Retour aux activités
Séminaire du GERAD
Clustering methods for stochastic optimisation
Janosch Ortmann – Professeur adjoint, Département d'analytique, opérations et technologies de l'information, Université du Québec à Montréal, Canada
In stochastic optimisation, some quantity is to be minimised subject to certain, random, constraints. Often, in order to quantify the randomness, scenarios are formed. However, optimizing with respect to each scenario is computationally costly. Moreover, it is often difficult to see how a change in assumptions changes the optimal solution. I will discuss how applying unsupervised clustering methods to the scenarios can lead to better understanding of the problem and lead to new heuristics, upper and lower bounds.
*Le webinaire sera suivi d'un cocktail.
Marilène Cherkesly
responsable
Lieu
Webinaire
Zoom
Montréal Québec
Canada
Montréal Québec
Canada
Organisme associé
Centre de recherche sur l’intelligence2 en gestion de systèmes complexes (CRI2GS)
JanoschOrtmann-030620.png (550 Ko)