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– Bibliothèque et Archives Canada, 2024

The publication of these research reports is made possible thanks
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract : The entropic risk measure is widely used in high-stakes decision making to account for
tail risks associated with an uncertain loss. With limited data, the empirical entropic risk estimator,
i.e. replacing the expectation in the entropic risk measure with a sample average, underestimates
the true risk. To mitigate the bias in the empirical entropic risk estimator, we propose a strongly
asymptotically consistent bootstrapping procedure. The first step of the procedure involves fitting
a distribution to the data, whereas the second step estimates the bias of the empirical entropic risk
estimator using bootstrapping, and corrects for it. Two methods are proposed to fit a Gaussian
Mixture Model to the data, a computationally intensive one that fits the distribution of empirical
entropic risk, and a simpler one with a component that fits the tail of the empirical distribution. As
an application of our approach, we study distributionally robust entropic risk minimization problems
with type-∞ Wasserstein ambiguity set and apply our bias correction to debias validation performance.
Furthermore, we propose a distributionally robust optimization model for an insurance contract design
problem that takes into account the correlations of losses across households. We show that choosing
regularization parameters based on the cross validation methods can result in significantly higher
out-of-sample risk for the insurer if the bias in validation performance is not corrected for. This
improvement in performance can be explained from the observation that our methods suggest a higher
(and more accurate) premium to homeowners.

Keywords : Entropic risk measure, bias correction, distributionally robust optimization, insurance
pricing
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1 Introduction

The purpose of a risk measure is to assign a real number to a random variable, representing the

preference of a risk-averse decision maker towards different risky alternatives. For instance, when faced

with multiple options, a decision maker might prefer a guaranteed loss of zero over an uncertain option,

even if the latter has a strictly negative expected loss. While this behavior can be explained using

the mean-variance criterion (Markowitz 1952), which balances the expected loss and its fluctuations

around the mean, the entropic risk measure offers greater flexibility by incorporating higher moments

of the loss distribution.

The entropic risk measure is useful in high-stakes decision-making, where rare events and their as-

sociated extreme losses are a significant concern. A key advantage of using entropic risk in multi-stage

decision-making is the time-consistency of the optimal policies. The entropic risk measure is widely

used due to its interpretation as the certainty equivalent of the exponential utility function (Von Neu-

mann and Morgenstern 1944), which represents the risk preferences of a decision-maker exhibiting

constant absolute risk aversion (CARA – Arrow 1971, Pratt 1964). There has been significant growth

in research on exponential utility functions, which appear in the literature under various names, in-

cluding entropic risk minimization, tilted empirical risk minimization, constant absolute risk aversion,

and as special cases of more general shortfall risk measures and optimized certainty equivalent risk

measures (Ben-Tal and Teboulle 1986). Applications of these concepts are widespread, particularly

in finance (Föllmer and Schied 2002, 2016, Smith and Chapman 2023), portfolio selection (Brandtner

et al. 2018, Markowitz 2014, Chen et al. 2024b), revenue management (Lim and Shanthikumar 2007),

economics (Svensson and Werner 1993), operations management (Choi and Ruszczyński 2011, Chen

and Sim 2024), robotics (Nass et al. 2019), statistics (Li et al. 2023), reinforcement learning (Fei et al.

2021, Hau et al. 2023), risk-sensitive control (Howard and Matheson 1972, Bäuerle and Jaśkiewicz

2024), game theory (Saldi et al. 2020), and catastrophe insurance pricing (Bernard et al. 2020).

Since the seminal work by Föllmer and Schied (2002), which established the axiomatic foundations

for convex risk measures, there has been growing interest in quantitative risk management using

convex law-invariant risk measures, such as the entropic risk measure. Unlike coherent risk measures,

like Conditional Value at Risk (CVaR – Artzner et al. 1999), convex law-invariant risk measures allow

for non-linear variation in risk with the size of a position.

To formally define the entropic risk measure, let ℓ(ξ) represent the uncertain loss associated with

an uncertain parameter ξ ∈ Ξ ⊆ Rd. Then, the entropic risk associated with parameter ξ is given by:

ραP (ℓ(ξ)) :=

{
1
α log(EP[exp(αℓ(ξ))]) if α > 0,

EP[ℓ(ξ)] if α = 0,
(1)

where the loss ℓ(ξ) is transformed by the increasing and convex exponential function, and α is the

risk aversion parameter. This formulation expresses the entropic risk as the certainty equivalent of the

expected disutility EP[exp(αℓ(ξ))], reflecting the monetary value of the risk inherent in the uncertain

outcome ℓ(ξ). By adjusting the risk-aversion parameter α, also known as the Arrow-Pratt measure of

risk aversion, the decision maker’s sensitivity to extreme losses can be controlled. For the remainder

of the paper, we simplify the notation by suppressing the dependence on α where it is not essential,

and denote entropic risk as ρP.

In real-world applications, the distribution P of the random variable ξ is unknown, and decisions

are often made using historical realizations of random variable ξ that are assumed to be independent

and identically distributed (i.i.d.) with distribution P. Let the data set of N historical observations

be denoted by DN = {ξ̂1, ξ̂2, · · · , ξ̂N}. A common approach to estimate the entropic risk is to replace

the true distribution with the empirical distribution defined as P̂N (ξ) := 1
N

∑N
i=1 δξ̂i

(ξ), where δξ is a
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Dirac distribution at the point ξ. The empirical entropic risk measure is then given by:

ρP̂N
(ℓ(ξ)) :=

1

α
log

(
1

N

N∑

i=1

exp(αℓ(ξ̂i))

)
. (2)

Since the logarithm function is strongly concave, Jensen’s inequality implies that the empirical entropic

risk strictly underestimates the true entropic risk:

E[ρP̂N
(ℓ(ξ))] = E

[
1

α
log

(
1

N

N∑

i=1

exp(αℓ(ξ̂i))

)]
<

1

α
log

(
E

[
1

N

N∑

i=1

exp(αℓ(ξ̂i))

])
= ρ(ℓ(ξ)), (3)

unless E[ℓ(ξ)] = ℓ(ξ) almost surely, and where the expectation is taken with respect to the randomness

of the data DN .

A fundamental challenge in high-stakes decision-making lies in accurately estimating risk. Even

with a large number of samples, the empirical entropic risk can significantly underestimate the true

risk, especially for decision makers with heightened risk sensitivity. This challenge is demonstrated in

the following example.

Example 1. In an insurance pricing problem, the insurer aims to determine the minimum premium π at

which they can insure against the loss ℓ(ξ) := ξ. Let risk aversion parameter of insurer be α. Assuming

full coverage for the losses ξ, loss of the insurer if they charge a premium π is a random variable given

by π − ξ. Thus, minimum premium at which the insurer insures the risk should be such that the

entropic risk of the insurer from insuring is at most equal to 0, i.e., 1
α log (EP[exp(α(π − ξ))]) = 0. On

rearranging the terms, one can show that the minimum premium equals the entropic risk associated

with the loss ξ, π = 1
α log (EP [exp(αξ)]), also called the exponential premium (Gerber 1974). Suppose

that the loss follows a Gamma distribution Γ(κ, λ) (see Fu and Moncher 2004, Bernard et al. 2020)

with shape parameter κ and scale parameter λ. The moment-generating function of Γ-distributed

random variable is known in closed form which allows us to analytically compute the optimal premium

π = 1
α log

(
(1− λα)

−κ
)
if λ < 1/α.

Suppose an insurer has access to N ∈ {50, 100, 200, 500} samples of the losses which are generated

from a Γ(10, 0.24)-distribution. We use empirical distribution P̂N over N samples to estimate the

entropic risk for different risk aversion parameters, α ∈ {0, 0.5, 1, 1.5, 2}. Figure 1 presents statistics

of the distribution of the empirical risk estimator as a function of N and α. We can see that more

risk-averse insurers significantly underestimate the risk of the loss ξ and thus the premium to impose

on the insuree even for the relatively large sample size N = 500. This phenomenon can also be
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Figure 1: Statistics of the empirical risk for different values of the risk aversion parameters α ∈ {0, 0.5, 1, 1.5, 2} and

training sample sizes N ∈ {50, 100, 200, 500} over 10000 repetitions. The true risk is given by 1
α
log

(
(1− 0.24α)−10

)
.
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understood by analyzing the impact of an infinitesimal change in the distribution on the entropic risk,

as quantified by the influence function (Hampel 1974). For this example, the influence function is given

by IF(ξ̂) = − 1
α + exp(αξ̂)

α(1−0.24α)−10 . Consequently, missing tail scenarios can disproportionately affect the

estimation of entropic risk for high values of α due to the exponential term. Detailed calculations are

provided in Appendix B.1, and Figure 14 offers a visual representation of the influence function across

samples and their associated probabilities. The slow convergence of sample mean to the true mean

for heavy tailed random variables is a well-known phenomenon (Catoni 2012, Lugosi and Mendelson

2019). Even when the underlying distribution of ℓ(ξ) is light-tailed, exp(αℓ(ξ)) can be heavy-tailed

(Nair et al. 2022). For instance, exp(αℓ(ξ)) is a lognormally distributed when ℓ(ξ) is Gaussian random

variable.

The contribution of this paper is to propose a scheme to produce (approximately) median-unbiased

estimators of entropic risk to mitigate the bias of the empirical entropic risk estimator. We propose

a bias correction term δ(DN ) that employs bootstrapping, using a distribution fitted to the data DN ,

to get

ρP(ℓ(ξ)) ≈ median
[
ρP̂N

(ℓ(ξ)) + δ(DN )
]
, (4)

where the median statistic is taken with respect to the randomness in DN . We establish mild conditions

under which δ(DN ) → 0 almost surely as N → ∞. In particular, basing the bootstrap on a constrained

maximum likelihood estimation (MLE) of sampling distribution will yield an asymptotically consistent

estimator. Unfortunately, our empirical experiments establish that a bootstrap correction based on

MLE fails to adequately address the underestimation of entropic risk. Instead, we provide two proce-

dures to fit “bias-aware” distributions that take into account the entropic risk estimation bias caused

by tail events. The first one involves a distribution matching technique that tries to fit the entropic

risk estimator’s distribution itself, and the second uses a simple mixture distribution with a component

dedicated to fitting the tail of the empirical distribution.

Going beyond the estimation of entropic risk, we study the entropic risk minimization problem.

Solving the sample average approximation (SAA) of the entropic risk minimization problem is known

to produce a second source of bias, also known as the optimizer’s curse (Smith and Winkler 2006).

Distributionally robust optimization (DRO) is widely used to address the optimistic bias of SAA

policies because the decision-maker is protected against perturbations in the empirical distribution that

lie in a distributional ambiguity set. Most of the literature on DRO with the Wasserstein ambiguity set

assumes that the random variables involved in the expectation operator have light tails, a condition that

is not satisfied for the entropic risk measure. It is well-known that worst-case loss in a DRO problem

with type-p Wasserstein ambiguity set (p < ∞) is finite if and only if the loss function satisfies a

growth condition (Gao and Kleywegt 2023). Thus, the worst-case entropic risk can be shown to be

unbounded for type-p Wasserstein ambiguity set with p ∈ [1,∞). So, we introduce a distributionally

robust entropic risk minimization problem with type-∞ Wasserstein ambiguity set and cast it into

a finite-dimensional convex optimization problem for piecewise concave loss functions. To tune the

radius of the ambiguity set, a typical approach is to use K-Fold cross validation (CV). We use our bias

mitigation procedure to estimate the validation performance of the resulting decisions.

To demonstrate the effectiveness of our approach, we conduct a case study on an insurance pricing

problem. The International Panel on Climate Change (IPCC) advocates using financial instruments

like catastrophe insurance to mitigate risks associated with rare, high-impact events such as floods,

earthquakes, and wildfires. These events have become more frequent due to climate change, making

reliable risk estimation even more critical (Linnerooth-Bayer and Hochrainer-Stigler 2015). The corre-

lated risks of floods, earthquakes, and wildfires can lead to significant payouts for insurers, limiting the

availability of insurance for such events in commercial markets (Marcoux and H Wagner 2023). The

true distribution of losses, which may be correlated across homeowners, is unknown to both the insurer

and the homeowners. The insurer addresses this uncertainty by solving a distributionally robust insur-

ance pricing problem, determining the coverage to offer and the premium to charge each homeowner.
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Our results show that the insurer can achieve a significant improvement in out-of-sample entropic risk

compared to the “traditional” K-Fold CV procedure, which selects the radius of the distributional

ambiguity set solely by evaluating decisions on validation loss scenarios.

Our contributions can be described as follows:

1. On the theoretical side, we propose a strongly asymptotically consistent bootstrapping procedure

to debias the empirical entropic risk estimator. Our main contribution lies in developing two

bias-correction methods to mitigate the underestimation of the entropic risk in the finite sample

case. In the first step, both methods fit a distribution to the samples to capture the bias in the

samples. In the second step, bootstrapping is used to estimate the bias. Our methods could be

of independent interest for debiasing more general risk measures.

2. We introduce a distributionally robust entropic risk minimization problem with a type-∞Wasser-

stein ambiguity set with bounded worst-case losses. We obtain its tractable robust counterpart

for piecewise concave loss functions using Fenchel duality and provide conditions under which

the optimal risk from the the DRO problem converges to the true optimal risk.

3. On the application side, our work contributes toward data-driven designing of insurance premium

pricing and coverage policies. To the best of our knowledge, this is the first time that a distribu-

tionally robust version of the well-known risk-averse insurance pricing problem (Bernard et al.

2020) is introduced in the literature. Our model takes into account the different risk aversion

attitudes of the insurer and homeowners as well as the systemic risk associated with catastrophe

events.

The paper is organized as follows. Section 2 surveys the literature on three related topics, estimat-

ing risk measures, correcting optimistic bias associated with solving SAA problem, and catastrophe

insurance pricing. Section 3 discusses the properties of entropic risk measure. Section 4 provides a bias

correction procedure to mitigate the underestimation problem. In Section 5, we study the entropic

risk minimization problem using the DRO framework. In Section 6, we introduce the distribution-

ally robust insurance pricing problem and provide numerical results. Finally, conclusions are given in

Section 7.

Notations: [m] denotes the set of integers {1, 2, · · · ,m}. ∥ · ∥∗ denotes the dual norm of ∥ · ∥. δξ is

the Dirac distribution at the point ξ. Finally, log(·) refers to the natural logarithm.

2 Literature review

2.1 Risk estimation

Quantitative risk measurement often relies on precise estimation of risk measures commonly used

in finance and actuarial science (McNeil et al. 2005). Calculating risk for multidimensional random

variables can be challenging due to the need for complex integrals, often approximated using Monte

Carlo simulation. When the underlying distribution isn’t directly accessible and only limited samples

are available, Monte Carlo-based risk estimators tend to underestimate the actual risk. Kim and Hardy

(2007) addressed this by using bootstrapping to correct bias in Value at Risk (VaR) and Conditional

Tail Expectation (CTE) estimates, with Kim (2010) extending this approach to general distortion

risk measures. Bootstrapping involves sampling with replacement from the empirical distribution,

calculating the statistic, and averaging the outcomes over multiple iterations. However, bootstrap

estimates still tend to underestimate risk in finite samples due to the lack of extreme tail scenarios

(see Figure 4). In contrast, our bootstrapping procedure draws samples from a “bias-aware” fitted

distribution that better accounts for tail scenarios.

Several approaches have been proposed in the literature for estimating tail risks. Lam and Mottet

(2017) introduce a distributionally robust optimization based method to construct worst-case bounds
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on tail risk, assuming the density function is convex beyond a certain threshold. Extreme Value

Theory (EVT) is commonly used to estimate tail risk measures, such as CVaR, by fitting a Generalized

Pareto Distribution to values exceeding a threshold. Troop et al. (2021) develop an asymptotically

unbiased CVaR estimator by correcting the bias in the estimates obtained via maximum likelihood.

In Kuiper et al. (2024), the authors derive DRO-based estimators for EVT statistics to account for

model misspecification due to scenarios outside the asymptotic tails. While these methods focus on

upper-tail risk, they are not directly applicable to the entropic risk measure. Instead of fitting an

extreme value distribution, we utilize a parametric two-component Gaussian Mixture Model (GMM),

which provides a closed-form expression for the entropic risk and captures both the mean and the tails

of the data.

One related field of research is to derive concentration bounds on the risks estimates depending on

whether the random variable is sub-gaussian, sub-exponential or heavy-tailed. For optimized certainty

equivalent risk measures that are Hölder continuous, L.A. and Bhat (2022) link estimation error to

the Wasserstein distance between the empirical and true distributions, for which concentration bounds

are available. While the Central Limit Theorem (CLT) ensures asymptotic convergence of the sample

average to the true mean, this guarantee doesn’t always hold for finite samples unless the tails are

Gaussian or sub-Gaussian (Catoni 2012, Bartl and Mendelson 2022). Robust statistics literature offers

alternative estimators, like the median-of-means (MoM) estimator (Lugosi and Mendelson 2019), which

ensure the estimator is close to the true mean with high confidence. However, these approaches differ

from our focus, which is on constructing estimators with minimal bias.

2.2 Correcting optimistic bias

Our work on entropic risk minimization relates to correcting the optimistic bias of SAA policies to

achieve true decision performance (Smith and Winkler 2006, Beirami et al. 2017). SAA is analogous to

empirical risk minimization in machine learning, where the goal is to minimize empirical risk. Methods

like DRO, hold-out, and K-fold CV are used to correct this bias. These approaches involve partitioning

data into training, validation, and test sets, and then selecting the hyperparameter that results in

smallest validation risk (Bousquet and Elisseeff 2000). Our hyper-parameter selection employs the

debiased validation risk.

Several methods have been proposed to correct the bias of SAA in linear optimization problems

under the assumption that the true data distribution is Gaussian. For example, Ito et al. (2018) in-

troduce a perturbation technique that generates parameters around the true values under Gaussian

error assumptions to achieve an asymptotically unbiased estimator of the true loss. Similarly, Gupta

et al. (2024) derive estimators for the out-of-sample performance of in-sample optimal policies under a

Gaussian distribution and offer extensions to approximate Gaussian cases, leveraging the structure of

linear optimization problems. However, extending these methods to our nonlinear problem is challeng-

ing. Moreover, our objective is to find optimal policies with low out-of-sample risk rather than merely

estimating this risk. Since CV risk could be biased estimate of the out-of-sample risk, we employ our

bias correction procedure to correct it, enabling appropriate calibration of the regularization parame-

ter. Importantly, our approach does not rely on Gaussian assumptions for the uncertain parameter or

the structure of the objective function.

In Siegel and Wagner (2023), the authors analytically characterize the bias in SAA policies for a

data-driven newsvendor problem, providing an asymptotically debiased profit estimator by leveraging

the asymptotic properties of order statistics. Iyengar et al. (2023) introduce an Optimizer’s Information

Criterion (OIC) to correct bias in SAA policies, generalizing the approach by Siegel and Wagner (2023)

to other loss functions. However, OIC requires access to the gradient, Hessian, and influence function

of the decision rule, which can be challenging to obtain in general constrained optimization problems.

Moreover, the form of optimal policy is known for risk-neutral newsvendor problems but not for entropic

risk minimization problems.



Les Cahiers du GERAD G–2024–83 6

2.3 Insurance pricing

The design of insurance contracts has been widely studied since the foundational work of Arrow (Arrow

1963, 1971). Under the assumption that premiums are proportional to the policy’s actuarial value,

it has been shown that an expected utility-maximizing policyholder will choose full coverage above a

deductible. Various extensions of Arrow’s model have been proposed to account for the risk aversion

of both the insured and the insurer, using criteria such as mean-variance (Kaluszka 2004a,b), Value

at Risk (VaR), and Tail VaR (Cai et al. 2008). Bernard and Tian (2010) incorporate regulatory

constraints on the insurer’s insolvency risk through VaR. Cheung et al. (2014) extend these models to

multiple policyholders with fully dependent risks (comonotonicity), where the insurer utilizes convex

law-invariant risk measures. Bernard et al. (2020) further explore different levels of dependence among

policyholders, with both insurers and policyholders using exponential utility functions. However, these

studies typically assume that the loss distribution is known. We extend the model proposed by Bernard

et al. (2020) to account for ambiguity regarding the true loss distribution when only a limited number

of samples are available.

3 Properties of entropic risk measure

Let (Ω,F ,P) is a probability space and let Lp := Lp(Ω,F ,P) denote the space of real-valued measurable

functions, X : Ω → R such that E[|X|p] < ∞, for some p ≥ 1. The entropic risk measure is a convex,

law invariant risk measure (Föllmer and Schied 2002), thus satisfying the following definition.

Definition 1. A functional ρ : Lp → R̄, where R̄ := R ∪ {∞}, is a convex law-invariant risk measure if

(a) ρ(X −m) = ρ(X)−m for all X ∈ Lp and m ∈ R and ρ(0) = 0.

(b) ρ(X) ≤ ρ(X ′) if X ≤ X ′ almost surely (a.s.) for all X ∈ Lp.

(c) ρ(λX + (1− λ)X ′) ≤ λρ(X) + (1− λ)ρ(X ′) for λ ∈ [0, 1] and for all X,X ′ ∈ Lp.

(d) ρ(X) = ρ(X ′) for all X,X ′ ∈ Lp such that X = X ′ in distribution.

Condition (a), also known as cash-invariance property, states that m is the minimum amount

that should be added to a risky position to make it acceptable to a regulator. Condition (b), ensures

monotonicity, meaning lower losses are preferable. Condition (c), convexity, ensures that diversification

reduces risk. Lastly, condition (d), law invariance, states that two random variables with the same

distribution should have equal risk.

Letting ξ : Ω → Rd be a random vector and ℓ(ξ) ∈ Lp the random loss that it produces, we will

further impose the following assumption to ensure that the entropic risk of ℓ(ξ) is finite, together with

the mean and variance of exp(αℓ(ξ)).

Assumption 1. The tails of ℓ(ξ) are exponentially bounded:

P(|ℓ(ξ)| > a) ≤ G exp(−aαC), ∀a ≥ 0,

for some G > 0 and C > 2. Equivalently, the moment-generating function E[exp(tℓ(ξ))] ∈ R for all

t ∈ [−αC,αC] for some C > 2, see Lemma 2 in Appendix A.8 for a proof of equivalence.

Assumption 1 further restricts the space of loss functions in Definition 1 in order to work with

random variables that are “well-behaved” from the point of view of entropic risk estimation at a risk

tolerance level of α. Indeed, our assumptions will ensure that the empirical estimator is asymptotically

consistent. We note that our assumption relates to LM , the set of random variables with finite-valued

moment generating functions, through the following inclusion: L∞ ⊆ LM ⊆ Lα ⊆ Lp with Lα as the

set of random variables in Lp that satisfy Assumption 1.

Lemma 1. Under Assumption 1, E[exp(αℓ(ξ))] ∈
[
exp(− 2G

C ), G
C−1

]
and Var[exp(αℓ(ξ))] ∈

[
0, 2G

C−2

]
.
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4 Bias mitigation using bias-aware bootstrapping

In this section, we introduce our proposed estimators designed to address the underestimation prob-

lem associated with the empirical entropic risk estimator, ρP̂N
(ℓ(ξ)). The true bias is given by

δ = ρP(ℓ(ξ))−E[ρP̂N
(ℓ(ξ))], where the expectation is taken with respect to the randomness inDN . Since

the true distribution P is unknown, the exact bias cannot be determined. Several approaches rely on

CLT to devise asymptotically unbiased estimators. However, with heavy-tailed losses (high risk aver-

sion), a large number of samples is required before the estimator’s error tails exhibit Gaussian behavior

(see Figure 1). For instance, a typical approach in the literature to devise an unbiased estimator is to

use bootstrapping which samples repeatedly from the empirical distribution. Such bootstrapping pro-

cedure has been shown to be weakly consistent (DasGupta 2008), however, it exhibits significant bias

for small sample sizes. In this paper, we propose a modification to the classical bootstrap algorithm,

namely, we first fit a distribution QN using the N i.i.d. loss scenarios S := {ℓ(ξ1), ℓ(ξ2), · · · , ℓ(ξN )}
and then repeatedly sample from QN , instead of resampling from the empirical distribution. We will

demonstrate that fitting a distribution is a crucial step in reducing bias in finite samples, while still

ensuring that the estimator is strongly asymptotic consistent. Nevertheless, merely fitting QN using

MLE does not fully resolve the underestimation issue, which is why we introduce bias-aware procedures

to better fit the data, see Sections 4.1 and 4.2.

Let ζ ∼ QN capture the loss ℓ(ξ) associated with the uncertain parameter ξ. Similar to Assump-

tion 1, the following assumption ensures that the mean and variance of exp(αζ) are finite.

Assumption 2. Suppose that the tails of ζ ∼ QN are almost surely uniformly exponentially bounded.

Namely, with probability one with respect to the sample and the fitting procedure of QN , there exists

some G > 0 and some C > 2 such that ζ ∼ QN satisfies Assumption 1 for all N ≥ 1.

This assumption is not limiting since we have assumed that ℓ(ξ) satisfies this assumption under P.
In practice, this assumption could be satisfied by properly defining the set of models used to estimate

QN from the loss scenarios S.

Next we introduce the necessary notation to describe our estimation procedure. Let ρQN
(ζ) denote

the entropic risk for the distribution QN . Let Q̂N,N represent the empirical distribution of N values

drawn i.i.d. from the estimated distribution QN , and ρQ̂N,N
(ζ) denote the corresponding empirical

entropic risk. Notice that since QN was estimated using N loss scenarios, it is itself random, thus

ρQN
(ζ) and ρQ̂N,N

(ζ) are random variables as well. Our proposed estimator for the bias of the entropic

risk is given by

δN (QN ) := median
(
ρQN

(ζ)− ρQ̂N,N
(ζ)|QN

)
, (5)

where the median is taken with respect to randomness of samples from QN . Algorithm 1 provides an

estimate for the bias. Given N loss scenarios S, the algorithm first estimates QN , and then repeatedly

samples N i.i.d. scenarios from QN to form the empirical distribution Q̂N,N . For each of the M

repetitions, it estimates the entropic risk, denoted by the sequence ρ1, ρ2, · · · , ρM . Finally, the bias

is estimated through δ̂N (QN ) = median{ρQN
(ζ)− ρn}Mn=1. Note that as M increases, the resampling

(simulation) error in the bootstrap estimate decreases, and the bootstrap estimate δ̂N (QN ) converges

to the true estimate δN (QN ).

Algorithm 1 Bootstrap bias correction.

1: function BootstrapBiasCorrection(S,M)
2: QN ← Fit a distribution to the loss scenarios S
3: for n← 1 to M do
4: Q̂N,N ← Draw N i.i.d. samples from QN

5: ρn ← ρQ̂N,N
(ζ)

6: δ̂N (QN )← median[{ρQN
(ζ)− ρn}Mn=1]

7: return δ̂N (QN )
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In the next theorem, we show that the bias-adjusted empirical risk given by ρP̂N
(ℓ(ξ)) + δN (QN )

is an asymptotically consistent estimator of the true risk ρP(ℓ(ξ)), meaning that as the number of

training samples N → ∞, the bias-adjusted empirical risk almost surely converges to the true entropic

risk.

Theorem 1. Under Assumptions 1 and 2, the estimator ρP̂N
(ℓ(ξ))+δN (QN ) is strongly asymptotically

consistent.

The proof involves two key steps: The first step is to establish that the empirical entropic risk

converges to the true risk almost surely. This is achieved by using the strong law of large numbers

and the continuous mapping theorem. The strong law of large numbers ensures that the average

of exponentiated losses converges almost surely to its expected value, and the continuous mapping

theorem extends this convergence to the logarithmic transformation involved in the entropic risk,

leading to the almost sure convergence of the empirical risk to the true risk. The second step involves

showing that the bias term, δN (QN ), converges to zero almost surely. This is accomplished by showing

that the bias, calculated under any sequence of fitted distributions {Q̄N}∞N=1 that satisfy Assumption 2

can be made arbitrarily small for sufficiently large N . We show that the almost sure convergence of

bias to zero is equivalent to proving that the median of a random variable XN representing the ratio

of empirical and true risk under Q̄N converges to 1 almost surely. To establish this, Chebyshev’s

inequality is used rather than the CLT, as it applies for any finite N ≥ 1. By setting the upper tail

probability to 25% in the Chebyschev’s inequality, the median of XN is bounded within an interval

around 1 which becomes smaller as N increases. Consequently, the median of XN converges to 1

almost surely. Thus, for any sequence of distributions {Q̄N}∞N=1 which satisfy Assumption 2, the bias

δN (QN ) converges almost surely to zero.

Our approach does not rely on asymptotic or parametric (Gaussian, for instance) assumptions

made in the literature to correct the bias. Due to the heavy tailed loss, the asymptotically unbiased

estimators proposed in the literature underestimate the risk in the finite sample case. In fact, the

underestimation problem persists in our proposed method as well if we naively use our bootstrapping

procedure in finite samples, e.g., using MLE to fit a distribution. Since our procedure is flexible in the

choice of distributions to fit to the data and the fitting procedure, we will account for the bias due to

the tail scenarios in the following subsections.

Among the options for choosing the distribution QN , we utilize a Gaussian Mixture

Model (GMM), Qθ, with parameters θ := (π,µ,σ), where π ∈ RY denotes the weights of the Y

mixtures, and µ ∈ RY and σ ∈ RY denote the means and standard deviations of the mixtures,

respectively. There are two advantages for using GMM. First, GMMs are universal density approx-

imators, meaning they can approximate any smooth density given sufficient data, and second, the

moment-generating function of a random variable ζ ∼ Qθ exists for all α, and thus the entropic risk

ρQθ (ζ) = 1
α log

(∑Y
y=1 πy exp(αµy +

α2

2 σ2
y)
)
can be obtained in closed form. This eliminates the need

to estimate the entropic risk through simulation in step 6 of Algorithm 1, which can be particularly

beneficial when the risk aversion parameter α is large, as this would otherwise require a large number

of samples for accuracy.

The natural approach for fitting the parameters θ of a GMM is to use MLE, typically achieved

via the Expectation-Maximization (EM) algorithm (Dempster et al. 1977). The following example

demonstrates that with limited samples, if step 2 of Algorithm 1 utilizes the Expectation-Maximization

algorithm to fit a GMM, the estimate will still underestimate the true risk.

Example 2. Consider the problem of estimating the entropic risk of a random variable that follows

a Gaussian mixture model with two components ξ ∼ GMM(π,µ,σ), π = [0.7 0.3], µ = [0.5 1],

and σ = [2 1]. To obtain Figure 2, we draw N i.i.d. samples from GMM(π,µ,σ) where N ∈
{103, 104, 105, 5.105}. The true bias correction is obtained by first computing the true entropic risk and

then subtracting the expected empirical entropic risk ρ̄ = 1
1000

∑1000
i=1

1
α log

(
EP̂N

[exp(αξi)]
)
obtained
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by bootstrapping with 1000 repetitions.1 We fit a GMM Qθ to the samples using the Expectation-

Maximization algorithm and use Algorithm 1 to estimate the bias. The boxplots are plotted by

resampling 100 times from GMM(π,µ,σ). Fitting a GMM by MLE still underestimates the true bias

for finite number of samples. Also, we can observe that as the number of training samples increase,

the bias estimated by fitted GMM converges toward 0.
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Figure 2: Statistics of bias correction estimated from fitting a GMM by MLE followed by bootstrapping over 100 resampling
from the underlying distribution.

We next propose different distribution fitting strategies that can aid the bias mitigation in finite

samples. The aim is to fit a distribution such that N i.i.d. samples drawn from the fitted distribution

replicate the bias observed in N i.i.d. samples from the true distribution P. We refer to this approach as

“bias-aware” distribution matching. This concept is inspired by “decision-aware” learning methods in

contextual optimization problems (Elmachtoub and Grigas 2021, Donti et al. 2017, Grigas et al. 2023,

Sadana et al. 2025), where statistical accuracy is deliberately traded for improved decision outcomes.

4.1 Entropic risk matching

In this section, we describe Algorithm 2 which is used to learn the parameters θ of the GMM, Qθ, such

that the distribution of entropic risk for n samples drawn from Qθ matches the empirical distribution

of entropic risk for n samples drawn from the empirical loss scenarios S. To construct the latter

distribution, S is divided into B bins, with each bin containing n = N/B scenarios. The entropic risk

is computed for each bin, forming the set RDN
. The corresponding empirical distribution, P̂RDN

, over

the set RDN
, captures the variability of entropic risk across the B bins. For the former distribution,

with a fixed θ, B′ × n i.i.d. samples are drawn from Qθ and divided into B′ bins. The entropic risk

is then computed for the scenarios in each bin, yielding the set Rθ. The corresponding empirical

distribution, P̂Rθ
, captures the variability of entropic risk across the B′ bins.

Next, the algorithm compares the empirical distribution P̂RDN
with the model-based distribution

P̂Rθ
using the following Wasserstein distance:

W2
(
P̂RDN

, P̂Rθ

)
=

(∫ 1

0

|F−1
RDN

(q)− F−1
Rθ

(q)|2dq
)1/2

,

1We repeat this procedure 100 times, compute the estimate of true entropic risk, and the 95% confidence interval
for the true entropic risk is contained in the marker drawn on Figure 2 for the true entropic risk.
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where F−1
RDN

and F−1
Rθ

are quantile functions associated with sets RDN
and Rθ, respectively. This

distance quantifies the discrepancy between the two distributions. The algorithm iteratively adjusts

the GMM parameters to minimize this distance. It uses gradient descent to update the parameters θt

at each iteration as follows:

θt+1 = θt − γ∇θtW2
(
P̂RDN

, P̂Rθt

)
,

where γ is the step size. To enable computation of the gradients of the Wasserstein distance with respect

to θ, the algorithm employs differentiable sampling techniques that enable automatic differentiation

through the sampling process (see Algorithm 6 in Appendix B.4). This is based on reparameterization

approach (Kingma et al. 2015), which allows stochastic sampling operations to be expressed in a

differentiable manner. The iterative process continues until the Wasserstein distanceW2
(
P̂RDN

, P̂Rθt

)

falls below a predefined convergence threshold ϵ, or until a maximum number of iterations T is reached.

Further details of the algorithm can be found in Appendix B.3.

Even though computing the Wasserstein distance between distribution of losses has a worst-case

complexity O(B′ log(B′)) (Kolouri et al. 2019), there is a significant total cost associated with the

gradient descent procedure described in Algorithm 2. In the next section, we provide a semi-analytic

procedure to learn a two-component GMM that can account for the tail scenarios.

Algorithm 2 Fit GMM by entropic risk matching.

1: function BS-Match(S)
2: Divide loss scenarios in S into B bins, each of size n
3: Compute the entropic risk in B bins, forming the empirical distribution P̂RDN

4: Fit a GMM Qθ to S with Y components using EM algorithm
5: Initialize the iteration counter t← 0 and D←∞
6: while d > ϵ and t < T do
7: Draw B′ × n i.i.d. samples from Qθt , split into B′ bins
8: Compute entropic risk in each bin, forming P̂Rθt

9: Update GMM parameters: θt+1 ← θt − γ∇θtW2
(
P̂RDN

, P̂Rθt

)
10: Project θt+1 onto the feasible region of a GMM

11: Update distance: D←W2
(
P̂RDN

, P̂Rθt

)
12: Increment iteration counter: t← t+ 1

13: return Qθt

4.2 Matching the extremes

This section focuses on learning the parameters θ of a GMM Qθ by giving special attention to the tails

of the loss distribution, aiming to improve the accuracy of the entropic risk estimation. Although the

entropic risk depends on the entire distribution, its sensitivity to extreme values makes an accurate

approximation of tail behavior essential. Figure 14 in Appendix B.1 illustrates the influence func-

tion, highlighting how tail events disproportionately affect the entropic risk. Our distribution fitting

approach strikes a balance between capturing the tail behavior and retaining analytical tractability.

Our proposed procedure is motivated by the Fisher–Tippett–Gnedenko extreme value theorem

(de Haan and Ferreira 2006) which states that given i.i.d. samples of {ζ1, ζ2, · · · , ζn} with cumula-

tive distribution function (cdf) given by F (·), the distribution of the (normalized) maxima Mn =

max{ζ1, ζ2, · · · , ζn} converges to a non-degenerate distribution G:

lim
n→∞

P
(
Mn − bn

an
≤ x

)
= lim

n→∞
F (anx+ bn)

n → G(x),

where an and bn are normalizing sequences of scale and location parameters, respectively, that ensure

the limit exists and F (·)n is the cdf of Mn. The limit distribution G belongs to one of three extreme

value distributions–Weibull, Fréchet or Gumbel distribution–depending on the tails of F (·).
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Algorithm 3 constructs an equally-weighted two-component GMM to represent the loss distribution.

The first component aims to estimate the distribution of maxima Mn of the loss scenarios. To this end,

first we divide the loss scenarios S into B bins, each of size n = N/B. We store the maximum within

each bin in set M, where FM denotes the cdf of scenarios in M. This approach is typically referred to

as the block maxima method (de Haan and Ferreira 2006). Motivated by the extreme value theory, the

algorithm estimates the parameters of the first component by matching the cdf of maximum of n i.i.d.

samples from N (µe, σe), denoted by Φn
µe,σe to FM. The calculation of the parameters (µe, σe) can be

done in a semi-analytic way as discussed in Appendix B.3. For the second component of the GMM,

we set the mean to 2(µS − 0.5µe), where µS is the mean of the loss scenarios, and set the standard

deviation to zero. This choice ensures that the mean of overall GMM is equal to the mean of the loss

scenarios µS .

The reasoning behind the first component of the GMM is the following. Fitting an extreme value

distribution directly to the maxima M is computationally intensive, often inaccurate with finite sam-

ples, and typically only informative for upper tail risk, even with large datasets. Instead, fitting a

normal distribution with our proposed approach is computationally efficient since it can be done semi-

analytically. Furthermore, our approach can provide a reasonable approximation of the tails since both

Φn
µe,σe and tails of true loss distribution converge to an extreme value distribution as n goes to infinity.

We emphasize that our approach is different from fitting a normal distribution directly to scenarios in

S or M by MLE.

Algorithm 3 Fit GMM based on the extreme value theory.

1: function BS-EVT(S)
2: Divide scenarios in S into B bins of size n = N/B each
3: FM ← cdf of maxima in each bin
4: Determine (µe, σe) so that Φn

µe,σe matches FM

5: π̂ ←
(
0.5
0.5

)
, µ̂←

(
µe

2(µS − 0.5µe)

)
, σ̂ ←

(
σe

0

)
6: θ ← (π̂, µ̂, σ̂)
7: return Qθ

We end this section by revisiting Example 2, to include the estimation procedures from Sections 4.1

and 4.2. We have already shown in Figure 2 that naively fitting a GMM using MLE underestimates

the true risk. In Figure 3, we observe the behavior of the bootstrap (Algorithm 1) in conjunction with

the entropic risk matching (Algorithm 2) denoted by BS-Match, and the bootstrap (Algorithm 1) in

conjunction with the extremes matching (Algorithm 3) denoted by BS-EVT. We can observe that the

bias correction using BS-Match decays at a rate similar to the true bias. However, the bias associated

with BS-MLE decays at the faster rate compared to the true bias estimate, whereas for BS-EVT, it decays

slowly Thus, BS-MLE tends to underestimate the risk, while BS-EVT tends to overestimate the true risk.

4.3 Comparison with benchmarks from the literature

In this section, we review several methods from the literature for estimating entropic risk and show

through a numerical example that they significantly underestimate it. We start with a brief summary

of each method.

Entropic risk measure can be equivalently written as an optimized certainty equivalent risk measure

(Ben-Tal and Teboulle 1986), i.e.,

ρP(ℓ(ξ)) = inf
t
EP[h(t, ℓ(ξ))], (6)

where h(t, ℓ(ξ)) = t+ 1
α exp(α(ℓ(ξ)− t))− 1

α .

Sample average approximation (SAA): The SAA estimator is obtained by solving SAA of problem (6):

ρSAA :=
1

α
log(EP̂N

[exp(αℓ(ξ))]) = inf
t
EP̂N

[h(t, ℓ(ξ))],
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Figure 3: Statistics of bias correction estimated from fitting a GMM by MLE (BS-MLE), entropic risk matching (BS-Match)
and tail fitting (BS-EVT) followed by bootstrapping over 100 resampling from the underlying distribution.

where P is replaced with P̂N . It is well-known that decisions based on the SAA can suffer from opti-

mizer’s curse, leading to an optimistic bias (Smith and Winkler 2006). To mitigate the underestimation

of the optimal value ρP(ℓ(ξ)) by the SAA estimator, leave-one out CV and optimizer’s Information Cri-

teria (OIC) are proposed in the literature which are discussed below.

Leave-one out cross validation (LOOCV): Let P̂N−i
denote the empirical distribution without the ith

scenario, and let t̂−i denote the optimal solution of (6) in which P̂N−i is used. The estimator is then

defined as:

ρLOOCV :=
1

N

N∑

i=1

(
t̂−i +

1

α

(
exp(α(ℓ(ξ̂i)− t̂−i))− 1

))
.

Since t̂−i is a feasible solution of (6), we have ρP(ℓ(ξ)) ≤ EP[h(t̂−i, ℓ(ξ)] almost surely with respect to

the randomness of t̂−i for all i ∈ [N ]. Thus,

ρP(ℓ(ξ)) ≤ E

[
1

N

N∑

i=1

EP(h(t̂−i, ℓ(ξ)))

]

=
1

N

N∑

i=1

E
[
EP(h(t̂−i, ℓ(ξ)))

]

=
1

N

N∑

i=1

E
[
E(h(t̂−i, ℓ(ξ̂i))|{ξ̂j}j∈[N ]−i

)
]

=
1

N

N∑

i=1

E[h(t̂−i, ℓ(ξ̂i))]

= E[ρLOOCV].

where the first equality follows from linearity of expectation, the second is due to the independence of

ξ̂i ∼ P and {ξ̂j}j∈[N ]−i
and the third follows from the law of iterated expectations. Thus, ρLOOCV is a

positively biased estimator of ρP(ℓ(ξ)).
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Optimizer’s information criteria (OIC): To correct the first-order optimistic bias associated with the

SAA, Iyengar et al. (2023) introduced the OIC estimator:

ρOIC := ρSAA +
VarP̂N

(exp(αℓ(ξ)))

Nα(EP̂N
[exp(αℓ(ξ))])2

,

(see Appendix B.2 for detailed calculations).2

Maximum Likelihood Estimation (MLE): The MLE estimator involves fitting a GMM Qθ to the loss

scenarios using the EM algorithm, and the estimator is given by ρMLE := (1/α) log(EQθ [exp(αℓ(ξ))]).

Median-of-means (MoM): The MoM estimator is constructed by dividing the loss scenarios into ⌊
√
N⌋

blocks, calculating the entropic risk within each block, and then taking the median of these entropic

risk values (Lugosi and Mendelson 2019).

Bootstrap (BS): The BS estimator is calculated by repeatedly sampling N observations with replace-

ment from the empirical distribution of loss scenarios. For each bootstrap sample, the empirical

entropic risk is computed. After a large number of repetitions, the average of these entropic risks

provides the bootstrap estimator.

Example 3. Consider a project selection problem with three projects. Let ξ ∼ GMM(π,µ,σ) with

Y = 5 (see Appendix B.5 for parameter values of the GMM with randomly generated weights π).

Suppose the losses associated with the three projects are given by 0.4ξ, 0.6ξ and 0.8ξ, respectively.

Let the risk aversion parameter be α = 3. The true entropic risk can be analytically expressed as

ρP(ξ) =
1
3 log

(∑Y
y=1 πy exp

(
3µy +

9
2σ

2
y

))
. To evaluate each estimator, we draw 1000 instances with a

sample size of N = 10000 from the GMM(π,µ,σ).

Figure 4 shows that the estimators discussed above significantly underestimate the true entropic

risk for projects 2 and 3. It is interesting to note that although the LOOCV estimator overestimates the
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Figure 4: Statistics of the estimates of the true entropic risk obtained from different models for each project.

true entropic risk, its distribution across the 1000 instances is skewed, with the entropic risk falling

2It is to be noted that the OIC estimator is designed to address the optimizer’s curse, while we aim to debias the
empirical entropic risk estimator. The OIC estimator relies on the asymptotic normality and linearity assumption of SAA
estimator. With heavy tailed losses, these assumptions on SAA estimator do not carry over to practical scenarios with
limited data, hence, the underestimation issue persists. Even though the true performance of a decision obtained by
solving the SAA problem overestimates the true entropic risk, the OIC estimator based on the empirical distribution
underestimates the true risk.
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below the true value in over 75% of instances. In contrast, our proposed estimators effectively address

the underestimation issue. Specifically, BS-EVT overestimates the entropic risk and BS-Match reduces

the bias of SAA estimator significantly.

In the next section, we will show that the proposed procedures for mitigating estimation bias can

also be applied to mitigate the optimistic bias when solving entropic risk minimization problems. As

discussed earlier, optimistic bias occurs due to lack of data, in which case regularization type techniques

(such as distributionally robust optimization) are employed to correct the bias. By providing better

estimates of the validation risk, we can more accurately calibrate the hyperparameters compared to

traditional CV methods.

5 Distributionally robust optimization

Entropic risk minimization considers the following problem:

ρ∗ = min
z∈Z

ρP(ℓ(z, ξ)) :=
1

α
log (EP[exp(αℓ(z, ξ))]) , (7)

where Z ⊆ Rd denotes the set of all feasible decisions, ξ ∈ Rd denotes the uncertain vector following

the probability distribution P, and ℓ(z, ξ) denotes the loss function. For the optimal solution z∗ of

problem (7) to be well defined, we make the following standard assumptions:

Assumption 3. We assume that:

(A.1) Z is a compact and convex set.

(A.2) ℓ(z, ξ) is convex in z for almost every ξ ∈ Ξ.

(A.3) ℓ(z, ξ) is L-Lipschitz continuous in ξ for all z ∈ Z.

(A.4) ℓ(z, ξ) is L(ξ)-Lipschitz continuous in z for all ξ ∈ Ξ with EP[L(ξ)
q] < ∞ for all q ≥ 1.

(A.5) |ℓ(z, ξ)| ≤ L̄(ξ) for all z ∈ Z almost surely, with the tail of L̄(ξ) exponentially bounded:

P
(
L̄(ξ) > a

)
≤ G exp(−aαC) for all a ≥ 0,

for some constants G > 0 and C > 2.

As in Assumption 2, the last assumption ensures that the mean and variance of the loss exp(αℓ(z, ξ))

are finite for each z ∈ Z. We make the technical assumptions (A.4) and (A.5) to ensure the convergence

of SAA solution to the true risk (see Proposition 1).

As the true underlying distribution P is typically unknown, it is common practice to replace it with

the empirical distribution P̂N , solving the corresponding SAA problem:

ρSAA = min
z∈Z

ρP̂N
(ℓ(z, ξ)) :=

1

α
log
(
EP̂N

[exp(αℓ(z, ξ))]
)
. (8)

Under Assumption 3, it follows that ρSAA → ρ∗ as N grows, as shown in Proposition 1.

Proposition 1. Suppose that Assumption 3 holds. Then, for any γ > 0, there exists a constant A > 0

for which,

P
(
|ρSAA − ρ∗| ≥ A√

Nγα exp(αρ∗)

)
≤ γ, (9)

as long as N is sufficiently large. Consequently, ρSAA → ρ∗ in probability.

To prove Proposition 1, we show that exp(αℓ(ξ, z)) is κ(ξ)-Lipschitz continuous in z for all ξ ∈ Ξ

with κ(ξ) = αL(ξ) exp(αL̄(ξ)). Then, we apply the uniform convergence results for heavy tailed

distributions in Jiang et al. (2020, Theorem 3.2) to show the uniform convergence of empirical utility

to true utility for all z ∈ Z. This theorem only requires that the second moment of κ(ξ) is finite instead
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of the usual light-tailed assumptions that don’t hold for κ(ξ). Subsequently, we use the properties of

logarithm function in the neighborhood of zero to show the uniform convergence of empirical risk to

optimal risk. This convergence result underpins the prevalent use of the SAA approach for entropic

risk minimization problems (Chen et al. 2024a,b). For a detailed examination of the SAA methodology

within stochastic programming, see Shapiro et al. (2009).

In the limited data setting, the risk produced by solving problem (8) underestimates the true risk ρ∗

due to overfitting on the empirical distribution. Distributionally robust optimization (DRO) is one of

the approaches to mitigate the optimistic bias of SAA by robustifying decisions against perturbations in

the empirical distribution (Delage and Ye 2010, Wiesemann et al. 2014, Mohajerin Esfahani and Kuhn

2018, Rahimian and Mehrotra 2022). It is assumed that nature perturbs the empirical distribution

within a distributional ambiguity set B(ϵ) containing all distributions Q that are at a “distance” ϵ ≥ 0

away from the empirical distribution P̂N , so as to maximize the entropic risk of the decision maker,

while decision maker aims to minimize the worst-case risk resulting in the following min-max problem:

ρDRO := min
z∈Z

sup
Q∈B(ϵ)

1

α
log (EQ[exp(αℓ(z, ξ))]) . (10)

The size of the ambiguity set, ϵ, is chosen by the decision maker; however, as we will discuss later,

in practice it is treated as a hyperparameter tuned through CV to optimize the performance of the

optimization model on unseen data.

In the literature, different ambiguity sets have been considered with the Kullback Leibler (KL)-

divergence (Hu and Hong 2012) and Wasserstein ambiguity sets (Mohajerin Esfahani and Kuhn 2018)

being the most commonly used (Rahimian and Mehrotra 2022). For KL-divergence-based ambiguity

sets, the standard formulation (Hu and Hong 2012) restricts the worst-case distribution to be absolutely

continuous with respect to the empirical distribution, limiting its support to the same points as the

empirical distribution. This poses a problem because it prevents the representation of worst-case

scenarios that typically occur in the tails of the loss distribution. An alternative formulation does allow

worst-case distributions with support beyond the empirical distribution, enabling a richer ambiguity

set (Chan et al. 2024). However, with an unbounded loss function, this flexibility allows nature to

exploit the tail, resulting in infinite loss for the decision maker. Consequently, KL-divergence-based

ambiguity sets are ill-suited to our problem, which involves unbounded support and heavy-tailed losses.

This also holds for type-p Wasserstein ambiguity set with p < ∞ due to the following result.

Proposition 2. The p-Wasserstein DRO with entropic risk measure results in unbounded loss if p < ∞.

Next, we show that type-∞ Wasserstein ambiguity set is a suitable choice for problem (10). The

type-∞ Wasserstein distance is defined as:

W∞ (P1,P2) := inf
π∈M(Ξ×Ξ)

{ess.sup∥ζ1 − ζ2∥π(dζ1, dζ2)} ,

where π is a joint distribution of ζ1 and ζ2 with marginals P1 and P2, respectively, ess.sup denotes

essential supremum, and ∥ · ∥ denotes the norm. Then, type-∞ Wasserstein ambiguity set B∞(ϵ) of

radius ϵ ≥ 0, can be defined as follows:

B∞(ϵ) :=
{
Q ∈ M(Ξ)|Q {ξ ∈ Ξ} = 1,W∞(Q, P̂N ) ≤ ϵ

}
. (11)

Bertsimas et al. (2023) have shown that problem (10) can be equivalently written as:

min
z∈Z

sup
Q∈B̃∞(ϵ)

1

α
log (EQ[exp(αℓ(z, ξ))]) = min

z∈Z

1

α
log


 1

N

∑

i∈[N ]

sup
ξ:∥ξ−ξ̂i∥≤ϵ

exp(αℓ(z, ξ))


 , (12)

where the ambiguity set B̃∞(ϵ) is defined as:

B̃∞(ϵ) :=

{
Q ∈ M(Ξ)|∃ ξi ∈ Ξ, ∥ξi − ξ̂i∥ ≤ ϵ, ∀i ∈ [N ], Q(ξ) =

1

N

N∑

i=1

δξi
(ξ)

}
.
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The equality in (12) follows since the logarithm function is monotone. From the formulation of prob-

lem (12), we can clearly see the behavior of the adversarial uncertainty, which allows each scenario ξ̂i
to be perturbed within a norm ball of radius ϵ. Thus, by construction, the worst-case loss is always

bounded for finite radius ϵ of the uncertainty set.

For piecewise concave loss functions, the following theorem gives an equivalent reformulation of the

DRO problem as the finite dimensional convex optimization problem using Fenchel duality (Ben-Tal

et al. 2015).

Theorem 2. Let ℓ(z, ξ) = maxj∈[m] ℓj(z, ξ) where ℓj(z, ξ) is a concave function in ξ for each j ∈ [m]

and z ∈ Z. Then, the DRO problem (12) with type-∞ Wasserstein ambiguity set is equivalent to

min 1
α log

(
1
N

∑N
i=1 exp(αti)

)

s.t. t ∈ RN , z ∈ Z, φij ∈ Rd ∀i ∈ [N ], j ∈ [m]

φ⊤
ij ξ̂i − ℓj∗(z,φij) + ϵ∥φij∥∗ ≤ ti ∀i ∈ [N ], j ∈ [m],

(13)

where ℓj∗(z,φij) := infξ{φ⊤
ijξ− ℓj(z, ξ)} is the partial concave conjugate of ℓj(z, ξ), and ∥ ·∥∗ denotes

the dual norm.

The DRO reformulation and reformulation technique simplify significantly when the loss function

is either piecewise linear or linear, rather than piecewise convex in z and concave in ξ. The following

corollary presents these special cases.

Corollary 1. Let ℓ(z, ξ) := maxk∈K
{
ak(z

⊤ξ) + bk
}
be a piecewise linear function for given parameters

ak and bk. Then, the DRO problem (12) with type-∞ Wasserstein ambiguity set is equivalent to

ρDRO := min
1

α
log

(
1

N

N∑

i=1

ti

)

s.t. t ∈ RN , z ∈ Z
exp

(
α
(
ak(z

⊤ξ̂i) + bk

)
+ ϵ∥akz∥∗

)
≤ ti ∀i, k ∈ K

(14)

which for a linear loss ℓ(z, ξ) = z⊤ξ can be further simplified to

min
z∈Z

1

α
log

(
1

N

N∑

i=1

exp(αz⊤ξ̂i)

)
+ ϵ ∥z∥∗ . (15)

Proof. Here, we provide an alternative proof for the piecewise linear loss functions ℓ(z, ξ) :=

maxk∈K
{
ak(z

⊤ξ) + bk
}
that does not rely on Fenchel duality (Ben-Tal et al. 2015). The supremum

of exp(maxk∈K
{
α
(
ak(z

⊤ξ) + bk
)}

) over the set {ξ : ∥ξ − ξ̂i∥ ≤ ϵ} is given by:

sup
ξ:∥ξ−ξ̂i∥≤ϵ

exp

(
max
k∈K

{
α
(
ak(z

⊤ξ) + bk
)})

= sup
ξ:∥ξ−ξ̂i∥≤ϵ

max
k∈K

{
exp

(
α
(
ak(z

⊤ξ) + bk
))}

= max
k∈K

{
exp

(
α
(
akz

⊤ξ̂i + bk

)
+ α sup

ξ:∥ξ∥≤ϵ

(
akz

⊤ξ
)
)}

= max
k∈K

{
exp

(
α
(
ak(z

⊤ξ̂i) + bk

)
+ αϵ∥akz∥∗

)}
,

where the first equality follows from interchanging exp and max operations and then using the fact

that exp(·) is increasing in its arguments, last equality follows from the definition of the dual norm

and ∥ · ∥∗ denotes the dual norm of ∥ · ∥. On combining with the objective function in (12), we obtain:

1

α
log

(
1

N

N∑

i=1

max
k∈K

{
exp

(
α
(
ak(z

⊤ξ̂i) + bk

)
+ αϵ∥akz∥∗

)})
.
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So, with a piecewise linear loss function, problem (12) is equivalent to the convex optimization problem

in (14). Further, specializing the result to a linear loss function ℓ(ξ, z) = z⊤ξ, problem (12) is

equivalent to the regularized risk-averse SAA problem in (15).

It is interesting to see that for the linear case, the DRO problem reduces to the regularized SAA

problem where the regularization penalty is controlled by the size ϵ of the ambiguity set and that the

type of penalty depends on the dual of the norm used to define the ambiguity set. To complement

these results, Appendix A.8 provides reformulations of the distributionally robust newsvendor and

regression problems as exponential cone programs.

Our next theorem formalizes that as the sample size N tends to infinity, the DRO value ρDRO with

a properly chosen radius will converge to the true optimal risk ρ∗ in probability. The proof follows

from showing that for Lipschitz continuous (in z) loss functions, ρSAA ≤ ρDRO ≤ ρSAA + Lϵ and using

Proposition 1 that establishes that ρSAA converges to ρ∗ at the rate O(1/
√
N) for locally Lipschitz

continuous (in ξ) loss functions. Finally, choosing the radius to decay at the rate O(1/
√
N) preserves

the rate of convergence of SAA.

Theorem 3. Suppose that Assumption 3 holds. Then for any γ > 0 and using B∞(c/
√
N), for some

c > 0, then there exists a constant A > 0 such that

P
(
|ρDRO − ρ∗| ≥ A√

Nγα exp(αρ∗)
+

c√
N

)
≤ γ,

as long as N is sufficiently large. Consequently, ρDRO → ρ∗ in probability.

While Theorem 3 provides a rate for ϵ that ensures convergence of the DRO risk to the true

optimal risk in probability, the values of the constants depend on the unknown underlying probability

distribution. In practice, ϵ needs to be estimated using CV. However, as discussed in the previous

sections, estimating true risk from finite data is challenging. To address this, we next employ the

bias-aware estimation procedure described in Section 4.

5.1 Bias-aware cross validation

A common approach to select the radius ϵ of the ambiguity set is through K-fold CV. For each ϵ ∈ E ,
K-fold CV aims to estimate the true performance of policy z∗(P̂N , ϵ) resulting from problem (13),

i.e., ρP(ℓ(z
∗(P̂N , ϵ), ξ)), and subsequently select the ϵ that minimizes this risk. The approach divides

the dataset into K folds. For each fold, we optimize the DRO model on K − 1 folds and evaluate

the solution’s performance on the remaining fold, repeating this process for all folds. Specifically, for

each candidate value of ϵ, the model in problem (13) is solved using the training data P̂K
−k from all

folds except the k-th fold to determine z∗(P̂K
−k, ϵ) which is then evaluated on the validation data to

obtain ρξ∼P̂K
k
(ℓ(z∗(P̂K

−k, ϵ), ξ)), where P̂K
k denotes the empirical distribution of scenarios in fold k. The

resulting estimator for a given radius ϵ is then given ρk∼U(K)(ρξ∼P̂K
k
(ℓ(z∗(P̂K

−k, ϵ), ξ))), where U(K)

is the uniform distribution over the set {1, 2, . . . ,K}. Since the goal is to minimize risk, we choose

ϵ that minimizes the validation risk, i.e., ϵ∗ = argminϵ∈E ρk∼U(K)(ρξ∼P̂K
k
(ℓ(z∗(P̂K

−k, ϵ), ξ))). However,

for each value of radius ϵ and choice of K, the following proposition shows that the entropic risk

estimator ρk∼U(K)(ρξ∼P̂K
k
(ℓ(z∗(P̂K

−k, ϵ), ξ))) based on the K-fold CV, underestimates the entropic risk

of the policy constructed using N(1− 1
K ) data points.

Proposition 3. Given ϵ ∈ E,

E[ρk∼U(K)(ρξ∼P̂K
k
(ℓ(z∗(P̂K

−k, ϵ), ξ)))] < ρP(ℓ(z
∗(P̂N(1− 1

K ), ϵ), ξ)). (16)

The proof of the above proposition follows from Jensen’s inequality and tower property of entropic

risk measure which states that ρ(ζ) = ρ(ρ(ζ1|ζ)) for random variables ζ1, ζ2. Note that this property
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is satisfied only by entropic risk measure in the family of law-invariant risk measures (Kupper and

Schachermayer 2009). Notice that for large values of K < N , N(1 − 1
K ) approaches N , thus the

right-hand-side of (16) mimics the performance of the solution that uses all N data points, that

is, ρP(ℓ(z
∗(P̂N , ϵ), ξ)). To mitigate the underestimation of the entropic risk, we propose using the

Algorithm 4 K-fold cross validation.

1: function K-foldCV(K,DN , ϵ)
2: S ← ∅
3: for k ← 1 to K do
4: D−k ← DN \ Dk ▷ Training data (all samples except those in fold k)

5: P̂K
−k ← empirical distribution of scenarios in D−k

6: Solve problem (13) with distribution P̂K
−k and radius ϵ to get z∗(P̂K

−k, ϵ)

7: S ← S ∪ {ℓ(ξ,z∗(P̂K
−k, ϵ)) | ξ ∈ Dk}

8: return S, ρk∼U(K)(ρξ∼P̂K
k
(ℓ(z∗(P̂K

−k, ϵ), ξ)))

bias-aware bootstrap procedure described in Algorithm 1 together with either Algorithm 2 based on

entropic risk matching, or with Algorithm 3 based on extreme value theory. Algorithm 5 describes our

proposed approach for selecting the optimal ϵ, with Algorithm 4 describing the K-fold CV step. One

can recover the traditional biased CV procedure by setting δ = 0 in line 4 of Algorithm 5.

A pictorial representation of the debiasing effect in optimization problems can be seen in Figure 4.

If the aim of Example 3 is to select the project with the lowest estimated risk, then most methods

would favor project 3. However, by accurately estimating and correcting for bias–using our proposed

approaches–project 1 becomes the preferred choice. Similar behavior is also observed when choosing ϵ

using K-fold CV, where the problem parallels Example 3 in which the projects can be seen as corre-

sponding to different regularization parameters ϵ, with lower values of ϵ representing riskier projects.

As we will see in the following section, the solution based on our proposed approach significantly

outperforms traditional CV procedure.

Algorithm 5 Radius selection for DRO.

1: function RadiusTuning(DN ,K,M)
2: for ϵ ∈ E do
3: S, ρ̂← K-foldCV(K,DN , ϵ)

4: δ ← BootstrapBiasCorrection(S,M) ▷ Algorithm 1

5: ρ(ϵ)← ρ̂+ δ

6: ϵ∗ ← argminϵ∈E ρ(ϵ)

6 Distributionally robust insurance policy

The US National Flood Insurance Program (NFIP) provides flood coverage at subsidized premiums

but faces significant challenges due to the large, correlated losses it insures against. These losses often

result in claims exceeding the cumulative premiums collected over time (Marcoux and H Wagner 2023).

Consequently, the NFIP currently operates with a deficit exceeding $20 billion and is compelled to

consider raising premiums (Marcoux and H Wagner 2023). However, higher premiums often deter

households from purchasing coverage. This reluctance stems from how individuals perceive risk, which

is frequently shaped by empirical losses rather than statistical estimates (Kousky and Cooke 2012).

As a result, households tend to underestimate the risks associated with rare events. Demand for

insurance, therefore, typically spikes only after catastrophic disasters (Gallagher 2014). In other words,

individuals who have not experienced a catastrophic flood event are more likely to underestimate the

associated risks. Surveys indicate that people exposed to flood risk but without firsthand experience

of similar disasters often exhibit overly optimistic views about the threats posed by climate change.

This optimism has been linked to houses in high flood-risk areas being overvalued by 6–9% (Bakkensen

and Barrage 2022). Furthermore, NFIP premium subsidies reductions, combined with advances in risk
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estimation and flood risk mapping, have been shown to decrease house prices in high-risk areas (Hino

and Burke 2021). Such behavioral responses are not unique to flood insurance markets. Herrnstadt

and Sweeney (2024) use a difference-in-differences method to show that the prices of houses within 500

feet of a gas pipeline in the Bay Area dropped by $383 per household following the deadly 2010 pipeline

explosion in San Francisco. Moreover, residents’ perceptions of risk increased significantly above the

empirical average for several years after the explosion. Interestingly, however, the prices of properties

located 2,000 feet from the pipeline remained unaffected, despite being classified as high-risk. This

discrepancy underscores the impact of firsthand experiences of catastrophic events on risk perception.

We consider an insurance pricing problem, with one risk-averse insurer and M representative risk-

averse households. The proposed model can account for correlated losses and asymmetry in perception

of risk measured by the empirical loss distributions at household level. Let αh denote the risk aversion

of household h, and let α0 represent the insurer’s risk aversion parameter. The uncertain loss faced

by household h is represented by ξh. The insurer offers a policy (zh, πh) to household h, where the

indemnity function zhξh specifies the coverage provided for their loss ξh, and πh is the corresponding

premium paid by household h. Consequently, the net loss faced by household h under this policy

is given by πh + (1 − zh)ξh. Let P̂h,N be the empirical distribution of losses faced by household h.

The insurer’s demand response model assumes that household h will accept the policy (zh, πh) if the

empirical entropic risk with insurance is less than the entropic risk without insurance. This condition

is expressed by the following constraint:

ραh

P̂h,N
(πh + (1− zh)ξh) ≤ ραh

P̂h,N
(ξh) . (17)

The insurer aims to minimize risk across the policies offered to all households. Accordingly, the

insurer’s true entropic risk is given by ρα0

P
(
z⊤ξ − 1⊤π

)
, where 1 is the vector of ones of the appro-

priate dimension. Since the true joint distribution, P, of losses across all households with marginals

Ph, is unknown, the insurer replaces it with the empirical distribution P̂N and solves the following

optimization problem to determine the policies offered to the M households:

min ρα0

P̂N

(
z⊤ξ − 1⊤π

)

s.t. π ∈ RM
+ , z ∈ [0, 1]M

ραh

P̂h,N
(πh + (1− zh)ξh) ≤ ραh

P̂h,N
(ξh) ∀h ∈ [M ].

(18)

As discussed in the previous section, decisions based on the empirical data can be optimistically biased.

To address this, the insurer solves the following distributionally robust insurance pricing problem,

which minimizes the worst-case entropic risk:

min sup
Q∈B∞(ϵ)

ρα0

Q
(
z⊤ξ − 1⊤π

)

s.t. π ∈ RM
+ , z ∈ [0, 1]M

ραh

P̂h,N
(πh + (1− zh)ξh) ≤ ραh

P̂h,N
(ξh) ∀h ∈ [M ],

where Q lies in the type-∞ Wasserstein ambiguity set given in (11). Since the loss function is linear, it

follows from Corollary 1 that the problem can be reformulated as the following regularized exponential

cone program:
min ρα0

P̂N

(
z⊤ξ − 1⊤π

)
+ ϵ∥z∥∗

s.t. π ∈ RM
+ , z ∈ [0, 1]M

ραh

P̂h,N
(πh + (1− zh)ξh) ≤ ραh

P̂h,N
(ξh) ∀h ∈ [M ].

(19)

The proposed setting is motivated by Bernard et al. (2020) who assumes that both the insurer and

households are expected utility maximizers, with complete information on the true loss distributions for

each household and their risk aversion parameters. Our approach relaxes the assumption of known loss

distributions by providing only samples of the loss distribution to both the insurer and the households.
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While Bernard et al. (2020) impose some additional assumptions to analytically characterize pricing

and coverage decisions under partially correlated risks, our data-driven method formulates the problem

as a tractable exponential cone program (18) which needs to be solved numerically. Additionally, the

insurer’s robustified (DRO) problem (19) retains this tractability. At optimality, the constraints hold

with equality due to the monotonicity of entropic risk measure, that is, ραh

P̂h,N
(πh + (1− zh)ξh) =

ραh

P̂h,N
(ξh) which can be equivalently written as:

πh =
1

αh
log

(
EP̂h,N

[exp(αhξh)]

EP̂h,N
[exp(αh(1− zh)ξh)]

)
. (20)

In Example 1, we computed the optimal premium price under full coverage zh = 1 in which case the

premium in (20) equals the entropic risk. Furthermore, the demand response model (17), which links

premiums to coverage, accounts for the asymmetry in risk perception between households—who rely on

P̂h,N—and the insurer, who uses P̂N . This flexible framework adapts to households’ evolving responses

as additional information is incorporated through observed catastrophic events, thereby updating the

empirical distributions. It is worth noting that our study could easily be adapted to accommodate

alternative demand response models as long as the insurers valuations of the insurance is a concave

function of coverage. Moreover, the regulatory constraints enforcing minimum coverage requirements

for each household could easily be integrated.

6.1 Numerical experiments

The numerical experiments conducted in this section demonstrate the effectiveness of our proposed

distributionally robust insurance pricing model under various conditions. Our main goal is to evaluate

how different calibration methods for the radius ϵ influence the insurer’s out-of-sample entropic risk

and investigate the structure of the optimal policies (z,π) offered to the households. Each household’s

loss follows a Gamma distribution Γ(κh, λh), with shape κh and scale λh parameters specific to each

household h ∈ [M ]. The correlation among the losses of different households is modelled using a

Gaussian copula, with Σ = r11⊤ + (1 − r)I, where r controls the amount of correlation among the

different households, 1 is a vector of all ones, and I is the identity matrix.

In the following experiments, we considerM = 5 households with risk aversion parameters α1, α2, α3, α4, α5 =

2.9, 2.7, 2.5, 2.3, 2.1 and set the insurer’s risk aversion parameter to α0 = 2. In Algorithm 5, we select

the radius of the ambiguity set ϵ from set E which contains twenty equally-spaced values in the inter-

val [0, 6]. To generate an instance, we sample N loss scenarios for each household and evaluate the

out-of-sample performance, by generating 106 i.i.d. data points (test data). This procedure is repeated

over 100 instances to obtain the statistics presented in the subsequent sections.

We consider five different calibration methods. Models BS-Match and BS-EVT use the 5-fold CV

Algorithm 5 together with Algorithm 2 and Algorithm 3 within the bootstraping procedure, respec-

tively, i.e., K = 5. CV model corresponds to the traditional 5-fold CV where we set δ = 0 in step 4

of Algorithm 5. The model labeled as Oracle uses the test data for calibrating the radius ϵ at the

validation step. Finally, model SAA solves problem (18) and does not involve any calibration.

All experiments described in the following sections were conducted in Python. The MOSEK 10.1

solver was used to solve exponential cone programs, while the entropic risk matching was performed

on a GPU using the POT library (Flamary et al. 2021).

6.1.1 Case with mild correlation

In the first experiment, we examine the effect of sample size on the out-of-sample risk observed by

the insurer. In the base scenario, all households have a common Gamma-distributed marginal loss

distribution, Γ(10, 0.45), with a correlation coefficient r = 0.5. This configuration allows us to focus

on the effects of sample size N and correlation coefficient r on the insurer’s decisions, controlling for
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variability from differing marginal distributions. Similar insights hold for cases with heterogeneous

marginal distributions among households, discussed in Appendix B.6. The results are summarized in

Figures 5–8. Figure 5a shows that both BS-Match and BS-EVT consistently outperform CV and SAA

across different sample sizes, while achieving an out-of-sample entropic risk similar to the oracle-based

calibration. This can be explained by looking at the ambiguity radius ϵ∗ chosen by each method. In

Figure 5b, we observe that CV typically chooses ϵ∗ values that are significantly lower than the optimal

choice, while the BS-Match and BS-EVT choices are closer to optimal. This discrepancy results from

CV’s estimation procedure, which underestimates the true entropic risk for each ϵ (as discussed in

Section 4), leading to select an overly optimistic ϵ∗ in step 6 of Algorithm 5. This can be seen in

Figure 6 where we plot the variation in the entropic risk estimator with the radius ϵ for each model

with N = 1000 (similar plots are obtained in Appendix B.7 for N ∈ {500, 5000, 10000}). In contrast,

BS-Match and BS-EVT better estimate the trend in the variation of true entropic risk with ϵ, thus

making a more informed choice for ϵ∗.
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(a) Insurer’s out-of-sample entropic risk.
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Figure 5: Comparison of the effects of training sample size N on out-of-sample entropic risk (left) and optimal radius ϵ∗

(right). Boxplots present the statistics after 100 resampling of datasets, and diamonds presents the mean for each N .
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Figure 6: Statistics of entropic risk estimators for different radius and N = 1000 after 100 resampling of datasets.

Figure 7a depicts the estimation of the optimal entropic risk computed by each method. The results

have a similar interpretation as Figure 4 in Section 4.3. We observe a significant underestimation of

the true entropic by CV and SAA, while the estimation of the BS-Match and BS-EVT stay close to

the estimation of the optimal calibration Oracle. We observe that as the sample size increases, the

optimal risk decreases and so is the case of each method’s optimal risk estimation. This is because it

is optimal for households to pay higher premiums due to the increase in their estimate of the risk of

their respective loss.
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(a) Insurer’s estimate of the optimal entropic risk.
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Figure 7: Comparison of the effects of number of training samples N on insurer’s estimate of optimal entropic risk and
average premium per unit of expected coverage.

Consequently, the insurer can charge higher premiums per unit expected coverage as a function of

N , see Figure 7b where the average premium per unit expected coverage across the 5 households is

given (1/5)
∑5

h=1 πh/(ξ̄hzh) with ξ̄h as the expected loss of household h. We observe an increase in this

ratio as N increases, which can be explained from the observation both the insurer and households

become more capable of accurately estimating their true risk, thus enabling the insurer to extract

higher premiums from households for the same coverage level. Moreover, CV and SAA charge lower pre-

mium per unit of expected coverage compared to our proposed approaches because they underestimate

the risk. Namely, both methods are overly optimistic regarding how to correct the estimation error

due to sampling, effectively using an ϵ that is too low. To illustrate the variation in the households’

willingness to pay for insurance as a function of number of training samples, we use as a proxy, the

proportion of instances where the premium is at least twice the expected coverage. For BS-Match, Fig-

ure 8 illustrates that highly risk-averse households pay higher premiums per unit of expected coverage

more frequently even when the number of training samples is low. Additionally, as N increases, the

proportion approaches 100% for all households.
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Figure 8: Effect of the number of training samples on the proportion of instances where premium exceeds twice the
expected coverage for BS-Match. Households become less risk averse as we go from the left of the panel to the right one.

6.1.2 Effect of correlations

In the second experiment, we fix the sample size at N = 1000. Similar to the previous experiment, we

assume that all households share a common marginal loss distribution modeled by a Gamma distribu-

tion, Γ(10, 0.45). However, in this experiment, we vary the parameter r, which controls the pairwise

correlation of losses between households. The correlation coefficient ranges from 0 (independent losses)

to 1 (comonotone losses). Figures 9–12 summarize the results. First, note that similar insights about

the effectiveness of our proposed approaches can also be observed in this setting. Indeed, Figure 9b

shows that both CV and SAA are over-optimistic, leading them to select lower ϵ∗ values than those cho-

sen by our proposed approaches. With regards to the behavior in terms of r, Figure 9a demonstrates
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that the out-of-sample entropic risk initially increases with the correlation coefficient r, but eventually

stabilizes. This trend is intuitive: higher correlation among households’ losses means that extreme loss

events are more likely to occur simultaneously, increasing the insurer’s risk exposure.
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(a) Insurer’s out-of-sample entropic risk.
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Figure 9: Comparison of the effects of correlation coefficient r on out-of-sample entropic risk (left) and optimal radius ϵ∗

(right).

Figure 10a shows the estimates of the optimal entropic risk produced by each model. BS-EVT and

BS-Match overestimate the optimal entropic risk of the insurer compared to Oracle at low correlation

levels. Figure 10b shows that the average optimal premium per unit of expected coverage also increases

with the correlation coefficient. This reflects the insurer’s response to higher risk by charging higher

premiums to compensate for the increased likelihood of large, simultaneous payouts. However, there

is a diminishing return effect; beyond a certain point, further increases in correlation do not lead to

significantly higher premiums per unit of expected coverage. As the correlation between household

losses increases, the benefits of risk pooling diminish, so the insurer reduces coverage levels significantly

to reduce the risk exposure, see Figure 11a and 11b. While Figures 11a and 11b show that households

receive more coverage with SAA than BS-Match, this high coverage exposes the insurer to higher risks

than the optimal coverage in the case of highly correlated losses.
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(a) Insurer’s estimate of the optimal entropic risk.
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Figure 10: Comparison of the effects of correlation coefficient r on estimate of optimal entropic risk and premium per
unit expected coverage.
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Figure 11: Effect of correlation on the coverage proportion offered to households averaged across 100 instances. Each
panel represents a different household. Households become less risk-averse as we go from the left panel to the right one.

Figure 12 demonstrates that as the correlation r across households increases, the proportion of

instances with premiums exceeding twice the expected coverage also increase, and this effect is more

pronounced for more risk-averse households. The high risk-averse households secure greater coverage

by paying high premiums to reduce their risk exposure.
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Figure 12: Effect of correlation r on proportion of instances where premium exceeds two times the expected coverage.
Each panel represents a different household. Households become less risk averse as we go from the left panel to the right
one.

7 Conclusions

In this paper, we propose two practical approaches to mitigate the bias inherent in the empirical

entropic risk estimator, which arises when the empirical distribution is used in place of the true

distribution in entropic risk calculations. We propose to correct the bias using bootstrapping and

prove that such a bias-corrected entropic risk estimator converges almost surely to the true risk.

However, when bootstrapping is based on a GMM fitted using MLE, the bias-corrected estimator

continues to underestimate the true risk with finite samples. Our proposed approaches mitigate this

underestimation problem by estimating the bias in samples drawn from a “bias-aware” GMM fitted

to the data.

To address the associated optimistic bias when optimizing the entropic risk measure, we propose

to use type-∞ Wasserstein ambiguity sets in DRO models. For piecewise-concave loss functions, we

provide equivalent reformulations of DRO problems as finite-dimensional convex optimization problems
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using Fenchel duality. We show that traditional K-fold CV used to tune the radius of the ambiguity set

can result in the underestimation of risk and the proposed approaches can mitigate the underestimation

problem. Specifically, we introduce a distributionally robust insurance pricing problem with a risk-

averse insurer and risk-averse homeowners whose demand for insurance depends on their own empirical

distribution of losses. Numerical experiments demonstrate that our bias mitigation procedures help

identify the appropriate radius for the ambiguity set, resulting in premium pricing and coverage policies

that achieve lower out-of-sample entropic risks when compared to CV methods that do not account

for bias in the validation scenarios. The numerical results also validate the effectiveness of our DRO

framework in improving insurance pricing strategies under uncertainty. The experiments underscore

the critical role of accurate risk estimation in insurance pricing, especially for catastrophic events

exacerbated by climate change. Insurers must consider not only the empirical data but also the

uncertainty inherent in limited samples and the potential for extreme losses. Our findings suggest that

incorporating distributional robustness into the pricing model allows insurers to balance the trade-off

between premiums charged and coverage offered for potential losses. This approach can help mitigate

the financial vulnerability exemplified by programs like the NFIP, which faces substantial deficits due

to under-priced premiums and low uptake.

There are several avenues for extending this research. First, the proposed bias correction proce-

dures can be adapted to estimate other risk measures, such as Conditional Value at Risk. Importantly,

our methods do not depend heavily on the specific form of the entropic risk measure, aside from the

fact that tail scenarios exert disproportionate influence on it. Exploring the effectiveness of these bias

corrections in multi-stage settings, where entropic risk measures are widely used, such as control theory

and reinforcement learning, would be valuable. Furthermore, investigating the potential benefits of

bias correction in other contexts–such as portfolio optimization and inventory management–represents

a promising direction for future research. Finally, leveraging advancements in solving exponential

cone programs (see Ye and Xie 2021, Chen et al. 2024a) to address large-scale entropic risk mini-

mization problems, potentially with integer constraints, offers a valuable opportunity for enhancing

computational efficiency.

A Additional proofs and results

A.1 Proof of Lemma 1

Proof. We have that:

E[exp(αℓ(ξ))] = −
∫ 0

−∞
P(exp(αℓ(ξ))) ≤ x)dx+

∫ ∞

0

P(exp(αℓ(ξ)) > x)dx

≤
∫ ∞

0

P(exp(αℓ(ξ)) > x)dx

=

∫ ∞

0

P(exp(αℓ(ξ)) > exp(αy))α exp(αy)dy

=

∫ ∞

0

P(ℓ(ξ) > y)α exp(αy)dy

≤
∫ ∞

0

P(|ℓ(ξ)| > y)α exp(αy)dy

≤ α

∫ ∞

0

G exp(−(C − 1)αy)dy =
G

C − 1
,

where first equality follows from representing expectation of a random variable using its cumulative

distribution distribution (cdf), the last inequality follows from Assumption 1 and C > 2 is used to

obtain the final result.
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From Jensen’s inequality, we also have that:

log(E[exp(αℓ(ξ))]) ≥ E[log(exp(αℓ(ξ)))]
= E[αℓ(ξ)]

= −
∫ 0

−∞
P(αℓ(ξ) ≤ x)dx+

∫ ∞

0

P(αℓ(ξ) > x)dx

≥ −
∫ 0

−∞
P(αℓ(ξ) ≤ x)dx

≥ −
∫ 0

−∞
P(|αℓ(ξ)| ≥ −x)dx

= −
∫ ∞

0

P(|αℓ(ξ)| ≥ y)dy

≥ −
∫ ∞

0

P(|ℓ(ξ)| > y/(2α))dy

≥ −
∫ ∞

0

G exp(−Cy/2)dy

= −2G/C,

where the last inequality follows from Assumption 1. Hence, we have that E[exp(αℓ(ξ))] ≥ exp(−2G/C).

Similarly,

E[exp(2αℓ(ξ))] ≤
∫ ∞

0

P(exp(2αℓ(ξ)) > exp(2αy))2α exp(2αy)dy

≤
∫ ∞

0

P(|ℓ(ξ)| > y)2α exp(2αy)dy

≤ 2α

∫ ∞

0

G exp(−(C − 2)αy)dy =
2G

C − 2
,

where we used C > 2 to obtain the last equality, see Assumption 1. Hence,

0 ≤ Var(exp(αℓ(ξ))) = E[exp(2αℓ(ξ))]− E[exp(αℓ(ξ))]2 ≤ E[exp(2αℓ(ξ))] ≤ 2G

C − 2
.

A.2 Proof of Theorem 1

Proof. We want to show that ρP̂N
(ℓ(ξ)) + δN (QN ) → ρP(ℓ(ξ)) almost surely. To do so, we will show

that both ρP̂N
(ℓ(ξ)) → ρP(ℓ(ξ)) and δN (QN ) → 0 almost surely. Indeed, if both ρP̂N

(ℓ(ξ)) → ρP(ℓ(ξ))

and δN (QN ) → 0 almost surely, then we can use the fact that the sum of two convergent sequences

converges to the sum of their limits to conclude that:

P(ρP̂N
(ℓ(ξ)) + δN (QN ) → ρP(ℓ(ξ))) ≥ P({ρP̂N

(ℓ(ξ)) → ρP(ℓ(ξ))} ∩ {δN (QN ) → 0})
= 1− P({ρP̂N

(ℓ(ξ)) ̸→ ρP(ℓ(ξ))} ∪ {δN (QN ) ̸→ 0})
≥ 1− (1− P(ρP̂N

(ℓ(ξ)) → ρP(ℓ(ξ))))− (1− P(δN (QN ) → 0))

= 1,

where the second inequality follows from the union bound. Step 1: ρP̂N
(ℓ(ξ)) → ρP(ℓ(ξ)) almost

surely. Given that E[exp(αℓ(ξ))] is finite (see Lemma 1) and each ξi is i.i.d., the strong law of large

numbers tells us that:

1

N

N∑

i=1

exp(αℓ(ξ̂i)) → E[exp(αℓ(ξ))] almost surely. (21)
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Since logarithm function is continuous over the strictly positive values, using the continuous mapping

theorem (Van der Vaart 2000), we obtain:

(21) =⇒ 1

α
log

(
1

N

N∑

i=1

exp(αℓ(ξ̂i))

)
→ 1

α
log (E[exp(αℓ(ξ))]) almost surely.

Hence, ρP̂N
(ℓ(ξ)) → ρP(ℓ(ξ)) almost surely.

Step 2: δN (QN ) → 0 almost surely. We will show that δN (QN ) → 0 almost surely by showing

that exp(−αδN (QN )) → 1 almost surely.

Let’s consider any sequence {Q̄N}∞N=1 that is uniformly exponentially bounded, with each element

of the sequence satisfying Assumption 2. For each N , we have:

exp(−αδN (Q̄N )) = exp(αmedian(ρ ˆ̄QN,N
(ζ)− ρQ̄N

(ζ)|Q̄N ))

= median(exp(αρ ˆ̄QN,N
(ζ)− αρQ̄N

(ζ))|Q̄N )

= median

(
exp

(
log

(
(1/N)

∑N
i=1 exp(αζi)

EQ̄N
[exp(αζ)]

))∣∣∣∣∣Q̄N

)

= median[XN |Q̄N ],

where XN :=
(1/N)

∑N
i=1 exp(αζi)

EQ̄N
[exp(αζ)] . The second equality follows by the monotonicity of the exponential

function, and the third equality follows by the definition of the entropic risk and the properties of the

logarithm function. Note that {ζi}Ni=1 are drawn i.i.d. from Q̄N .

To analyze the median[XN |Q̄N ], we first compute the mean and variance of XN . It is easy to see

that EQ̄N
[XN ] = 1, while the variance of XN can be bounded as follows:

VarQ̄N
(XN ) =

VarQ̄N

(∑N
i=1 exp(αζi)

)

(
NEQ̄N

[exp(αζ)]
)2

=
VarQ̄N

(exp(αζ))

N
(
EQ̄N

[exp(αζ)]
)2

≤ 2G exp( 4GC )

N(C − 2)
,

where the second equality follows from the fact that {ζi}Ni=1 are i.i.d. The inequality follows since

{Q̄N}∞N=1 satisfy Assumption 2, thus Lemma 1 provides bounds for both VarQ̄N
(exp(αζ)) and EQ̄N

[exp(αζ)],

resulting in the bound
VarQ̄N

(exp(αζ))

(EQ̄N
[exp(αζ)])

2 ≤ 2G exp( 4G
C )

C−2 .

We next show that median[XN |Q̄N ] is bounded. To this end, consider the Chebyshev’s inequality:

PQ̄N

(
|XN − 1| ≥ k

√
VarQ̄N

(XN )
)
≤ 1

k2
.

Substituting the bound for the VarQ̄N
(XN ) and setting k = 2, which implies an upper tail probability

bound of 25%, results in

PQ̄N

(
|XN − 1| ≥ 2∆/

√
N
)
≤ 1

4
,

where ∆ :=
√
2G exp( 4GC )/

√
C − 2. Thus, we conclude that median[XN |Q̄N ] ∈ [1 − 2∆/

√
N, 1 +

2∆/
√
N ] since otherwise it would imply that 50% of the probability is outside this interval (either on

the right or the left), which would contradict the fact that the total probability outside the interval is

below 1/4.
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Finally, we show that as N tends to infinity, median[XN |Q̄N ] converges to 1 almost surely. For any

ϵ > 0, there exists an N0 = 4∆2/ϵ2 such that for all N > N0, |median[XN |Q̄N ]− 1| ≤ ϵ which implies

limN→∞ median[XN |Q̄N ] = 1.

We conclude from the above analysis that any sequence {Q̄N}∞N=1 that is uniformly exponentially

bounded as prescribed in Assumption 2 must be such that exp(−αδN (Q̄N )) = median[XN |Q̄N ] con-

verges to 1 almost surely. Since Assumption 2 imposes that such sequences are almost surely obtained,

we must have that δN (QN ) → 0 almost surely.

A.3 Proof of Proposition 1

Proof. We will show that ρSAA converges to ρ∗ by demonstrating that ρP̂N
(ℓ(z, ξ)) converges to

ρP(ℓ(z, ξ)) for all z ∈ Z, i.e., a uniform rate of convergence. The proof is conducted in two steps. In

the first step, we apply Jiang et al. (2020, Theorem 3.2) to show that the empirical exponential util-

ity, EP̂N
[exp(αℓ(z, ξ))], converges uniformly to the true exponential utility, EP[exp(αℓ(z, ξ))]. In the

second step, we leverage the properties of the logarithm function to extend this uniform convergence

from the empirical exponential utility to the entropic risk measure.

To apply Jiang et al. (2020, Theorem 3.2), we need to verify several properties for the exponential

utility minimization problem. It is easy to see that (i) Z is compact by Assumption 3(A.1); (ii)

the exponential utility EP[exp(αℓ(z, ξ))] is continuous in z and (iii) the empirical distribution P̂N

is constructed using N i.i.d samples from P; (iv) Assumption 3(A.5) implies that ℓ(z, ξ) satisfies

Assumption 1 for all z ∈ Z so that Lemma 1 confirms that E[(exp(αℓ(z, ξ))2] < ∞ for all z ∈ Z.

Lastly, (v) the following inequalities verify that exp(αℓ(z, ξ)) is H-calm from above with Lipschitz

modulus κ(ξ) := αL(ξ) exp(αL̄(ξ)) and order one:

exp(αℓ(z2, ξ))− exp(αℓ(z1, ξ)) ≤
(
∂z exp(αℓ(z, ξ))|z=z2

)⊤
(z2 − z1)

= α exp(αℓ(z2, ξ)) (∂zℓ(z2, ξ))
⊤
(z2 − z1)

≤ α exp(αℓ(z2, ξ))∥∂zℓ(z2, ξ)∥∗∥z2 − z1∥
≤ α exp(αL̄(ξ))L(ξ)∥z2 − z1∥.

The first inequality follows from the convexity of the exponential utility, where ∂z denotes the sub-

gradient operator with respect to z, and the equality follows by applying the chain rule. The second

inequality follows from the definition of the dual norm. Since by Assumption 3 ℓ(z, ξ) is locally Lip-

schitz continuous with Lipschitz constant L(ξ), and the dual norm of the subgradient of ℓ(z, ξ) is

bounded by the Lipschitz constant L(ξ) (Shalev-Shwartz et al. 2012, Lemma 2.6), we obtain the fi-

nal inequality. Finally, we can confirm that the second moment of κ(ξ) is bounded. Namely, letting

0 < ς < (C/2)− 1, based on Hölder’s inequality, we have that:

E[κ(ξ)2] = α2E[L(ξ)2 exp(2αL̄(ξ))] ≤ α2E[L(ξ)2(1+1/ς)]ς/(1+ς)E[exp(2(1 + ς)αL̄(ξ))]1/(1+ς)

We can further show using Assumption 3(A.4) that :

E[exp(2(1 + ς)αL̄(ξ))] ≤
∫ ∞

0

P(exp(2(1 + ς)αL̄(ξ)) > x)dx

=

∫ ∞

0

P(exp(2(1 + ς)αL̄(ξ)) > exp(2(1 + ς)αy))2(1 + ς)α exp(2(1 + ς)αy)dy

=

∫ ∞

0

P(L̄(ξ) > y)2(1 + ς)α exp(2(1 + ς)αy)dy

≤ 2(1 + ς)α

∫ ∞

0

G exp(−(C − 2(1 + ς))αy)dy =
2G(1 + ς)

C − 2(1 + ς)
< ∞,
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Moreover, E[L(ξ)2(1+1/ς)] is finite based on Assumption 3(A.5), which allows us to conclude that

E[κ(ξ)2] < ∞.

We now have all the components to apply Jiang et al. (2020, Theorem 3.2) which states that for

any γ > 0, there exists an A > 0, independent of N , such that:

P
(
sup
z∈Z

∣∣∣EP̂N
[exp(αℓ(z, ξ))]− EP[exp(αℓ(z, ξ))]

∣∣∣ ≥ A/
√
Nγ

)
≤ γ, (22)

for sufficiently large N , thus concluding that the empirical exponential utility converges uniformly to

the true exponential utility, with a rate of convergence of O(1/
√
N).

Next, we show that empirical risk converges uniformly to the true risk by exploiting the properties

of the log function, namely that log(1 + ϵ) ≤ ϵ for all ϵ ≥ 0, and log(1 − ϵ) ≥ −ϵ/(1 − 1/e)) for all

ϵ ∈ [0, 1− 1/e]. This result is summarized in Lemma 3 and can be pictorially verified in Figure 13.
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(b) log(1− ϵ) ≥ −ϵ/(1− 1/e) ∀ϵ ∈ [0, 1− 1/e].

Figure 13: Plot of the inequalities that the log function satisfies around 0.

In the subsequent steps of the proof, we consider N to be large enough such that A√
Nγ exp(αρ∗)

≤
1− 1/e, with ρ∗ := minz∈Z(1/α) log(EP[exp(αℓ(z, ξ))]) and focus on scenarios for which the absolute

difference between the empirical utility and true utility in (22) is upper bounded by A/(
√
Nγ) for all

z ∈ Z. Specifically, we will show that it implies that the absolute difference between the empirical risk

and true risk is upper bounded by A/(α
√
Nγ exp(αρ∗)) for all z ∈ Z. To simplify notation, we further

denote by ûN (z) := EP̂N
(exp(αℓ(z, ξ))), u(z) := EP[exp(αℓ(z, ξ))], u

∗ := minz∈Z EP(exp(αℓ(z, ξ))) =

exp(αρ∗). For any γ > 0, from (22), we have:

|ûN (z)− u(z)| < A√
Nγ

∀z ∈ Z
=⇒ |ûN (z)−u(z)|

u∗ < A√
Nγ exp(αρ∗)

∀z ∈ Z
=⇒ |ûN (z)−u(z)|

u(z) < A√
Nγ exp(αρ∗)

∀z ∈ Z
=⇒ ûN (z)

u(z) < 1 + A√
Nγ exp(αρ∗)

∀z ∈ Z
=⇒ 1

α log
(

ûN (z)
u(z)

)
< 1

α log
(
1 + A√

Nγ exp(αρ∗)

)
∀z ∈ Z,

where in the first implication we divided both sides by u∗, while the second implication follows since

u∗ ≤ minz∈Z u(z). The last implication follows by applying the logarithm on both sides of the

inequality and dividing by α. The last expression can be further simplified since by the properties of

the logarithm function, we have log(1 + ϵ) ≤ ϵ for all ϵ ≥ 0, hence:

1

α
log (ûN (z))− 1

α
log (u(z)) <

A

α
√
Nγ exp(αρ∗)

<
A

(1− 1/e)α
√
Nγ exp(αρ∗)

, ∀z ∈ Z. (23)
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Similarly, for any γ > 0, from (22) we have

|ûN (z)− u(z)| < A√
Nγ

∀z ∈ Z
=⇒ |ûN (z)−u(z)|

u(z) < A√
Nγ exp(αρ∗)

∀z ∈ Z
=⇒ − A√

Nγ exp(αρ∗)
< ûN (z)

u(z) − 1, ∀z ∈ Z
=⇒ 1

α log
(
1− A√

Nγ exp(αρ∗)

)
< 1

α log
(

ûN (z)
u(z)

)
∀z ∈ Z,

where the first and last implication follow as before. The last expression can be further simplified

given that A√
Nγ exp(αρ∗)

≤ 1− 1/e for sufficiently large N , which allows us to apply the property of the

logarithm function, log(1− ϵ) ≥ −ϵ/(1− 1/e)) for all ϵ ∈ [0, 1− 1/e], to obtain:

− A

(1− 1/e)α
√
Nγ exp(αρ∗)

<
1

α
log (ûN (z))− 1

α
log (u(z)) ∀z ∈ Z. (24)

We now combine (23) and (24) as follows:

∣∣∣∣
1

α
log (ûN (z))− 1

α
log (u(z))

∣∣∣∣ <
A

(1− 1/e)α
√
Nγ exp(αρ∗)

∀z ∈ Z. (25)

From (22), we obtain:

P
(
sup
z∈Z

∣∣∣ρP̂N
(z)− ρP(z)

∣∣∣ < A

(1− 1/e)α
√
Nγ exp(αρ∗)

)
≥ P

(
sup
z∈Z

|ûN (z)− u(z)| < A√
Nγ

)

> 1− γ,

which implies that:

P
(∣∣∣∣min

z∈Z
ρP̂N

(z)−min
z∈Z

ρP(z)

∣∣∣∣ <
A

(1− 1/e)α
√
Nγ exp(αρ∗)

)
> 1− γ.

The latter can be rewritten using our notation as:

P
(
|ρSAA − ρ∗| ≥ B/(

√
Nγα exp(αρ∗))

)
≤ γ,

with B := A/(1− 1/e) > 0.

To prove the convergence in probability, we simply consider any γ > 0 and ∆ > 0 and confirm

that:

P (|ρSAA − ρ∗| ≥ ∆) ≤ γ,

as long as N is large enough for A√
Nγ exp(αρ∗)

≤ (1−1/e)min(∆, 1). Indeed, for such N , we necessarily

have that:

P (|ρSAA − ρ∗| ≥ ∆) ≤ P
(
|ρSAA − ρ∗| ≥ A

(1− 1/e)
√
Nγ exp(αρ∗)

)
≤ γ.

A.4 Proof of Theorem 3

Proof. We will show that ρDRO converges to ρ∗ by examining the relationship between ρDRO and ρSAA,

and ρSAA and ρ∗. The latter relationship is established in Proposition 1.

Concerning the relationship between ρSAA and ρDRO defined using the ambiguity set B∞(ϵ) with any

ϵ ≥ 0, since P̂N ∈ B∞(ϵ), the following inequality holds:

sup
Q∈B∞(ϵ)

1

α
log (EQ[exp(αℓ(z, ξ))]) ≥

1

α
log(EP̂N

[exp(αℓ(z, ξ))]) ∀z ∈ Z,
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which implies that ρDRO ≥ ρSAA. Moreover, we know from Bertsimas et al. (2023) that

sup
Q∈B∞(ϵ)

1

α
log (EQ[exp(αℓ(z, ξ))]) =

1

α
log


 1

N

∑

i∈[N ]

sup
ξ:∥ξ−ξ̂i∥≤ϵ

exp(αℓ(z, ξ))


 . (26)

In addition, from the L-Lipschitz continuity of ℓ in ξ for all z ∈ Z (see Assumption 3(A.3)), we have

|ℓ(z, ξ)− ℓ(z, ξ̂i)| ≤ L∥ξ − ξ̂i∥ ∀ξ,∀i
=⇒ |ℓ(z, ξ)− ℓ(z, ξ̂i)| ≤ Lϵ ∀ξ ∈ {ξ : ∥ξ − ξ̂i∥ ≤ ϵ},∀i
=⇒ sup

ξ:∥ξi−ξ̂∥≤ϵ

exp(αℓ(z, ξ)) ≤ exp(α(ℓ(z, ξ̂i) + Lϵ)) ∀i,

where the first implication follows from the definition of the ambiguity set. Substituting the resulting

inequality in (26) results in

sup
Q∈B∞(ϵ)

1

α
log (EQ [exp(αℓ(z, ξ))]) ≤ 1

α
log


 1

N

∑

i∈[N ]

(
exp(αℓ(z, ξ̂i) + αLϵ)

)



=
1

α
log


 1

N

∑

i∈[N ]

exp(αℓ(z, ξ̂i))


+ Lϵ.

From the above inequality, it follows that ρDRO ≤ ρSAA + Lϵ. Combining with ρDRO ≥ ρSAA, we conclude

that ρSAA ≤ ρDRO ≤ ρSAA + Lϵ.

We can now establish a high confidence bound on |ρDRO − ρ∗| that converges to zero at the rate

of O(1/
√
N) when using B∞(c/

√
N) for some c > 0. Namely, given some γ > 0, we let ϕ(N, γ) :=

A√
Nγα exp(αρ∗)

= O(1/
√
N) as defined in Proposition 1. We can then show:

P
(
|ρDRO − ρ∗| ≥ ϕ(N, γ) + Lc/

√
N
)
≤ P

(
|ρDRO − ρSAA|+ |ρSAA − ρ∗| ≥ ϕ(N, γ) + Lc/

√
N
)

≤ P(|ρSAA − ρ∗| ≥ ϕ(N, γ))

≤ γ,

where the first inequality follows from the triangle inequality, the second from |ρDRO − ρSAA| ≤ Lc/
√
N ,

and the third from Proposition 1 as long as N is large enough.

To prove the convergence in probability, we simply consider any γ > 0 and ∆ > 0 and confirm

that:

P (|ρDRO − ρ∗| ≥ ∆) ≤ γ,

as long as N is large enough for Proposition 1 to apply and ϕ(N, γ) + Lc/
√
N ≤ ∆. Indeed, for such

N , we necessarily have that:

P (|ρDRO − ρ∗| ≥ ∆) ≤ P
(
|ρDRO − ρ∗| ≥ ϕ(N, γ) + Lc/

√
N
)
≥ γ.

A.5 Proof of Proposition 2

Proof. Let u(z) denote the worst-case expected utility for a given decision z, that is,

u(z) := sup
Q∈B(ϵ)

uQ(ℓ(z, ξ)) = EQ[exp(αℓ(z, ξ))], (27)

where the ambiguity set B(ϵ) of radius ϵ ≥ 0 is defined as:

B(ϵ) :=
{
Q ∈ M(Ξ)|Q {ξ ∈ Ξ} = 1,Wp(Q, P̂N ) ≤ ϵ

}
.
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The type-p Wasserstein distance, Wp (P1,P2), is defined as:

Wp (P1,P2) = inf
π∈M(Ξ×Ξ)

{(∫

Ξ

∫

Ξ

∥ξ1 − ξ2∥p π(dξ1, dξ2)
)1/p

}
,

where π is a joint distribution of ζ1 and ζ2 with marginals P1 and P2, respectively. From Gao

and Kleywegt (2023, Lemma 2, Proposition 2), the worst-case utility u(z) for any z ∈ Z is infinite

with p-Wasserstein (p < ∞) ambiguity set since the loss function exp(αℓ(z, ξ)) does not satisfy the

growth condition, that is, there does not exist any ξ0 ∈ Ξ and constants L > 0,M > 0 such that

exp(αℓ(z, ξ)) ≤ L∥ξ − ξ0∥p +M holds for all ξ ∈ Ξ.

Next, we prove by contradiction that the worst-case entropic risk ρ(z) := supQ∈B(ϵ) ρQ(ℓ(z, ξ)) is

unbounded for all z ∈ Z. Suppose that ρ(z) is bounded, implying that there exists an M < ∞ such

that:

ρ(z) = sup
Q∈B(ϵ)

1

α
log (uQ(z)) ≤ M, (28)

which can be equivalently written as:

uQ(ℓ(z, ξ)) ≤ exp(αM) for all Q ∈ B(ϵ), (29)

since the exponential function is a monotonically increasing. This implies that u(z) is bounded, which

contradicts the result in Gao and Kleywegt (2023). Hence, the worst-case entropic risk ρ(z) is infinite

for all z ∈ Z.

A.6 Proof of Theorem 2

Proof. Problem (12) can be equivalently written as:

min 1
α log

(
1
N

∑N
i=1 exp(αti)

)

s.t. t ∈ RN , z ∈ Z
ti ≥ sup

ξ∈Ξi
ϵ

ℓ(z, ξ) ∀i ∈ [N ],

where Ξi
ϵ = {ξ : ∥ξ − ξ̂i∥ ≤ ϵ}. Since ℓ(z, ξ) = maxj∈[m] ℓj(z, ξ), we obtain:

mint
1
α log

(
1
N

∑N
i=1 exp(αti)

)

s.t. t ∈ RN , z ∈ Z,
ti ≥ sup

ξ∈Ξi
ϵ

ℓj(z, ξ) ∀i ∈ [N ], j ∈ [m].
(30)

The relative interior of the intersection of set Ξi
ϵ and domain of ℓj(z, ξ) is non-empty for all ϵ ≥ 0. So,

we can use Fenchel duality theorem (Ben-Tal et al. 2015) to obtain:

sup
ξ∈Ξi

ϵ

ℓj(z, ξ) = inf
φij

δ∗(φij |Ξi
ϵ)− ℓj∗(z,φij), (31a)

where φij ∈ Rd, ℓj∗(z,φij) := infξ{φ⊤
ijξ − ℓj(z, ξ)} is the partial concave conjugate of ℓj(z, ξ) and

δ∗(φij |Ξi
ϵ) is the support function of Ξi

ϵ, i.e.,

δ∗(φij |Ξi
ϵ) = sup

ξ∈Ξi
ϵ

φ⊤
ijξ = φ⊤

ij ξ̂i + sup
ζ:∥ζ∥≤ϵ

φ⊤
ijζ = φ⊤

ij ξ̂i + ϵ∥φij∥∗, (31b)

where the last equality follows by the definition of the dual norm. Substituting (31) in (30) results in

the following finite dimensional conic program:
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min
1

α
log

(
1

N

N∑

i=1

exp(αti)

)

s.t. t ∈ RN , z ∈ Z, φij ∈ Rd ∀i ∈ [N ], j ∈ [m]

φ⊤
ij ξ̂i + ϵ∥φij∥∗ − ℓj∗(z,φij) ≤ ti ∀i ∈ [N ], j ∈ [m].

A.7 Proof of Proposition 3

Proof.

E[ρk∼U(K)(ρξ∼P̂K
k
(ℓ(z∗(P̂K

−k, ϵ), ξ)))] = E

[
1

α
log

(
1

K

K∑

k=1

exp
(
αρξ∼P̂K

k
(ℓ(z∗(P̂K

−k, ϵ), ξ))
))]

≤ 1

α
log

(
E

[
1

K

K∑

k=1

exp
(
αρξ∼P̂K

k
(ℓ(z∗(P̂K

−k, ϵ), ξ))
)])

=
1

α
log

(
1

K

K∑

k=1

E
[
exp

(
αρξ∼P̂K

k
(ℓ(z∗(P̂K

−k, ϵ), ξ))
)])

=
1

α
log
(
E
[
exp

(
αρξ∼P̂K

1
(ℓ(z∗(P̂K

−1, ϵ), ξ))
)])

= ρ
(
ρξ∼P̂K

1
(ℓ(z∗(P̂K

−1, ϵ), ξ))
)

= ρ
(
ρ
(
ρξ∼P̂K

1
(ℓ(z∗(P̂K

−1, ϵ), ξ)]
∣∣∣P̂K

−1

))

= ρ
(
ρξ∼P

(
ℓ(z∗(P̂K

−1, ϵ), ξ)
))

= ρ(ℓ(z∗(P̂N−N/K , ϵ), ξ)),

where expectations and ρ’s are with respect to randomness in the data DN , except for the last equation

where the randomness is in both the data and a new sample ξ ∼ P. The first inequality follows from

concavity of log function and Jensen’s inequality, then we exploit the fact that each (P̂K
k , P̂K

−k) pair

is identically distributed to (P̂K
1 , P̂K

−1), and finally, we use the tower property of the entropic risk

measure.

A.8 Additional results

Lemma 2. The following conditions are equivalent:

1. There exist some constants G > 0 and C > 2 such that P(|ℓ(ξ)| > a) ≤ G exp(−aαC), ∀a ≥ 0,

2. The moment-generating function of ℓ(ξ) satisfies E[exp(tℓ(ξ))] ∈ R for all t ∈ [−αC,αC], for

some C > 2.

Proof. The property P(|ℓ(ξ)| > a) ≤ G exp(−aαC), ∀a ≥ 0 for some G > 0 and C > 2, implies that

when t ∈ [−αC,αC], C > 2, we have that:

0 ≤ E[exp(tℓ(ξ))] ≤ E[exp(|t||ℓ(ξ)|)]

≤
∫ ∞

0

P(exp(|t||ℓ(ξ)|) > x)dx

=

∫ ∞

0

P(|ℓ(ξ)| > y)|t| exp(|t|y)dy
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≤
∫ ∞

0

G|t| exp(−(αC − |t|)y)dy

=
G|t|

αC − |t| ≤
GαC

αC − |t| ,

where we use similar arguments to the ones used to bound E[exp(αℓ(ξ))] above in the proof of Lemma 1

and exploit the fact that |t| ≤ αC.

Alternatively, E[exp(tℓ(ξ))] ∈ R for all t ∈ [−αC,αC] for some C > 2 implies that for any a ≥ 0

P(ℓ(ξ) > a) = P(exp(αCℓ(ξ)) > exp(αaC)) ≤ E[exp(αCℓ(ξ))]

exp(αaC)
= G+ exp(−αaC),

where we have used Markov’s inequality to obtain the upper bound and G+ := E[exp(αCℓ(ξ))] ∈ R. A
similar argument holds for P(−ℓ(ξ) > a) ≤ G− exp(−αaC) with G− := E[exp(−αCℓ(ξ))] ∈ R. Thus,

by the union bound, we have:

P(|ℓ(ξ)| > a) ≤ (G+ +G−) exp(−aαC), ∀a ≥ 0.

Corollary 2. The DRO newsvendor problem with the cost function given by ℓ(ξ, z) = wz+ b(ξ− z)+ +

h(z − ξ)+ and type-∞ Wasserstein ambiguity set is equivalent to:

minimize
1

α
log

(
1

N

N∑

i=1

exp(αti)

)

subject to (ξ̂i + ϵ)b− z(w − b) ≤ ti ∀i ∈ [N ]

(ϵ− ξ̂i)h+ z(w + h) ≤ ti ∀i ∈ [N ].

(32)

Proof. For the newsvendor problem, the cost function is given by ℓ(z, ξ) = wz+ b(ξ− z)++h(z− ξ)+.

Problem (30) is equivalent to:

min 1
α log

(
1
N

∑N
i=1 exp(αti)

)

s.t. t ∈ RN , z ∈ R
ti ≥ wz + bξ − bz ∀ξ ∈ Ξi

ϵ, ∀i ∈ [N ]
ti ≥ wz + hz − hξ ∀ξ ∈ Ξi

ϵ, ∀i ∈ [N ],

(33)

where Ξi
ϵ = {ξ : ∥ξ − ξ̂i∥ ≤ ϵ}. Define ℓ+(z, ξ) := wz + bξ − bz and ℓ−(z, ξ) = wz + hz − hξ for which

the partial concave conjugates are given by:

ℓ+∗ (z, φ
+) =

{
z(b− w) if φ+ = b
−∞ otherwise,

ℓ−∗ (z, φ
−) =

{
−z(w + h) if φ− = −h

−∞ otherwise.

Thus, from Theorem 2, problem (30) reduces to (32).

Corollary 3. The DRO regression problem with loss function ℓ(z, ξ) = |ξd+1 − ξ⊤1:dz|, and type-∞
Wasserstein ambiguity set is equivalent to:

min
z∈Rd

1

α
log

(
1

N

N∑

i=1

exp(α|ξ̂i,d+1 − ξ̂
⊤
i,1:dz|)

)
+ ϵ∥[−1 z⊤]⊤∥∗. (34)
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Proof. For the regression problem, the cost function is given by ℓ(z, ξ) = |ξd+1−ξT1:dz|. Problem (30)

is equivalent to:

min 1
α log

(
1
N

∑N
i=1 exp(αti)

)

s.t. t ∈ RN , z ∈ Rd

ti ≥ ξd+1 − ξ⊤1:dz ∀ξ ∈ Ξi
ϵ, ∀i ∈ [N ]

ti ≥ ξ⊤1:dz − ξd+1 ∀ξ ∈ Ξi
ϵ, ∀i ∈ [N ],

(35)

where Ξi
ϵ = {ξ : ∥ξ − ξ̂i∥ ≤ ϵ}. Define ℓ+(z, ξ) := ξd+1 − ξ⊤1:dz and ℓ−(z, ξ) := ξ⊤1:dz − ξd+1. Then,

the partial concave conjugates of ℓ+(z, ξ) and ℓ−(z, ξ) are given by:

ℓ+∗ (z,φ
+) =

{
0 if φ+

d+1 = 1 and φ+
1:d = −z

−∞ otherwise,
(36a)

ℓ−∗ (z,φ
−) =

{
0 if φ−

d+1 = −1 and φ−
1:d = z

−∞ otherwise.
(36b)

Substituting (36) in problem (30) reduces to:

min 1
α log

(
1
N

∑N
i=1 exp(αti)

)

s.t. t ∈ RN , z ∈ Rd

ti ≥ ξ̂i,d+1 − ξ̂
⊤
i,1:dz + ϵ∥[1 − z⊤]⊤∥∗ ∀i ∈ [N ]

ti ≥ ξ̂
⊤
i,1:dz − ξ̂i,d+1 + ϵ∥[−1 z⊤]⊤∥∗ ∀i ∈ [N ].

Finally:

min
z∈Rd

1

α
log

(
1

N

N∑

i=1

exp(α|ξ̂i,d+1 − ξ̂
⊤
i,1:dz|)

)
+ ϵ∥[−1 z⊤]⊤∥∗.

Lemma 3. The following inequalities follow from the properties of the logarithm function:

log(1 + ϵ) ≤ ϵ if ϵ ≥ 0,
log(1− ϵ) ≥ −ϵ/(1− 1/e) if ϵ ∈ [0, 1− 1/e].

Proof. The logarithm function is concave, thus it follows that

log(1 + ϵ) ≤ log(1) + ϵ
d log(x)

dx

∣∣∣∣
x=1

= ϵ.

Moreover, by concavity of log(1− ϵ) for ϵ ∈ [0, 1− 1/e], we have:

log(1− ϵ) ≥ log(1) + ϵ
log(1/e)− log(1)

1− 1/e
= − ϵ

1− 1/e
.

Figure 13 gives a pictorial representation of the result.

B Additional details

B.1 Derivation of influence function

The influence function measures the sensitivity of a statistic to small changes in the data. The influence

function of a statistic T at a point ζ for a distribution P is given by:

IF(ζ) = lim
ε→0+

T ((1− ε)P+ εδζ)− T (P)
ε

,
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where δζ is the Dirac distribution at the point ζ. The influence function of entropic risk measure is

given by:

IF(ξ) = limε→0+
log((1−ε)EP[exp(αℓ(ξ))]+ε exp(αℓ(ξ)))−log(EP[exp(αℓ(ξ))])

αε

= limε→0+
log

(
(1−ε)+ε

exp(αℓ(ξ))
EP[exp(αℓ(ξ))]

)
αε = − 1

α

(
1− exp(αℓ(ξ))

EP[exp(αℓ(ξ))]

)
.

When loss function ℓ(ξ) := ξ with ξ ∼ Γ(κ, λ), the influence function can be obtained in closed

form as follows:

IF(ξ̂) = − 1

α
+

exp(αξ̂)

α (1− λα)
−κ .

Figure 14 presents the histogram of 500 loss values generated from the Γ(10, 0.24) distribution. For each

bin, we calculate the average influence function over samples and normalize these values to lie in the

interval [0, 1], where darker shades represent higher average influence function. It can be seen that tail

events have highest impact on the entropic risk but occur with very low probability. Therefore, these

high-impact scenarios are likely not to be included in a finite sample, resulting in the underestimation

of the entropic risk.
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Figure 14: Histogram of the 500 loss samples, ξ, from a Γ(10, 0.24) distribution and the average IF of the entropic risk is
computed by taking the mean of IF over scenarios in each bin with the darker blue shade representing higher (normalized)
average IF.

B.2 Bias mitigation using OIC

From Theorem 1 in Iyengar et al. (2023), it follows that for a loss function h(t, ℓ(ξ)) with decision t:

E[EP(h(t̂, ℓ(ξ)))] = E[h(t̂, ℓ(ξ̂i))]−
1

N
EP[∇th(t

∗, ℓ(ξ))IF(t∗)]
︸ ︷︷ ︸

δOIC

+o

(
1

N

)
,

where expectation is with respect to the randomness of DN . For h(t, ℓ(ξ)) = t+ 1
α exp(α(ℓ(ξ)− t))− 1

α ,

we know that t∗ = ρP(ℓ(ξ)) = EP[exp(αℓ(ξ))], ∇th(t
∗, ℓ(ξ)) = 1−exp(α(ℓ(ξ)−t∗)) and∇t,th(t

∗, ℓ(ξ)) =

α exp(α(ℓ(ξ)− t∗)). The influence function in the expression of δOIC is obtained as follows:

IF(t∗) = −
(
EP[∇2

t,th(t
∗, ℓ(ξ))]

)−1 ∇th(t
∗, ℓ(ξ)) = − 1− exp(α(ℓ(ξ)− t∗))

EP[α exp(α(ℓ(ξ)− t∗))]
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Next, we substitute the value of IF(t∗) and ∇th(t
∗, ℓ(ξ)) to obtain the bias of a decision t∗:

δOIC = − 1

N
EP[∇th(t

∗, ℓ(ξ))IF(t∗)]

=
1

N

(
EP [1− exp(α(ℓ(ξ)− t∗))]

2

αEP[exp(α(ℓ(ξ)− t∗))]

)

=
1

N

(
EP [EP[exp(αℓ(ξ))]− exp(αℓ(ξ))]

2

α (EP[exp(αℓ(ξ))])
2

)

=
VarP(exp(αℓ(ξ)))

Nα(EP[exp(αℓ(ξ))])2
.

Since P is not known, Iyengar et al. (2023) replace P with P̂ to obtain their estimator, ρOIC := t̂ +

VarP̂N
(exp(αℓ(ξ)))/(Nα(EP̂N

[exp(αℓ(ξ))])2).

B.3 Fitting a GMM

Entropic risk matching. After each update of the parameters of a GMM using the gradient descent

procedure described in Algorithm 2, the parameters are projected back into the feasible region for a

valid GMM. This ensures that the mixing weights π̂t+1 remain valid probabilities (which is achieved

using a softmax function), and that the standard deviations σ̂t+1 are positive (enforced by taking the

maximum of exp(−5) and σ̂t+1). The number of components Y in the GMM is selected by CV based

on the Wasserstein distance between the distribution of the entropic risk of samples drawn from fitted

GMM and the distribution of entropic risk constructed from the scenarios in the validation set. In all

numerical experiments, we set the maximum iterations T = 30000 and tolerance ϵ = exp(−9).

Matching the extremes. The distribution of the maxima of n i.i.d samples from a normal distribution

N (µ, σ) is given by (Φµ,σ)
n
where Φµ,σ is the cdf of a normally distributed random variable with mean

µ and σ. We find the parameters of the normal distribution by matching the 50th and 90th quantiles

of FM(.) to the corresponding quantiles of (Φµ,σ)
n
:

µ+ σΦ−1
0,1(0.5

1/n) = FM(0.5)

µ+ σΦ−1
0,1(0.9

1/n) = FM(0.9),

where the p-th quantile for Y ∼ N (µ, σ) is given by µ+ σΦ−1
0,1(p). Solving the above two equations in

(µ, σ) gives an approximate distribution for the tails of the underlying distribution, which depends on

the true distribution, the total number of samples N , and the number of bins B.

To balance the trade-off between the number of bins and the sample size in each bin, we set

B =
√
N , which is a reasonable compromise. A large number of bins provides more independent

realizations, reducing estimation bias, while a sufficiently large sample size in each bin ensures that

the maxima accurately represent the extremes of the distribution.

B.4 Differential sampling from GMM

In Algorithm 2, differentiable samples are generated using Algorithm 6. This algorithm leverages the

reparameterization trick (Kingma et al. 2015) for continuous distributions and the Gumbel-Softmax

trick (Jang et al. 2017, Maddison et al. 2017) for discrete distributions. The Gumbel-Softmax trick al-

lows approximate, differentiable sampling of mixture components, while Gaussian samples are obtained

by combining deterministic transformations of the parameters with random noise. As a result, gradi-

ents can flow through both the discrete and continuous sampling steps. This enables the minimization

of the Wasserstein distance between the empirical and model-based entropic risk distributions.
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Algorithm 6 Differentiable Sampling from GMM.

1: function SampleGMM(n, θ, τ)
2: Initialize an empty set of samples S
3: Extract mixture weights π, means µ, and standard deviations σ from θ
4: Let Y be the number of mixture components (length of π)
5: for i = 1 to n do
6: Generate Gumbel noise g ∈ RY

7: Calculate logits: logits = log(π) + g
8: Compute softmax weights: w = softmax(logits/τ)
9: Generate standard normal noises ϵ with ϵk ∼ N (0, 1)
10: Compute component samples: zk = µk + σk · ϵk for k = 1 to Y
11: Compute final sample: sample =

∑Y
k=1 wk · zk

12: Append sample to S
13: return S

B.5 Parameters in Example 3

The parameters of the GMM in Example 3 are given by:

π =




0.16
0.28
0.23
0.20
0.13



, µ =




−19.5
−19.0
−18.5
−18.0
−17.5



, σ =




4/25
1/4
4/9
1
4



.

The expected value of ξ is −18.57 and standard deviation is 1.65.

B.6 Households have different marginal distribution

In this experiment, we examined the scenario where each household has a distinct Gamma-distributed

loss function. The scale, κ and location parameters, λ, of the Γ-distribution of the loss of the five

households are given by (8, 0.41), (8.5, 0.42), (9, 0.43), (9.5, 0.44), and (10, 0.45), respectively. The

correlation coefficient was set to r = 0.5, indicating a moderate positive correlation among the losses.

We compared the performance of the proposed methods—BS-EVT and BS-Match—with the traditional

CV approach and SAA.

The findings in this case mirror those of the first experiment where households have the same

marginal loss distribution: As depicted in Figure 15a, BS-EVT and BS-Match consistently outperform

the traditional CV method and SAA across different sample sizes. Furthermore, increasing N leads

to a reduction in the out-of-sample entropic risk for all methods, with BS-EVT and BS-Match showing

the most significant improvements. This is due to the fact that CV and SAA are overly optimistic and

choose smaller radius as compared to Oracle, whereas the proposed methods BS-EVT and BS-Match

choose close to optimal radius, see Figure 15b.

B.7 Estimate of entropic risk

Figures 16a–16c present the statistics of the estimate of the out-of-sample risk for different N ∈
{500, 5000, 10000} and radius ϵ of the ambiguity set in the interval [0, 6]. Similar to Figure 6, it can be

seen that CV underestimates the optimal entropic risk for each ϵ. However, BS-Match and BS-EVT make

better estimation of the variation in the true entropic risk with ϵ, thereby enabling a more informed

choice of ϵ∗.
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(a) Insurer’s out-of-sample entropic risk.
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Figure 15: Comparison of the effects of training sample size N on entropic risk (left) and radius ϵ∗ (right). Each household
observes samples from different Γ marginals and the correlation coefficient r = 0.5.
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(b) N = 5000.
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(c) N = 10000

Figure 16: Estimate of entropic risk for different radius and N .
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Bäuerle, N. and Jaśkiewicz, A. (2024). Markov decision processes with risk-sensitive criteria: an overview.
Mathematical Methods of Operations Research, 99(1):141–178.

Cai, J., Tan, K. S., Weng, C., and Zhang, Y. (2008). Optimal reinsurance under VaR and CTE risk measures.
Insurance: Mathematics and Economics, 43(1):185–196.

Catoni, O. (2012). Challenging the empirical mean and empirical variance: A deviation study. Annales de
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