G-2021-70
Risk-averse regret minimization in multi-stage stochastic programs
, et référence BibTeX
Within the context of optimization under uncertainty, a well-known alternative to minimizing expected value or the worst-case scenario consists in minimizing regret. In a multi-stage stochastic programming setting with a discrete probability distribution, we explore the idea of risk-averse regret minimization, where the benchmark policy can only benefit from foreseeing \(\Delta\)
steps into the future. The \(\Delta\)
-regret model naturally interpolates between the popular ex-ante and ex-post regret models. We provide theoretical and numerical insights about this family of models under popular coherent risk measures and shed new light on the conservatism of the \(\Delta\)
-regret minimizing solutions.
Paru en décembre 2021 , 28 pages
Axe de recherche
Document
G2170.pdf (1 Mo)