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Independent set : subset of pairwise non-adjacent vertices

Independence number α(G): size of a maximum independent set in G

Stable = independent

Problems :

• α(G)=? MAXIMUM INDEPENDENT SET PROBLEM (MIS)

• Given k, determine if G contains an independent set of size k

The MIS is NP-hard
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Alekseev has proved that if a graph H has a connected component which is not of

the form Si,j,k, then the MIS is NP-hard in the class of H-free graphs

CorollaryCorollary

The MIS is NP-hard in the class of Triangle-free graphs, Square-free graphs, etc.

1
i

1
j

1
k
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An independent set S is maximal if no other independent set 
properly contains S

Problem : generate all maximal independent sets
• Tsukiyama, Ide, Ariyoshi and Shirakawa (1977) 
• Lawler, Lenstra and Rinnooy Kan (1980)
• Johnson and Yannakakis (1988)
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The independent dominating set problem
Find a maximal independent set of minimum cardinality

(NP-hard even for bipartite graphs)
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S is an independent set in G               S is a clique in the complement of G

S is an independent set in G                 V-S is a vertex cover in G

M is a matching in G                 M is a stable in the line graph L(G)
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Vertex Packing problem
Find an independent set of maximum total weight

Maximum dissociation set problem
Find a subset of vertices of maximum size

inducing a subgraph with vertex degree at most 1
NP-hard for bipartite graphs

Maximum induced matching problem
Find a subset of vertices of maximum size

inducing a subgraph with vertex degree exactly 1
NP-hard for bipartite graphs with maximum degree 3
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Maximum dissociation set : 5
Maximum induced matching : 4 (2 edges)

Maximum matching : 3
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Minimum independent edge dominating set problem
Find a maximal matching of minimum cardinality

Yannakakis and Gavril (1980)
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In view of the NP-hardness of the MIS

(1) Non-polynomial-time algorithms
(2) Polynomial-time algorithms providing approximate solutions
(3) Polynomial-time algorithms that solve the problem exactly for graphs

belonging to special classes

Håstad (1999)
non-exact algorithms cannot approximate the size of a 

maximum independent set within a factor of n1-ε
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Theorem
A matching in a graph is maximum if and only if there are no augmenting
chains with respect to the matching
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Let S be an independent set in a graph G
• The vertices in S are black
• The others are white

A bipartite graph H=(W,B,E) is augmenting for S if
(1) B is a subset of S and W is a subset of V-S
(2) N(W)∩(S-B) is the empty set 
(3) W has more vertices than B
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If H=(W,B,E) is augmenting for S then (S-B)∪W is an independent set 
with more vertices than S.

If S is not of maximum size, then there exists a larger independent set S’ 
and the subgraph induced by (S-S’)∪(S’-S) is augmenting for S

TheoremTheorem
An independent set S if maximum if and only if there are no augmenting
graphs for S. 
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AlgorithmAlgorithm
Begin with any independent set S
As long as S admits an augmenting graph H, apply H-augmentation to S

For a For a polynomialpolynomial--timetime algorithmalgorithm on on hashas toto
1. Find a complete list of augmenting graphs in the class under

consideration
2. Develop polynomial-time algorithms for detecting all augmenting graphs

in the class
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DefinitionDefinition
An augmenting graph for S is minimalminimal if no proper induced subgraph of
H is augmenting for S

TheoremTheorem
If H=(W,B,E) is a minimal augmenting graph for S then
(1) H is connected
(2) |B|=|W|-1
(3) For every subset A of B : |A|<|Nw(A)|
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Characterization Characterization 
of augmenting graphof augmenting graph
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Claw-free graphs (S1,1,1)

No bipartite claw-free graph has a vertex of degree more than 2

CorollaryCorollary
a connected claw-free bipartite graph is an even cycle or a chain

Cycles of even length and chains of odd length are not augmenting

TheoremTheorem
Every minimal claw-free augmenting graph is a chain of even length
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P4 -free graphs (S0,1,2)

Every connected P4-free graph is complete bipartite

TheoremTheorem

Every minimal P4-free augmenting graph is a Kn,n+1

.
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Fork-free graphs (S1,1,2)

Let G=(V1,V2,E) be a bipartite graph. 

The bipartite complement B(G) of G is the bipartite graph (V1,V2,(V1 x V2)-E)

If G is such that ∆(B(G)) <2 then G is called a complexcomplex

TheoremTheorem (Alekseev, 1999)

If G is a connected bipartite fork-free graph then either ∆(G)<3 or ∆(B(G))<2

CorollaryCorollary (Alekseev, 1999)

Every minimal fork-free augmenting graph is either a chain of even length or a complex



23

P5-free graphs (S0,2,2)

TheoremTheorem
Every connected P5-free bipartite graph is 2K2-free   

2K2-free graphs = chain graphs = difference graphs

NO POLYNOMIAL-TIME ALGORITHM IS KNOWN 

TO DETECT 2K2-FREE BIPARTITE GRAPHS

.
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(P5,banner)-free graphs

The MIS in bannerThe MIS in banner--free graphs : free graphs : NP-hard
The MIS in PThe MIS in P55--free graphs : free graphs : complexity open

TheoremTheorem (Lozin, 2000)
Every minimal (P5,banner)-free augmenting graph is a complete bipartite graph   
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(S1,2,2,banner)-free graphs

LemmaLemma
A connected bipartite banner-free graph that contains a C4 is complete bipartite

LemmaLemma

A minimal (S1,2,2,C4)-free augmenting graph is claw-free

TheoremTheorem (Hertz, Lozin, 2003)

Every minimal (S1,2,2,banner)-free augmenting graph is either complete bipartite or a chain of
even length  
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(P5,K3,3-e)-free graphs

TheoremTheorem (Gerber, Hertz, Schindl, 2004)

Every minimal (P5,K3,3-e)-free augmenting graph is either complete 
bipartite or a graph obtained from a complete bipartite graph Kn,n by adding 
a single vertex with exactly one neighbor in the opposite part.
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S1,2,2-free graphs

A graph is A graph is prime is any two distinct vertices have different is any two distinct vertices have different neighborhoodsneighborhoods..

TheoremTheorem (Lozin, 2000)

Every prime S1,2,2-free bipartite graph is K1,3 or B(P5)-free.

TheoremTheorem (Hertz, Lozin, 2003)

Every prime (S1,2,2,A) -free bipartite graph is S1,1,2-free.

.
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(S2,2,2,A) -free graphs

If G is such that ∆(B(G)) <2 then G is called a complexcomplex

A caterpillarcaterpillar : a tree that becomes a path by removing the pendant vertices

A long long circularcircular caterpillarcaterpillar : a graph that becomes a Ck (k>4) by removing the pendent vertices

TheoremTheorem (Boliac, Lozin, 2001)

Every prime (S2,2,2,A) -free bipartite graph is either a caterpillar or a long circular caterpillar or a complex
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(P6,C4) -free graphs

A simple augmenting tree :A simple augmenting tree :

TheoremTheorem (Mosca, 1999)

Every (P6,C4) -free augmenting graph is a simple augmenting tree

.
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(P7,banner) -free graphs

An augmenting plant :An augmenting plant :

TheoremTheorem (Alekseev,Lozin, 2000)

Every minimal (P7,banner) -free augmenting graph is either complete bipartite or a simple 
augmenting tree or an augmenting plant

.
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(S1,2,3,banner) -free graphs

TheoremTheorem (Alekseev,Lozin, 2000)

Every minimal (S1,2,3 ,banner) -free augmenting graph is either complete bipartite or 
a simple augmenting tree or an augmenting plant or a chain of even length.
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(P8,banner) -free graphs

TheoremTheorem (Gerber, Hertz, Lozin, 2004)

Every minimal (P8,banner) -free augmenting graph is either a complete bipartite Kn,n+1 or one of the 
following graphs

.
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(S1,2,4,banner) -free graphs

TheoremTheorem (Gerber, Hertz, Lozin, 2004)

Every minimal (S1,2,4,banner) -free augmenting graph is either a complete bipartite graph or chain of even 
length, or a simple augmenting tree, or an augmenting plant or one of the following graphs.

.
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(S1,2,j, bannerk, K1,n) -free graphs

TheoremTheorem (Gerber, Hertz, Lozin, 2004)

Let j, k and n be any three integers

The class of  (S1,2,j, bannerk, K1,n) -free graphs contains finitely many minimal augmenting 

graphs different from chains. 

.

1 j

1 k

1

n
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FindingFinding
Augmenting graphsAugmenting graphs
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Augmenting Chains

Polynomial algorithmsPolynomial algorithms

• Claw-free graphs : Minty and Sbihi (1980)
• S1,2,3-free graphs Gerber, Hertz, Lozin (2003)
• (S1,2,i, banner)-free graphs : Hertz, Lozin, Schindl (2003)

.
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Augmenting Chains in claw-free graphs
Minty and Sbihi (1980)

Let A and B be two nonLet A and B be two non--adjacent white vertices, each of which has exactly one black adjacent white vertices, each of which has exactly one black neighborneighbor. Let a and . Let a and 

b denote their black b denote their black neighborneighbor..

We look for an augmenting chain connecting A to BWe look for an augmenting chain connecting A to B

If a=b then (If a=b then (A,aA,a==b,Bb,B) is an augmenting chain. ) is an augmenting chain. 

Hence, we can assume that a and b are distinct verticesHence, we can assume that a and b are distinct vertices

We can also assume that any white vertex different from A and B We can also assume that any white vertex different from A and B is not adjacent to A and B and has is not adjacent to A and B and has 

exactly two black exactly two black neighborsneighbors (other white vertices cannot occur in an augmenting chain conne(other white vertices cannot occur in an augmenting chain connecting A to B.cting A to B.

A B
a

b
A B

a

b
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Two white vertices having the same black Two white vertices having the same black neighborsneighbors are called are called similarsimilar

The similarity is an equivalence relation and an augmenting chaiThe similarity is an equivalence relation and an augmenting chain contains n contains 

at most one vertex in each class of similarityat most one vertex in each class of similarity

The similarity classes in the The similarity classes in the neighborhoodneighborhood of a black vertex are called of a black vertex are called 

wingswings
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A black vertex different from a and b and with more than two winA black vertex different from a and b and with more than two wings is said gs is said regularregular; ; 

otherwise it is otherwise it is irregularirregular..

R={regular black vertices} R={regular black vertices} ∪ ∪ {a,b}{a,b}

Remark : Remark : 

A black alternating chain (with possible chords linking white veA black alternating chain (with possible chords linking white vertices)rtices)

A white alternating chain (with possible chords linking white veA white alternating chain (with possible chords linking white vertices)rtices)

irregular
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An irregular black alternating chain = IBAP = An irregular black alternating chain = IBAP = chordlesschordless black alternating black alternating 

chain in which all black vertices except the termini are irregulchain in which all black vertices except the termini are irregularar

An irregular white alternating chain = IWAP = white alternating An irregular white alternating chain = IWAP = white alternating chain chain 

obtained by removing the termini of an IBAPobtained by removing the termini of an IBAP

irregular

irregular
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An augmenting chainAn augmenting chain

irregular irregularirregular

IWAPs
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Decomposition of the Decomposition of the neighborhoodneighborhood of each black vertex vof each black vertex v

into two subsets Ninto two subsets N11(v) and N(v) and N22(v) (v) 

called called node classesnode classes of vof v

in such a way that no two vertices in the same node class can ocin such a way that no two vertices in the same node class can occur in the chain augmenting chain   cur in the chain augmenting chain   

NN11(a)={A}, N(a)={A}, N22(a)=(a)=N(aN(a))--{A}{A} NN11(b)={B}, N(b)={B}, N22(b)=(b)=N(bN(b))--{B}{B}

A
a B

b
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If v is irregular then the node classes are the wings If v is irregular then the node classes are the wings 

called called node classesnode classes of vof v

irregular
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If v is regular then If v is regular then 

•• adjacent white adjacent white neighborsneighbors of v are in the same node classof v are in the same node class

•• similar white similar white neighborsneighbors of v are in the same node classof v are in the same node class

Consider the graph Consider the graph H(vH(v) where) where

•• The vertex set of The vertex set of H(vH(v) is ) is N(vN(v))

•• Two vertices u and w in Two vertices u and w in H(vH(v) are linked by an edge if and only if they are non) are linked by an edge if and only if they are non--similar and nonsimilar and non--adjacentadjacent
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THEOREM (THEOREM (MintyMinty 1980)1980)

H(v) is bipartite for all regular vertices v

The node classes of a regular vertex v are the two parts of The node classes of a regular vertex v are the two parts of H(vH(v))
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Let u and v be two white vertices.Let u and v be two white vertices.

Are u and v the endpoints of an IWAP ?Are u and v the endpoints of an IWAP ?

ConditionCondition : u and v must have a black : u and v must have a black neighborneighbor in Rin R

So let bSo let b00 be a black vertex in R and let Wbe a black vertex in R and let W11 be one wing of wbe one wing of w

MintyMinty has shown how to determine the set of pairs (has shown how to determine the set of pairs (u,vu,v) such that u belongs to W) such that u belongs to W11 and and 

there exists an IWAP with termini u and vthere exists an IWAP with termini u and v
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1.1. k:=1k:=1

2.2. Let Let bbkk denote the second black denote the second black neighborneighbor of the vertices in Wof the vertices in Wkk

If If bbkk has 2 wings then go to 3.has 2 wings then go to 3.

If If bbkk is irregular and different from bis irregular and different from b00 then go to 4.then go to 4.

Otherwise STOP (there is no pair (Otherwise STOP (there is no pair (u,vu,v))))

3.3. Let WLet Wkk be the second wing of be the second wing of bbkk; set k:=k+1 and go to 2.; set k:=k+1 and go to 2.

4.4. Construct an auxiliary graph with vertex set. WConstruct an auxiliary graph with vertex set. W1 1 ∪∪ …… ∪∪ WWkk and link two and link two 

vertices if they are nonvertices if they are non--adjacent in G and belong to 2 consecutive adjacent in G and belong to 2 consecutive WWii and Wand Wi+1i+1

Orient all edges from Orient all edges from WWii to Wto Wi+1i+1..

5.5. Determine the pairs (Determine the pairs (u,vu,v) such that u is in W) such that u is in W11 and v in Wand v in Wkk and there is a path from u and there is a path from u 

to v in the auxiliary graph.to v in the auxiliary graph.
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b0
b1 b2 b3

W1 W2 W3
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PropertyProperty

The chain constructed by the previous algorithm has no short choThe chain constructed by the previous algorithm has no short chordrd

PropertyProperty

If G is clawIf G is claw--free then a white alternating chain without short chord is free then a white alternating chain without short chord is chordlesschordless

CorollaryCorollary

The previous algorithm can detect all The previous algorithm can detect all IWAPsIWAPs
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Edmond’ s graphEdmond’ s graph

1.1. For each vertex v in R create two vertices vFor each vertex v in R create two vertices v11 and vand v22 and link them by a black edge. Identify vertex vand link them by a black edge. Identify vertex v11

with Nwith N11(v) and v(v) and v22 with Nwith N22(v)(v)

2.2. Create vertices A and B and link A to aCreate vertices A and B and link A to a11 and B to band B to b11 by a white edgeby a white edge

3.3. Link vLink vii to to wwjj with a white edge if there exists an IWAP with termini x and y with a white edge if there exists an IWAP with termini x and y such that x is in such that x is in NNii(v(v) ) 

and y in and y in NNjj(w(w). Identify the edge with such an IWAP). Identify the edge with such an IWAP
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The black edges define a matching M in the Edmond’ s graph.The black edges define a matching M in the Edmond’ s graph.

If M is not maximum then there exists an augmenting chain of edgIf M is not maximum then there exists an augmenting chain of edges.es.

Such an augmenting chain in the Edmond’ s graph corresponds  to aSuch an augmenting chain in the Edmond’ s graph corresponds  to an alternating chain in Gn alternating chain in G

Theorem (Theorem (MintyMinty, 1980), 1980)

The above alternating chain has no short chord, which means thatThe above alternating chain has no short chord, which means that it is an augmenting chainit is an augmenting chain
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v

v

v

z
y

x x
z

y       in H(v)

x
z in H(v)
y
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Minty’ sMinty’ s algorithm for finding augmenting chains in clawalgorithm for finding augmenting chains in claw--free graphsfree graphs

1.1. Partition the Partition the neighborhoodneighborhood of each regular black vertex v into two node classes by construof each regular black vertex v into two node classes by constructing the cting the 

bipartite graph bipartite graph H(vH(v) in which two white ) in which two white neighborsneighbors of v are linked by an edge if they are nonof v are linked by an edge if they are non--adjacent adjacent 

and nonand non--similar.similar.

2.2. Determine the pairs (Determine the pairs (u,vu,v) of white vertices such that there exists an IWAP with termini ) of white vertices such that there exists an IWAP with termini u and vu and v

3.3. Construct the Edmond’ s graph and let M be the set of black edgesConstruct the Edmond’ s graph and let M be the set of black edges in it.in it.

4.4. If the Edmond’ s graph contains an augmenting chain of edges withIf the Edmond’ s graph contains an augmenting chain of edges with respect to M then it correspond to respect to M then it correspond to 

an augmenting chain in G. Otherwise there are no augmenting chaian augmenting chain in G. Otherwise there are no augmenting chains with termini A and B.ns with termini A and B.
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Augmenting Chains in S1,2.3-free graphs
Gerber Hertz Lozin (2003)

A pair (u,v) of vertices is special if u and v have a common black neighbor b and if there is a vertex w in 
N(b) which is similar neither to u nor to v and such that either both of uw and vw or non of them is an 
edge in G.

If (u,v) is a special pair of non-adjacent non-similar vertices in a S1,2,3-free graph then u and v cannot 
occur in a same augmenting chain.

not ok ok
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Consider the graph Consider the graph H(vH(v) where) where

•• The vertex set of The vertex set of H(vH(v) is ) is N(vN(v))

•• Two vertices u and w in Two vertices u and w in H(vH(v) are linked by an edge if and only if they () are linked by an edge if and only if they (u,wu,w) is a pair of  non) is a pair of  non--similar, similar, 

nonnon--adjacent adjacent and nonand non--specialspecial verticesvertices

THEOREM (Gerber, Hertz, THEOREM (Gerber, Hertz, LozinLozin, 2003), 2003)

H(v) is bipartite for all regular vertices v
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Let (bLet (b11,w,w11,… ,w,… ,wkk--11,b,bkk) be an IBAP. ) be an IBAP. 

The IWAP (wThe IWAP (w11,… ,w,… ,wkk--11) is ) is interestinginteresting if wif w11 and wand wkk--11 are nonare non--isolated in H(bisolated in H(b11) and ) and H(bH(bkk), respectively), respectively

Algorithm for finding augmenting chains in SAlgorithm for finding augmenting chains in S1,2,31,2,3 --free graphsfree graphs

1.1. Partition the Partition the neighborhoodneighborhood of each regular black vertex v into two node classes by construof each regular black vertex v into two node classes by constructing the cting the 

bipartite graph bipartite graph H(vH(v) in which two white ) in which two white neighborsneighbors u and w of v are linked by an edge if (u and w of v are linked by an edge if (u,wu,w) is a pair ) is a pair 

of nonof non--adjacent, nonadjacent, non--similar similar and nonand non--specialspecial vertices.vertices.

2.2. Determine the pairs (Determine the pairs (u,vu,v) of white vertices such that there exists an ) of white vertices such that there exists an interestinginteresting IWAP with termini u IWAP with termini u 

and vand v

3.3. Construct the Edmond’ s graph and let M be the set of black edgesConstruct the Edmond’ s graph and let M be the set of black edges in it.in it.

4.4. If the Edmond’ s graph contains an augmenting chain of edges withIf the Edmond’ s graph contains an augmenting chain of edges with respect to M then it correspond to respect to M then it correspond to 

an alternating chain in G. Otherwise there are no augmenting chaan alternating chain in G. Otherwise there are no augmenting chains with termini A and B.ins with termini A and B.
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Theorem (Gerber, Hertz, Theorem (Gerber, Hertz, LozinLozin, 2003), 2003)

The alternating chain found at Step 4 has no short chordThe alternating chain found at Step 4 has no short chord

CorollaryCorollary

The alternating chain found at Step 4 is an augmenting chainThe alternating chain found at Step 4 is an augmenting chain
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Augmenting Chains in (S1,2.i,banner)-free graphs
Hertz Lozin Schindl (2003)

Let (u,v) be a pair of white non-adjacent vertices, each of which has exactly one black neighbor.

Let m=2 i/2

A pair (L,R) of disjoint chordless alternating chains L=(u=x0,x1,x2) and R=(xk-m,xk-m+1,… ,xk-1,xk=v)

is candidate for (u,v) if
– no vertex in L is adjacent to a vertex of R

– each vertex xj is white if and only if j is even

1 i

L R

u v
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Augmenting chains with at most i+3 vertices can be found in Augmenting chains with at most i+3 vertices can be found in 

polynomial time by inspecting all subsets of white vertices of polynomial time by inspecting all subsets of white vertices of 

cardinality (i+4)/2cardinality (i+4)/2

Larger augmenting chains can be detected by applying the followiLarger augmenting chains can be detected by applying the following ng 

algorithm to each pair (algorithm to each pair (u,vu,v) of white non) of white non--adjacent vertices, each of adjacent vertices, each of 

which has exactly one black which has exactly one black neighborneighbor
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1.1. Remove from G all white vertices adjacent to u or v as well as aRemove from G all white vertices adjacent to u or v as well as all white vertices ll white vertices 

different from u and v which have 0,1 or more than 3 black different from u and v which have 0,1 or more than 3 black neighborsneighbors

2.2. Find all candidate pairs (L,R) of alternating chains for (Find all candidate pairs (L,R) of alternating chains for (u,vu,v) and for each such pair do ) and for each such pair do 

the followingthe following

2.12.1 remove all white vertices that have a remove all white vertices that have a neighborneighbor in L or in Rin L or in R

2.22.2 remove the vertices of L and R except xremove the vertices of L and R except x22 and and xxkk--mm

2.32.3 remove all the vertices that are the center of a claw in the remremove all the vertices that are the center of a claw in the remaining graphaining graph

2.42.4 in the resulting clawin the resulting claw--free graph, determine whether there exists an augmenting chain wfree graph, determine whether there exists an augmenting chain with ith 

termini xtermini x22 and and xxkk--mm

..

L R

u v
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Augmenting Complete Bipartite Graphs in banner2-free graphs
Hertz Lozin (2004)

Remember that two white vertices are similar if they have the same black neighbors

Let C be similarity class and let G[C] denote the subgraph induced by C.

Each subset of C that forms a maximal connected component in the the complement of GC is called a Co-Class
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We may assume that there is no augmenting K1,2 and no augmenting K2,3 since these augmenting 
graphs can easily be detected.

Hence, we may assume that each white vertex has at least 3 black neighbors.

We may also assume that each white vertex has at least one non neighbor in its co-class

Consider the following auxiliary weighted graph Γ

- The vertices of Γ are the node classes of G.

- Two vertices are non-adjacent if and only if the corresponding node classes Q1 and Q2 have no 
common black neighbor and no vertex in Q1 is adjacent to a vertex in Q2.

- The weight of a vertex Q is α(G[Q])-|NS(Q)| where

- α(G[Q]) is the independence number of the subgraph induced by Q

- NS(Q) is the set of black neighbors of the vertices in Q.
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Recursive algorithm

• Find an arbitrary maximal independent set S in G. 

• If there is an augmenting graph H that contains a P4 then augment S and repeat step 2.

• Partition the vertices of V-S into node classes Q1, … , Qk

• Find a maximum independent set  Sj in the graph induced by Qj (j=1,… ,k)

• Construct the auxiliary graph Γ and find an independent set Q=(Q1,… ,Qp) of maximum weight in it

• If the weight of Q is positive then the complete bipartite graph induced by 

(NS(Qi) ∪ ∪ …  …  ∪ ∪ NNSS((QQpp)) )) ∪(∪(SS11 ∪  ∪  …  …  ∪∪SSpp))

is augmenting and by exchanging NS(Qi) ∪ ∪ …  …  ∪ ∪ NNSS((QQpp) ) with S1 ∪  …  ∪Sp one get a maximum 

independent set in G.
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1
-2
1

0
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5 . find an independent set Q=(Q1,… ,Qp) of maximum weight in Γ

Theorem (Hertz Lozin 2004)

If G is banner2-free then

Γ contains no induced  K2,3 , P5 , C5 , banner , and no odd anti –hole

Corollary

Γ is perfect

Hence, according to the result of Groetschel, Lovász and Schrijver (1984), an independent set of 
maximum weight in Γ can be found in polynomial time

Theorem

The maximum independent set problem in the class of banner2-free graphs is polynomially equivalent 
to the problem of finding augmenting graphs containing a P4.
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TheoremTheorem

Every minimal P4-free augmenting graph is a complete bipartite graph

TheoremTheorem (Lozin, 2000)
Every minimal (P5,banner)-free augmenting graph is a complete bipartite graph

Theorem Theorem (Hertz, Lozin, 2003)

Every minimal (S1,2,2,banner)-free augmenting graph is either complete bipartite 
or a chain of even length

We now know that the MIS can be solved in polynomial We now know that the MIS can be solved in polynomial 
time in these classes of graphstime in these classes of graphs
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In what follows we denoteIn what follows we denote

• Wi the set of white vertices having exactly i black 
neighbors

• B(w) the set of black neighbors of w
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Finding an augmentingFinding an augmenting

Consider three white mutually non-adjacent vertices a1,c,e such that 

•• aa11∈∈WW11

•• ||B(cB(c)|)|≥≥ ||B(eB(e)|)|
•• B(aB(a11) ) ∩B(c)={b1}
•• B(cB(c) ) ∩B(e)={d}
•• B(aB(a11) ) ∩B(e)=∅

The following algorithm determines whether this initial structure can be extended to the above 
augmenting graph

a1

b1 c
d
e
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1. Determine A=(B(c) ∪B(e))-{b1,d}

2. For each vertex u∈A determine the set N1(u) of white neighbors of u which are in W1 and which are not

adjacent to a1, c or e

3. Let G’ be the subgraph of G induced by ∪u ∈A N1(u)

- if α(G’ )= |A| then A∪{a1,b1,c,d,e} together with any maximum independent set in G’  induce the

desired augmenting graph

- otherwise the initial structure cannot be extended to the desired augmenting graph.

.

A
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Theorem (Gerber, Hertz, Lozin, 2004)

If G is (P8, banner)-free, then G’  is fork-free

Theorem (Alekseev, 1999)

The MIS can be solved in polynomial time in the class of fork-free graphs

Corollary

The above algorithm can be run in polynomial time

.
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Finding an augmentingFinding an augmenting

Consider five white mutually non-adjacent vertices x1,x2,… ,x5 such that

•• xxii∈∈WW22 (i=1,2,3,4)(i=1,2,3,4)

•• (x(x11∪∪B(xB(x11)) )) ∪ ... �∪ ∪ ... �∪ (x(x44∪∪B(xB(x44)) )) isis a Ca C88(x(x11,y,y11,x,x22,y,y22,x,x33,y,y33,x,x44,y,y44))

•• B(xB(x55) ) ∩∩{y{y11,y,y22,y,y33,y,y44)=)={y{y22,y,y44}}

The following algorithm determines whether this initial structure can be extended to 
the above augmenting graph

x4y4

x5

y2

x2y1
x1

y3 x3
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1. Determine A=B(x5) -{y2,y4}

2. For each vertex u∈A determine the set N1(u) of white neighbors of u which are in W1 and which are not

adjacent to x1, x2, x3 or x4

3. Let G’ be the subgraph of G induced by ∪u ∈A N1(u)

- if α(G’ )= |A| then A∪{x1,x2,x3,x4,x5,y1,y2,y3,y4} together with any maximum 

independent set in G’  induce the desired augmenting graph

- otherwise the initial structure cannot be extended to the desired augmenting graph.

.

A



73

Theorem (Gerber, Hertz, Lozin, 2004)

If G is (P8, banner)-free, then G’  is the union of disjoint cliques

Corollary

The above algorithm can be run in polynomial time

.
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Finding an augmentingFinding an augmenting

Consider four white mutually non-adjacent vertices b1,b2,d,x such that

•• xx∈∈WW11

•• bb11 and band b22 belong to Wbelong to W22

•• {b{b11,b,b22,d} ,d} ∪ ∪ B(bB(b11)) ∪∪B(bB(b22) ) is a C6(c1,b1,a,b2,c2,d)

•• x is adjacent to a or (exclusive) cx is adjacent to a or (exclusive) c11

The following algorithm determines whether this initial structure can be extended to 
the above augmenting graph

b2

x

a

b1

d

c2
c1

b2

x

a

b1

d

c2
c1

x



75

1. Determine A=B(d)-{c1,c2} 

2. For each vertex u∈A determine the set N1(u) of white neighbors of u which are in W1 and which are not

adjacent to x, b1, b2 or d as well as the set N2(u) of white vertices in W2 which are adjacent to both a 

and u but not to x, b1, b2 or d

2. Let G’ be the subgraph of G induced by ∪u ∈A (N1(u) ∪ N2(u)) 

- if α(G’ )= |A| then A∪{a,b1,b2,c1,c2,d,x} together with any maximum independent set in G’  induce

one of the desired augmenting graph

- otherwise the initial structure cannot be extended to the desired augmenting graph.

.
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Theorem (Gerber, Hertz, Lozin, 2004)

If G is (P8, banner)-free, then G’  is fork-free

Corollary

The above algorithm can be run in polynomial time

.
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TheoremTheorem (Gerber, Hertz, Lozin, 2004)

Every minimal (P8,banner) -free augmenting graph is either complete bipartite or 
one of the following graphs

CorollaryCorollary

The MIS can be solved in polynomial time in the class of (P8,banner)-free graphs
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TheoremTheorem (Gerber, Hertz, Lozin, 2004)
Every minimal (S1,2,4,banner) -free augmenting graph is either a complete bipartite graph or chain of even 
length, or a simple augmenting tree, or an augmenting plant or one of the following graphs.

Complete bipartite graph : OK since G is bannerComplete bipartite graph : OK since G is banner--free (Hertz, free (Hertz, LozinLozin, 2004), 2004)

Chain of even length : OK since G is (SChain of even length : OK since G is (S1,2,41,2,4,banner),banner)--free (Hertz, free (Hertz, LozinLozin, , SchindlSchindl, 2003), 2003)

Simple augmenting tree and augmenting plant : OK (Alekseev, Simple augmenting tree and augmenting plant : OK (Alekseev, LozinLozin, 2000), 2000)

The other 9 graphs : OK since they have at most 13 verticesThe other 9 graphs : OK since they have at most 13 vertices

CorollaryCorollary

The MIS can be solved in polynomial time in the class of (S1,2,4 ,banner)-free graphs


