probability. Here, we approximate the interaction probability of the level ith

with the value of P (d) at distance d =
√
aζi−1, that is γ√

aαζα(i−1) . We can consider different reference

points or an average of P (d) from several points at any level. However, it should not change the ratio

of interaction probability between consecutive levels. In this situation, regardless of the selected point

(or points), our results show it does not affect the value of E(d).

In this scenario, the ratio of interaction probability between two consecutive levels i and i + 1 is
γ√

aαζiα

√
aαζ(i−1)α

γ = 1
ζα . Therefore, by considering β = ζ−α and P 0 = γ

a
α
2
, we can write that the

interaction probability for nodes in the level i is Pi = P 0βi−1. In fact, it can be a generalized form

of the aforementioned scenario, Section 3, if step size changes from 2 to ζ, P 0 = γ

a
α
2
, β = ζ−α and

√
q =

√
a
l . Therefore, in the same manner as Equation (1), Pi is expressed as

Pi =
γ

a
α
2
ζ−(i−1)(α) . (13)

The initial level contains N1 = q = a
l2 nodes. With the change of step size from 2 to the general

parameter ζ, the number of nodes in two consecutive levels is related by Ni+1 = Niζ
2 for i ≥ 2.

Hence, the number of nodes in the second level is N2 = a
l2 ζ

2 − a
l2 = a

l2 (ζ
2 − 1), and the expression for

Ni is derived using the formula presented in Equation (14) as

Ni =

{
a
l2 i = 1
a
l2 (ζ

2 − 1)ζ2(i−2) i ≥ 2 .
(14)

The average distance in the first level is E1(d) =
√
q =

√
a
l . In the case of two consecutive levels,

due to geometric similarity, we can express Ei+1(d) = Ei(d)ζ for i ≥ 2.

Now, for the second level, we calculate E2(d) approximation as:

E2(d) =
2

N2

ζ
√
q∑

i=
√
q

i∑
j=1

(i+ j) ≈ 1

(ζ2 − 1)q
((ζ

√
q)3 − (

√
q)3)

=
(ζ3 − 1)

√
q

(ζ2 − 1)
=

(ζ3 − 1)
√
a

(ζ2 − 1)l
.

Thus, Ei(d) can also be determined by Equation (15), which corresponds to the Equation (8):

Ei(d) =

{√
a
l i = 1

√
a
l

(ζ3−1)
(ζ2−1)ζ

i−2 i ≥ 2 .
(15)

The number of levels (m) is also given by

√
aζm = l

√
n → m = logζ(l

√
n

a
) . (16)

According to the Equation (5),
∑m

i=1 NiPi = 1. By substituting the values of Ni and Pi as given in

Equation (13) and Equation (14), respectively, we can express:

a

l2
γ

a
α
2
+ (ζ2 − 1)

a

l2

m∑
i=2

γ

a
α
2
ζ−αζ−α(i−2)ζ2(i−2) = 1 .
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This equality could be simplified as a
l2

γ

a
α
2
(1 + (ζ2 − 1)ζ−α

∑m
i=2 ζ

(2−α)(i−2)) = 1.

As ζ > 1, when α > 2 and m ≫> 1, then
∑m

i=2 ζ
(2−α)(i−2) = 1

1−ζ(2−α) . Hence, γ

a
α
2

is given by

γ

a
α
2
=

l2

a(1 + (ζ2−1)ζ−α

1−ζ(2−α) )
. (17)

Based on the Equation (8), E(d) is
∑m

i=1 PiNiEi(d). By substituting the values of Pi, Ni, and Ei(d)

as stated in Equation (13), Equation (14), and Equation (15) respectively, we can express E(d) as

follows:

E(d) = (

√
a

l
)
3
γ

a
α
2
+

m∑
2

γ

a
α
2
(ζ3 − 1)(

√
a

l
)
3

ζ−αζ−α(i−2)ζ3(i−2) .

By using Equation (17) where α > 2:

E(d) =

√
a

l(1 + (ζ2−1)ζ−α

1−ζ(2−α) )
(1 + (ζ3 − 1)ζ−α

m∑
i=2

ζ(3−α)(i−2)) .

Again if m ≫> 1 and by using Equation (16):

m∑
i=2

ζ(3−α)(i−2) =


1

1−ζ(3−α) α > 3

(logζ(l
√

n
a )− 1) α = 3

ζ(3−α)(logζ(l
√

n
a

)−1)

ζ3−α−1 2 < α < 3 .

For the case of 2 < α < 3, as ζ(3−α)(logζ(l
√

n
a

)−1)

ζ3−α−1 = ζ(3−α)logζ(l
√

n
a

)

(ζ(3−α))(ζ3−α−1)
, and ζ(3−α)logζ(l

√
n
a )

=

(l
√

n
a )

logζ(ζ
(3−α)) = ( l

2n
a )

( 3−α
2 )

, then:

ζ(3−α)(logζ(l
√

n
a )−1)

ζ3−α − 1
=

( l
2n
a )

( 3−α
2 )

(ζ(3−α))(ζ3−α − 1)
.

Therefore, E(d) can be estimated for power-law distribution in the same way as Equation (11)

where α > 2,

E(d) =



√
a(1+

(ζ3−1)ζ−α

1−ζ(3−α)
)

l(1+
(ζ2−1)ζ−α

1−ζ(2−α)
)

α > 3

√
a(ζ−3+(1−ζ−3) logζ(l

√
n
a ))

l(1+
(ζ2−1)ζ−3

1−ζ−1 )
α = 3

√
a(ζ3−1)ζ−α( l2n

a )
( 3−α

2
)

l(ζ(3−α))(ζ(3−α)−1)(1+
(ζ2−1)ζ−α

1−ζ(2−α)
)

2 < α < 3 .

(18)

For the case 2 < α < 3, E(d) can be further simplified as

E(d) =
(
√
a
l )

α−2
(ζ3 − 1)ζ−αn( 3−α

2 )

(ζ(3−α))(ζ(3−α) − 1)(1 + (ζ2−1)ζ−α

1−ζ(2−α) )
.

If we reduce the step size as much as possible (ζ → 1), limζ→1 E(d) can be written as

E(d) =


√
a(α−2)
l(α−3) α > 3

√
a(1+3 ln(l

√
n
a ))

3l α = 3

(
√

a
l )

α−2
3(α−2)n( 3−α

2
)

α(3−α) 2 < α < 3 .

(19)
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E(d) is


Θ(1) α > 3

Θ(ln(n)) α = 3

Θ(n
(3−α)

2 ) 2 < α < 3

(20)

Since E(CP2P ) =
E(CL)
E(d) , and by using Equation (19), capacity E(CP2P ) is given by

E(CP2P ) =


CLl(α−3)√

a(α−2)
α > 3

CL3l√
a(1+3 ln(l

√
n
a ))

α = 3

CLα(3−α)

(
√

a
l )

α−2
3(α−2)n( 3−α

2
)

2 < α < 3 .

(21)

If nodes are optimally placed in a symmetric arrangement CL ∝ W [11], the order of point-to-point

capacity (CP2P ) when the number of nodes goes to infinity (n → ∞), is given by

CP2P is


Θ(W ) α > 3

Θ( W
ln(n) ) α = 3

Θ( W

n
(3−α)

2

) 2 < α < 3 .

(22)

When comparing our findings to prior research in this area, the study that bears the greatest resem-

blance to ours is Azimdoost et al [5] that presented the following capacity outcome:{
Θ( n−q−1

n2rα−1(n) ) 2 ≤ α ≤ 3, q < ∞
Θ( n−q−1

n2r2(n) ) α ≥ 3, q < ∞ .

By incorporating the function r(n) =
√

ln(n)
n , as proposed in the work of [11], to guarantee network

connectivity, and assuming a contact number of q = 1, the capacity ranges presented in [5] areΘ( 1

n
(3−α)

2 ln(n)
(α−1)

2

) 2 ≤ α ≤ 3

Θ( 1
ln(n) ) α > 3 .

Since the scenario described in Azimdoost et al.’s work [5] may not necessarily be symmetric, it is

important to consider this factor when making comparisons. Gupta and Kumar [11] showed that the

achievable capacity bounds for symmetric node configurations can be at least
√

ln(n) times higher

than the capacity bounds for random configurations. To ensure a fair comparison, we normalize their

capacity bounds by multiplying them by the factor of
√
ln(n). Therefore, we have the following

normalized capacity bounds as Θ( 1

n
(3−α)

2 ln(n)
α
2

−1
) 2 ≤ α ≤ 3

Θ( 1√
ln(n)

) α > 3 .
(23)

Consequently, our capacity bounds, presented in Equation (22), outperform the results presented in [5].

Specifically, for 2 < α < 3, our capacity bounds of ln(n)
α
2 −1 are superior, and for α > 3, our capacity

band is
√

ln(n) times better than the bound in [5].

5 Power law exponent estimation

The ultimate objective of capacity estimation is to determine if large-scale distributed networking

is feasible. Since our capacity ranges are influenced by power-law exponent (α), the answer varies

accordingly. Hence, to address the question, it is essential to know the actual value of α, and the

first step is the estimate α based on statistical data. Therefore, we propose a method to extract the

power-law distribution parameter (α) from statistical data.
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Again, we consider Section 4 and assume that the interaction probability is changed in the multiple

levels where our steps are 1, ζ2, ..., ζi. Here, the product of the interaction probability and the number

of nodes in each level could be defined as the expected number of contacts for the source node in that

level (E(Ci)) so that:

E(Ci) = PiNi . (24)

By substituting Pi and Ni from Equations (13) and (14) when (i ≥ 2), we can write:

E(Ci) =
γ

a
α
2
ζ−(i−1)(α)(ζ2 − 1)

a

l2
ζ2(i−2)

=
γ

a
α
2
ζ−α(ζ2 − 1)

a

l2
ζ−(i−2)(α)ζ2(i−2)

=
γ

a
α
2
ζ−α(ζ2 − 1)

a

l2
ζ(2−α)(i−2) .

We can define the average distance of each level from the source node as d̄i =
di
max+di

min

2 =
√
aζi−1+

√
aζi

2 =
√
aζζi−2 1+ζ

2 . Therefore,

ζi−2 =
2d̄i√

aζ(1 + ζ)
. (25)

By substituting ζi−2 from Equation (25), we can write E(Ci) as

E(Ci) =
γ

a
α
2
ζ−α(ζ2 − 1)

a

l2
(

2d̄i√
aζ(1 + ζ)

)

(2−α)

.

Based on Theorem 4.1, for any power-law distribution interaction probability when network size goes

to infinity, we should have α > 2. Hence, by using the value of γ√
a
from Equation (17) where α > 2,

E(Ci) =
1

(1 + (ζ2−1)ζ−α

1−ζ(2−α) )
ζ−α(ζ2 − 1)(

2d̄i√
aζ(1 + ζ)

)

(2−α)

.

Therefore, if α > 2 and k ≥ 2, E(Ci) is

E(Ci) =
22−α

√
a
α−2

(1− ζ−2)

(1 + (ζ2−1)ζ−α

1−ζ(2−α) )(1 + ζ)
2−α

d̄i
2−α

. (26)

If we reduce the step size as much as possible (ζ → 1), d̄i ≈ di and limζ→1 E(Ci) can be written as

Equation (27):

E(Ci) =
2(α− 2)

√
a
α−2

α
di

2−α . (27)

By taking the logarithm on both sides of Equation (27), Equation (28) is achieved as

log(C(d)) = −(α− 2) log(d) + C0 . (28)

Hence, if we define b as the slope of the (C(d), d) curve in the log-log scale, then α = −b+ 2.

6 Feasibility of large-scale ad hoc networks

The capacity bounds in our study (Equation (22)) vary depending on the power-law exponent (α). For

instance, in Equation (22), when α → 2, the point-to-point capacity (CP2P ) is Θ( 1√
n
). On the other

hand, when α > 3, regardless of the network size, CP2P remains constant at Θ(1). Hence, determining

the actual or estimated value of α is crucial in assessing the scalability of distributed networking.
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As there is a lack of sufficient research specifically focused on estimating α, we devised a formula to

extract α from statistical data. Now, we can extract the power-law exponent (α) from various case

studies and empirical studies on interaction probability over distance and delve into a discussion about

the feasibility of large-scale distributed networking based on realistic data.

Latane [15] utilized a power-law distribution model to describe social connections as a function of

distance. This study analyzed empirical data from hundreds of individuals across different geographic

areas spanning 1000 miles. For all different analyses in Table 2, the logarithmic plot of the number of

interactions against distance showed a slope of very close to −1. For these experiments, the value of α

calculated using Equation (28) is almost 3.

Authors of [15], expressed the social impact theory that suggests a consistent natural relationship

between interaction probability and distance that remains unaffected by technological advancements

so that the number of interactions over distance in log-log scale has the slope line of −1. Further-

more, the social impact also expresses that this natural relationship is not affected by technological

advancements over time. The result of a newer analysis conducted by Backstrom et al. (2010) [6] also

supports social impact theory where they examined nearly 3 million Facebook users and 30 million

friendship connections across thousands of miles. The results of their study also exhibited a power-law

distribution, with a slope of −1.05. This indicates that the power-law parameter, α, has a value of

3.05. Moreover, based on data from the more recent study by Daraganova et al. (2012) [9] involving

hundreds of individuals in Australia, the power-law distribution parameter could be calculated within

the range of [2.969, 2.996].

Table 2: Empirical works social tie.

Research Work Case Study Slope Line
(log-log scale)

α
(Equation (28))

Memorable Interaction over distance (US)[fig1] -1.01 3.01
Latane [15] Memorable Interaction over distance (China)[fig2] -1.05 3.05

Memorable Interaction over distance (Social sociolo-
gists)[fig3]

-0.93 2.93

Backstrom [6] Friendship probability over distance (Facebook)[fig4] -1.05 3.05
Daraganova [9] community network interaction probability in Aus-

tralia[table 4(λ column)]
-0.969 2.969

-0.995 2.995
-0.972 2.972
-0.985 2.985
-0.995 2.995

These homogeneous results (Table 2) are justified by [15] in the social impact theory that is ex-

plained by Zipf’s principle, which suggests that individuals aim to maximize social interaction while

minimizing energy expenditure. However, the homo-phony of α values so that the range of α in all cases

of empirical data from [6, 9, 15] is in [2.9, 3.1] can be justified also from capacity analysis viewpoint.

In fact, by considering the power-law interaction probability model for real-world communication, the

analysis of expected hop count (E(d)) in distributed networks (Section 4) can be approached similarly

to calculating the path length for actual communication in the physical world. Therefore, point-to-

point available capacity per user follows a similar trend with Equation (22), where we interpret W as

a communication resource such as street width. In this situation, if α > 3, regardless of network size,

distributed networking is feasible, and if α ∈ [2.9, 3], CP2P decreases slowly. In Figure 4, a base net-

work size is considered (n = 105) and the normalized capacity is defined as the ratio of CP2P of a given

network size n = y to Cn=105

P2P . As an example, as shown as Figure 4, the normalized capacity when

network size is 1billion nodes, (
Cn=109

P2P

Cn=105
P2P

) reduces only by factor of 0.79, 0.63, 0.57, for α = 2.95, α = 2.9,

and α = 3 respectively. While, if α deviates from these domain, for example if α = 2.5, (
Cn=109

P2P

Cn=105
P2P

)

decreases significantly when expanding network size. In other words, to achieve feasible large-scale
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communication where the interaction probability follows a power-law distribution, the parameter (α)

should not be significantly lower than 3 in the real world.

Figure 4: The normalized capacity size (
Cn=y

P2P

Cn=105
P2P

) for different cases of α.

At first glance, it may seem surprising. However, if we compare two cities with populations of

105 and 107 where the social interaction pattern is ∝ 1
d2 so that E(d) is Θ(

√
n) the average street

width in the larger city should be
√

107

105 = 10 times wider than the smaller city to provide the same

transportation capacity. Nevertheless, in reality, we know that the street widths in both cities are more

or less the same. In other words, the value of α (social tie) is regulated by nature so that large-scale

communication can be possible for any individual from a capacity viewpoint.

7 Limitations and future work

In this paper, we thoroughly examined the feasibility of large-scale distributed networking for a sym-

metric node arrangement. Our capacity bounds surpassed state-of-the-art results in the field. We

further extracted the power law exponent from statistical data and found a consistent pattern, with

(α ≈ 3) across various empirical analyses. The main conclusion is that very large-scale distributed net-

working could be feasible, as capacity is not a barrier to expansion. Notably, statistical data on actual

traffic patterns for social interaction applications support this view, indicating promising potential for

very large-scale distributed networking.

However, more extensive empirical analysis is needed to gain a deeper understanding of point-to-

point traffic patterns and origin-destination communications. Additionally, exploring the strong corre-

lation between statistical data and stochastic capacity analysis could be an interesting topic for future

research. Furthermore, in practice, symmetric node distribution is atypical but simplifies network

routing and capacity analysis, allowing us to probe network feasibility. Without such simplifications,

the potential of distributed networks might be underestimated. Our study thus prioritizes multi-hop

communication’s impact on network expansion and hints at promising prospects for large-scale Ad Hoc

networks, warranting deeper capacity analysis and empirical studies on social ties. However, our study

represents an initial step toward addressing the feasibility issue. Our future work involves a numeri-

cal analysis of more comprehensive scenarios taken into account wireless layers issues, and evaluating
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wireless network performance metrics such as average capacity per user, delay, power consumption,

and spectral efficiency. Additionally, we plan to study the impact of random node arrangement on

network capacity, reflecting more authentic conditions, and addressing core challenges like routing and

resource allocation in these environments.

A Appendix A: Exclusively distance-dependent distribution

A.1 Exclusively distance-dependent distribution

If node ith from the n − 1 nodes wants to communicate with the source node with probability pi,

the summation of all nodes’ interaction probability with the source node is 1 (
∑n−1

i=1 pi = 1). As all

nodes in a given distance from the source node have equal interaction probability, we can sum up the

number of nodes times interaction probability at any distance (
∑l

√
n

i=1 P (d)N(d) = 1, so that N(d) is

the number of nodes between two circles of radiuses l(d+ .5) and l(d− .5). When nodes are uniformly

distributed with node density ρ = 1
l2 , the number of nodes in a given distance (N(d)) from the source

node has a linear relation with the distance, as shown in Figure 5. Hence,

N(d) = ρ2π(l2(d+ 0.5)2 − (d− 0.5)2) = 2π
l2

l2
d = 2πd .

Furthermore, As the network diameter is l
√
n, the max distance is proportional to l

√
n. Therefore, to

cover all nodes in the network, we should have:∑
P (d)N(d) = 1 | d ∈ {l, 2l, . . . , l

√
n} .

It means
∑l

√
n

l 2πP (d)d = 1 where l
√
n is the network diameter that is proportional to the average

link length (l) and
√
n.

When n → ∞, the necessary condition for
∑l

√
n

l 2πP (d)d = 1 is that
∑∞

P (d)d converges.

Figure 5: Number of nodes in the distance d.

l
√
n

l

ld
l(d

− 0.5
)

l(d
+
0.5

)

Area = l2d

Source node
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