Retour

G-2019-72

Constraint-preconditioned Krylov solvers for regularized saddle-point systems

et

référence BibTeX

We consider the iterative solution of regularized saddle-point systems. When the leading block is symmetric and positive semi-definite on an appropriate subspace, Dollar, Gould, Schilders, and Wathen (2006) describe how to apply the conjugate gradient (CG) method coupled with a constraint preconditioner, a choice that has proved to be effective in optimization applications. We investigate the design of constraint-preconditioned variants of other Krylov methods for regularized systems by focusing on the underlying basis-generation process. We build upon principles laid out by Gould, Orban, and Rees (2014) to provide general guidelines that allow us to specialize any Krylov method to regularized saddle-point systems. In particular, we obtain constraint-preconditioned variants of Lanczos and Arnoldi-based methods, including the Lanczos version of CG, MINRES, SYMMLQ, GMRES(\(\ell\)) and DQGMRES. We also provide MATLAB implementations in hopes that they are useful as a basis for the development of more sophisticated software. Finally, we illustrate the numerical behavior of constraint-preconditioned Krylov solvers using symmetric and nonsymmetric systems arising from constrained optimization.

, 26 pages

Ce cahier a été révisé en juillet 2020

Axe de recherche

Application de recherche

Publication

et
SIAM Journal on Scientific Computing, 43(2), page A1001, 2021 référence BibTeX